TEWS <

The Embedded I/O Company TECHNOLOGIES

TPMC550-SW-42

VxWorks Device Driver
8/4 Channel 12 Bit D/A

Version 1.1.x

User Manual

Issue 1.1.1
August 2005

TEWS TECHNOLOGIES GmbH TEWS TECHNOLOGIES LLC

Am Bahnhof 7 25469 Halstenbek / Germany 1 E. Liberty Street, Sixth Floor Reno, Nevada 89504 / USA
Phone: +49-0)4101-4058-0 Fax: +49-(0)4101-4058-19 Phone: +1 (775) 686 6077 Fax: +1 (775) 686 6024
e-mail: info@tews.com www.tews.com e-mail: usasales@tews.com WWw.tews.com

mailto:info@tews.com
mailto:usasales@tews.com

TPMC550-SW-42
8/4 Channel 12 Bit D/A

VxWorks Device Driver

Issue
1.0
1.1

1.1.1

TPMC550-SW-42 -

Description
First Issue
General Revision
File-list changed

VxWorks Device Driver

TEWS <

TECHNOLOGIES

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

©2001-2005 by TEWS TECHNOLOGIES GmbH

Date
May 2001
November 2003
August 8, 2005

Page 2 of 24

TEWS <

TECHNOLOGIES

Table of Contents

1 INTRODUCGTION........ciiiiiiiiriiieris s sss s s s s s s e e rnmmm s a s s e e e e e nnm s s s e nnnns 4
2 INSTALLATIONccoiiiiiiiiiiiieeiere e s s s s s s s s e s s s s s s s s s s s s s s s s s s e s e s s e s e s s s smmmmnnnnns 5
2.1 Install the driver to VXWOrKS SYyStem........cccoiiiiiiiiiiiiiiiiisisssssssssssssssssssssssssssssns sessssssssssssssssssssssnnn 5

2.2 Hardware dependent Configuration............oomincicsr e 5

2.3 Including the driver in VXWOTIKS ... s s s sssssss s sssssssee s 5

2.4 Example appliCation ... s s 6

2.5 Special installation for Intel x86 based targets...........ccccciiiiiiiiieis rccrserrrr e 7

3 /0O SYSTEM FUNCTIONS. ... s smmss s s s s mnnnas 8
B T 1 o 5T 1] 0 S 8

B0 1 o o1 1 T 0 =T - 9

4 /O INTERFACE FUNCTIONS ...t s s s s s 1
g oY o 1= o T 1

7 2 o L= - 13

B T T 4 =Y (S SRS SRPR 14

T o { | 16

4.4.1 FIO_TP550 READ_CONV Read the module configurationcccoooeeiiiiiiiiisvniviiininnnns 17

4.4.2 FIO_TP550 _SEQ_START Start SequUenCer MOUE.........occuuviiiiieeeeiiiiie e riieeee e 18

4.4.3 FIO_TP550_SEQ_ WRITE Update sequencer output data...........ccceeeveeeeeeeieeeeee e, 19

4.4.4 FIO_TP550 _SEQ _STOP Stop SeqUEeNCEr MOUEccceeeeeieeeeee e 19

4.45 EXAMPLE for control fUNCHONS........cooiiiiiiiiiiie et et 20

5 APPENDIX ... rr s e 23
5.1 Predefined SYymbOIS........ccci i e ————— 23

L7 = 4 oY g 0o T o 1= P 24

TPMC550-SW-42 - VxWorks Device Driver Page 3 of 24

TEWS <

TECHNOLOGIES

1 Introduction

The TPMC550-SW-42 VxWorks device driver software allows the operation of the TPMC550 PMC
conforming to the VxWorks 1/0 system specification. This includes a device-independent basic 1/0
interface with open(), close(), write(), and ioctl() functions.

