
The Embedded I/O Company

TIP550-SW
VxWorks Device

8 (4) Channel 12 B

Version 2.1.x

User Manu
Issue 2.1.0

March 2010

TEWS TECHNOLOGIES G
Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49
e-mail: info@tews.com www.tews
-42
Driver

it D/A

al

mbH
lstenbek, Germany
(0) 4101 4058 19
.com

http://www.tews.com/

TIP550-SW-42 – VxWorks Device Driver Page 2 of 21

TIP550-SW-42

VxWorks Device Driver

8 (4) Channel 12 Bit D/A

Supported Modules:
TIP550

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

1996-2010 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue February 1996

1.1 Chapter “Installation” was extended November 1997

1.2 General Revision September 2003

2.0.0 Complete revision, carrier support added, new application interface April 9, 2008

2.0.1 Carrier Driver description added June 23, 2008

2.1.0 SMP support March 5, 2010

TIP550-SW-42 – VxWorks Device Driver Page 3 of 21

Table of Contents
1 INTRODUCTION... 4

1.1 Device Driver ...4
1.2 IPAC Carrier Driver ...5

2 INSTALLATION.. 6
2.1 Include the device driver in a VxWorks project ...6
2.2 System resource requirement ...6

3 I/O SYSTEM FUNCTIONS.. 7
3.1 tip550Drv() ...7
3.2 tip550DevCreate()..9

4 I/O FUNCTIONS ... 12
4.1 open() ...12
4.2 close()...14
4.3 ioctl() ..16

4.3.1 TIP550_WRITE..18
4.3.2 TIP550_INFO ...20

TIP550-SW-42 – VxWorks Device Driver Page 4 of 21

1 Introduction

1.1 Device Driver
The TIP550-SW-42 VxWorks device driver software allows the operation of the TIP550 IPAC
conforming to the VxWorks I/O system specification. This includes a device-independent basic I/O
interface with open(), close() and ioctl() functions.

The TIP550-SW-42 device driver supports the following features:

 Write data into DAC data register with and without conversion
 Data correction with factory set data
 Read module information
 Support for legacy and VxBus IPAC carrier driver
 SMP Support

The TIP550-SW-42 supports the modules listed below:

TIP550 8 (4) Channel 12 Bit DAC IndustryPack® compatible

To get more information about the features and use of TIP550 devices it is recommended to read the
manuals listed below.

TIP550 User manual

TIP550 Engineering Manual

CARRIER-SW-42 IPAC Carrier User Manual

TIP550-SW-42 – VxWorks Device Driver Page 5 of 21

1.2 IPAC Carrier Driver
IndustryPack (IPAC) carrier boards have different implementations of the system to IndustryPack bus
bridge logic, different implementations of interrupt and error handling and so on. Also the different byte
ordering (big-endian versus little-endian) of CPU boards will cause problems on accessing the
IndustryPack I/O and memory spaces.

To simplify the implementation of IPAC device drivers which work with any supported carrier board,
TEWS TECHNOLOGIES has designed a so called Carrier Driver that hides all differences of different
carrier boards under a well defined interface.

The TEWS TECHNOLOGIES IPAC Carrier Driver CARRIER-SW-42 is part of this TIP550-SW-42
distribution. It is located in directory CARRIER-SW-42 on the corresponding distribution media.

This IPAC Device Driver requires a properly installed IPAC Carrier Driver. Due to the design of the
Carrier Driver, it is sufficient to install the IPAC Carrier Driver once, even if multiple IPAC Device
Drivers are used.

Please refer to the CARRIER-SW-42 User Manual for a detailed description how to install and setup
the CARRIER-SW-42 device driver, and for a description of the TEWS TECHNOLOGIES IPAC Carrier
Driver concept.

TIP550-SW-42 – VxWorks Device Driver Page 6 of 21

2 Installation
Following files are located on the distribution media:

Directory path ‘TIP550-SW-42’:

tip550drv.c TIP550 device driver source
tip550def.h TIP550 driver include file
tip550.h TIP550 include file for driver and application
tip550exa.c Example application
include/ipac_carrier.h Carrier driver interface definitions
TIP550-SW-42-2.1.0.pdf PDF copy of this manual
ChangeLog.txt Release history
Release.txt Release information

2.1 Include the device driver in a VxWorks project
In order to include the TIP150-SW-42 device driver into a VxWorks project (e.g. Tornado IDE or
Workbench) follow the steps below:

(1) Copy the files from the distribution media into a subdirectory in your project path.
(For example: ./TIP150)

(2) Add the device drivers C-files to your project.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your VxWorks User’s
Guide (e.g. Tornado, Workbench, etc.)

2.2 System resource requirement
The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement

Memory < 1 KB < 1 KB

Stack < 1 KB ---

Semaphore --- 1

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

TIP550-SW-42 – VxWorks Device Driver Page 7 of 21

3 I/O system functions
This chapter describes the driver-level interface to the I/O system. The purpose of these functions is to
install the driver in the I/O system, add and initialize devices.

3.1 tip550Drv()

NAME

tip550Drv() - install the TIP550 driver in the I/O system

SYNOPSIS

#include “tip550.h”

STATUS tip550Drv(void)

DESCRIPTION

This function initializes the TIP550 driver and installs it in the I/O system.

A call to this function is the first thing the user has to do before adding any device to the
system or performing any I/O request.

EXAMPLE

#include "tip550.h”

STATUS status

/*-------------------
Initialize Driver
-------------------*/

status = tip550Drv();
if (status == ERROR)
{

/* Error handling */
}

TIP550-SW-42 – VxWorks Device Driver Page 8 of 21

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TIP550-SW-42 – VxWorks Device Driver Page 9 of 21

3.2 tip550DevCreate()

NAME

tip550DevCreate() – Add a TIP550 device to the VxWorks system

SYNOPSIS

#include “tip550.h”

STATUS tip550DevCreate
(

char *name,
int devIdx,
int funcType,
void *pParam

)

DESCRIPTION

This routine adds the selected device to the VxWorks system. The device hardware will be setup and
prepared for use.

This function must be called before performing any I/O request to this device.

PARAMETER

name

This string specifies the name of the device that will be used to identify the device, for example
for open() calls.

devIdx

This index number specifies the TIP550 minor device number to add to the system.

If modules of the same type are installed the device numbers will be assigned in the order the
IPAC CARRIER ipFindDevice() function will find the devices.

For TIP550 devices there is only one devIdx per hardware module starting with devIdx = 0.

funcType

This parameter is unused and should be set to 0.

TIP550-SW-42 – VxWorks Device Driver Page 10 of 21

pParam

This parameter points to a structure (TIP550_DEVCONFIG) containing the default configuration
of the channel.

The structure (TIP550_DEVCONFIG) has the following layout and is defined in tip550.h:

typedef struct
{

struct ipac_resource *ipac;
unsigned char VoltageRange1;
unsigned char VoltageRange2;

} TIP550_DEVCONFIG;

ipac

Not used. Set to NULL.

VoltageRange1

This parameter specifies the voltage range of the DAC channel group 1 (DAC channels 1
to 4). The specified value must match the jumper configuration. Possible values are:

Value Description

TIP550_UNIPOL DAC channels 1 to 4 are configured to unipolar mode.
Voltage range is 0V … 10V

TIP550_BIPOL DAC channels 1 to 4 are configured to bipolar mode.
Voltage range is -10V … +10V

VoltageRange2

This parameter specifies the voltage range of the DAC channel group 2 (DAC channels 5
to 8). The specified value must match the jumper configuration. Possible values are:

Value Description

TIP550_UNIPOL DAC channels 5 to 8 are configured to unipolar mode.
Voltage range is 0V … 10V

TIP550_BIPOL DAC channels 5 to 8 are configured to bipolar mode.
Voltage range is -10V … +10V

TIP550-SW-42 – VxWorks Device Driver Page 11 of 21

EXAMPLE

#include "tip550.h”

STATUS result;
TIP550_DEVCONFIG tip550Conf;
/*---
Create the device "/tip550/0", -/+10V voltage range
---*/
tip550Conf.VoltageRange1 = TIP550_BIPOL;
tip550Conf.VoltageRange2 = TIP550_BIPOL;

result = tip550DevCreate("/tip550/0",
0,
0,
(void*)&tip550Conf);

if (result == OK)
{

/* Device successfully created */
}
else
{

/* Error occurred when creating the device */
}

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

S_ioLib_NO_DRIVER The driver has not been started.

EINVAL Invalid input argument

EISCONN The device has already been created

ENOTSUP The detected model type is not supported

EIO Device Initialization failed

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TIP550-SW-42 – VxWorks Device Driver Page 12 of 21

4 I/O Functions

4.1 open()

NAME

open() - open a device or file.

SYNOPSIS

int open
(

const char *name,
int flags,
int mode

)

DESCRIPTION

Before I/O can be performed to the TIP550 device, a file descriptor must be opened by invoking the
basic I/O function open().

PARAMETER

name

Specifies the device which shall be opened, the name specified in tip550DevCreate() must be
used

flags

Not used

mode

Not used

TIP550-SW-42 – VxWorks Device Driver Page 13 of 21

EXAMPLE

int fd;

/*--
Open the device named "/tip550/0" for I/O
--*/

fd = open("/tip550/0", 0, 0);
if (fd == ERROR)
{

/* handle error */
}

RETURNS

A device descriptor number or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

Error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - open()

TIP550-SW-42 – VxWorks Device Driver Page 14 of 21

4.2 close()

NAME

close() – close a device or file

SYNOPSIS

STATUS close
(

int fd
)

DESCRIPTION

This function closes opened devices.

PARAMETER

fd

This file descriptor specifies the device to be closed. The file descriptor has been returned by
the open() function.