The TPMC550 driver includes following functions:

o write a new output value to a specified channel

start and setup the output sequencer

update sequencer output values

stop the output sequencer

read the module configuration

TPMC550-SW-42 - VxWorks Device Driver Page 4 of 24

TEWS <

TECHNOLOGIES

2 Installation

2.1

Following files are located in directory TPMC550-SW-42 on the distribution media:

tp550drv.c TPMC550 Driver Source

tpmc550.h TPMC550 Application and Driver Include File
tp550def.h TPMC550 Driver Include File

tp550tst.c TPMC550 Example Application

tp550pci.c TPMC550 PCI MMU mapping for Intel x86 based targets
tpxxxhwdep.c Collection of hardware dependent functions
tpxxxhwdep.h Include for hardware dependent functions

Release.txt Information about the Device Driver Release

For installation the files have to be copied to the desired target directory.

Install the driver to VxWorks system

To install the TPMC550 device driver to the VxWorks system following steps have to be done:
eBuild the object code of the TPMC550 device driver
eLink or load the driver object file to the VxWorks system

eCall the tp550Drv() function to install the device driver.

2.2 Hardware dependent Configuration

The device driver software supports TEWS PMC carrier boards and others, Motorola
MVMEZ2600/3600 boards are supported by conditional compilation. The system has to be setup to
guarantee the following points:

o full access to the PMC I/O area of the card (register address space)
o full access to PMC memory area of the card (correction data address space)

e interrupt must be connected

2.3 Including the driver in VxWorks

How to include the device drive in the VxWorks system is described in the VxWorks and Tornado
manuals.

TPMC550-SW-42 - VxWorks Device Driver Page 5 of 24

TEWS <

TECHNOLOGIES

2.4 Example application

The example application uses configuration values for the MVME2600/3600 BSP, if the value
_MVME2600_3600 is defined. If an older version of the BSP (1.1/0 up to 1.1/2) is used, the value
_OLD BSP_in TP550TST.C must be defined too. If this value is undefined the newer BSP will be
used.

Using a Motorola PMC-span, the PCI/PCI Bridge has to be initialized on the span.
Using other carriers the initialization matching has to be adapted to the BSP.

The example code holds two functions setting and reading the PCI configuration registers. The first
function (PClsetupTPMC550()) sets up the PCI configuration registers, the TPMC550 registers will
appear at the specified address. This function is not used for Intel x86 targets because the PCI setup
is done by BSP.

The second function (searchPCI()) will search for the TPMC550 and read and calculate the modules
registers and correction data address, which must be used, when installing the driver.

TPMC550-SW-42 - VxWorks Device Driver Page 6 of 24

TEWS <

TECHNOLOGIES

2.5 Special installation for Intel x86 based targets

The TPMC550 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU. If the contents of this macro are equal to /80386, 180386 or PENTIUM special Intel x86
conforming code and function calls will be included.

The second problem for Intel x86 based platforms can't be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn’'t map PCl memory spaces of devices
which are not used by the BSP, the required PClI memory spaces can’t be accessed.

To solve this problem a MMU mapping entry has to be added for the required TPMC550 PCI memory
spaces prior the MMU initialization (usrMmulnit()) is done.

Please examine the BSP documentation or contact the BSP Vendor whether the BSP perform
automatic PCI and MMU configuration or not. If the PCI and MMU initialization is done by the BSP the
function tp550Pcilnit() won't be included and the user can skip to the following steps.

The C source file tp550pci.c contains the function tp550Pcilnit(). This routine finds out all TPMC550
devices and adds MMU mapping entries for all used PClI memory spaces. Please insert a call to this
function after the PCl initialization is done and prior to MMU initialization (usrMmuilnit()).

If the Tornado 2.0 project facility is used, the right place to call the function tp550Pcilnit() is at the end
of the function sysHwinit() in sysLib.c (can be opened from the project Files window).

If Tornado 1.0.1 compatibility tools are used insert the call to tp550Pcilnit() at the beginning of the root
task (usrRoot()) in usrConfig.c.

Be sure that the function is called prior to MMU initialization otherwise the TPCM550 PCI spaces
remains unmapped and an access fault occurs during driver initialization.