EXAMPLE

int fd;
STATUS retval;

/*----------------
close the device
----------------*/

retval = close(fd);
if (retval == ERROR)
{

/* handle error */
}

TIP550-SW-42 – VxWorks Device Driver Page 15 of 21

RETURNS

OK or ERROR. If the function fails, an error code will be stored in errno.

ERROR CODES

Error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - close()

TIP550-SW-42 – VxWorks Device Driver Page 16 of 21

4.3 ioctl()

NAME

ioctl() - perform an I/O control function

SYNOPSIS

#include “tip550.h”

int ioctl
(

int fd,
int request,
int arg

)

DESCRIPTION

Special I/O operation that does not fit to the standard basic I/O calls (read, write) will be performed by
calling the ioctl() function.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

request

This argument specifies the function that shall be executed. Following functions are defined:
Function Description

TIP550_WRITE Load data value and execute DA conversion

TIP550_INFO Read module information

arg

This parameter depends on the selected function (request). How to use this parameter is
described below with the function.

TIP550-SW-42 – VxWorks Device Driver Page 17 of 21

RETURNS

Function dependent value (described with the function) or ERROR. If the function fails an error code
will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - ioctl()

TIP550-SW-42 – VxWorks Device Driver Page 18 of 21

4.3.1 TIP550_WRITE

This I/O control function loads the specified (or corrected) output value for the specified channel and
starts a DA conversion. The function specific control parameter arg is a pointer to a
TIP550_WRITE_BUFFER structure.

If a conversion is still busy the function will wait for completion.

typedef struct
{

int channel;
unsigned long flags;
long data;

} TIP550_WRITE_BUFFER;

channel

This parameter specifies the DAC channel on the specified module the data value shall be
loaded to. Allowed values are 1 up to 8 for TIP550-10 and 1 up to 4 for TIP550-11.

flags

This parameter may contain the following flag defined in tip550.h:
Flag Description

TIP550_CORRECTION The DAC value shall be corrected with the factory
stored correction data.

data

This parameter specifies the new conversion value. The range of allowed values depends on
the selected output range. In unipolar mode (0V … +10V) allowed values are between 0 and
4095 and in bipolar mode (-10V … +10V) allowed values are between -2048 and 2047.

TIP550-SW-42 – VxWorks Device Driver Page 19 of 21

EXAMPLE

#include “tip550.h”

int fd;
TIP550_WRITE_BUFFER writeBuf;
int retval;

/*------------------------------------
Write a value of 0x100 to channel 3
make data correction
------------------------------------*/

writeBuf.channel = 3;
writeBuf.flags = TIP550_CORRECTION;
writeBuf.data = 0x100;

retval = ioctl(fd, TIP550_WRITE, (int)&writeBuf);
if (retval == ERROR)
{

/* handle the error */
}

ERROR CODES

Error codes are stored in errno and can be read with the function errnoGet().

Error code Description

EINVAL An invalid parameter value has been specified.

EIO The conversion failed.

TIP550-SW-42 – VxWorks Device Driver Page 20 of 21

4.3.2 TIP550_INFO

This I/O control function returns information about the specified device. The function specific control
parameter arg is a pointer to a TIP550_INFO_BUFFER structure.

typedef struct
{

int modelType;
long selRange[2];
long corrGain[8];
long corrOffset[8];

} TIP550_INFO_BUFFER;

modelType

This parameter returns the model type of the specified device. A TIP550-10 will return 10, a
TIP550-11 will return 11.

selRange[]

This parameter returns the selected output range for both DAC groups. Array index 0 contains
the voltage range for DAC channels 1 to 4, array index 1 contains the voltage range for DAC
channels 5 to 8. The following ranges can be returned:

Value Description

TIP550_UNIPOL The DAC Group is configured to unipolar mode.
Voltage range is 0V … 10V.

TIP550_BIPOL The DAC group is configured to bipolar mode.
Voltage range is -10V … +10V.

corrGain[]

This array returns the stored gain factory calibration data. (The value is stored in ¼ LSBs). Valid
data is returned for available channels only.

corrOffset[]

This array returns the stored offset factory calibration data. (The value is stored in ¼ LSBs).
Valid data is returned for available channels only.

The correction data is assigned to a special channel by its array index. Index 0 selects
correction data of channel 1, Index 1 of channel 2, and so on.

TIP550-SW-42 – VxWorks Device Driver Page 21 of 21

EXAMPLE

#include “tip550.h”

int fd;
TIP550_INFO_BUFFER infoBuf;
int retval;

/*-----------------------
Read module information
-----------------------*/

retval = ioctl(fd, TIP550_INFO, (int)&infoBuf);
if (retval != ERROR)
{

/* function succeeded */
printf("TIP550-%2d\n", infoBuf.modelType);

}
else
{

/* handle the error */
}

	Introduction
	Device Driver
	IPAC Carrier Driver

	Installation
	Include the device driver in a VxWorks project
	System resource requirement

	I/O system functions
	tip550Drv()
	tip550DevCreate()

	I/O Functions
	open()
	close()
	ioctl()
	TIP550_WRITE
	TIP550_INFO