Please insert the following call at a suitable place in either sysLib.c or usrConfig.c:

t p550Pci I nit();

To link the driver object modules to VxWorks, simply add all necessary driver files to the project. If
Tornado 1.0.1 Standard BSP Builds... is used add the object modules to the macro MACH_EXTRA
inside the BSP Makefile (MACH_EXTRA = tp550drv.o tp550pci.o ...).

The function tp550Pcilnit() was designed for and tested on generic Pentium targets. If another
BSP is used please refer to BSP documentation or contact the technical support for required
adaptation.

If strange errors occur after system startup with the new build system please carry out a
VxWorks build clean and build all.

TPMC550-SW-42 - VxWorks Device Driver Page 7 of 24

TEWS <

TECHNOLOGIES

3 1/0 system functions

This chapter describes the driver-level interface to the 1/0O system. The purpose of these functions is to
install the driver in the 1/0O system, add and initialize devices.

3.1 tp550Drv()

NAME

tp550Drv() - installs the TPMC550 driver in the 1/0 system and initializes the driver.

SYNOPSIS

STATUS tp550Drv(void)

DESCRIPTION

This function installs the TPMC550 driver in the 1/0 system.

The call of this function is the first thing the user has to do before adding any device to the system or
performing any /O request.

RETURNS

OK or ERROR (if the driver cannot be installed)

SEE ALSO

VxWorks Programmer’s Guide: /O System

TPMC550-SW-42 - VxWorks Device Driver Page 8 of 24

TEWS <

TECHNOLOGIES

3.2 tp550DevCreate()

NAME

tp550DevCreate() - adds a TPMC550 device to the system and initializes device hardware.

SYNOPSIS

STATUS tp550DevCreate
(
char *name, /* name of the device to create */
unsigned long RegAddr, /* physical device register address */
unsigned long CalAddr, /* physical device calibration data address */
unsigned long IntVector, /* interrupt vector */
unsigned long IntLevel /* interrupt level */
)

DESCRIPTION

This routine is called to add a device to the system that will be serviced by the TPMC550 driver. This
function must be called before performing any I/O request to this driver.

PARAMETER

The name of the device is selected by the string, which is deployed by this routine in the parameter
name.

The argument RegAddr specifies the address of the modules registers (see TPMC550-DOC User
Manual and PCI Configuration example).

The argument CalAddr specifies the address of the modules correction data memory (see TPMC550-
DOC User Manual and PCI Configuration example).

The argument IntVector and IntLevel are board dependent. They specify the interrupt vector and the
interrupt level. The value of this parameter depends on the used hardware.

TPMC550-SW-42 - VxWorks Device Driver Page 9 of 24

TEWS <

TECHNOLOGIES

EXAMPLE

#i ncl ude "t pnc550. h"

Create the device "/tpnch550" with the registers at
addr ess Oxfe000000 and the calibration data at Oxfd000000
using interrupt |evel and vector 0x19

status = tp550DevCreate ("/tpnch550",
0xFEO00000,
0xFDO00000,
0x19,
0x19);

RETURNS

OK or ERROR (if the driver is not installed or the device already exists or any other error occurred
during the creation)

Include Files
tpmc550.h

TPMC550-SW-42 - VxWorks Device Driver Page 10 of 24

TEWS <

TECHNOLOGIES

4 1/0O interface functions

This chapter describes the interface to the basic I/O system.

4.1 open()

NAME

open() - opens a device or file.

SYNOPSIS

int open
(
const char *name, /* name of the device to open *
int flags, /* not used for TPMC550 driver, mustbe 0 */
int mode /* not used for TPMC550 driver, mustbe 0 */
)

DESCRIPTION

Before 1/0 can be performed to the TPMC550 device, a file descriptor must be opened by invoking the
basic 1/0 function open().

PARAMETER
The parameter name selects the device which shall be opened.

The parameters flags and mode are not used and must be 0.

EXAMPLE

TPMC550-SW-42 - VxWorks Device Driver Page 11 of 24

TEWS <

TECHNOLOGIES

RETURNS

A device descriptor number or ERROR (if the device does not exist or no device descriptors are
available)

INCLUDES
tpmc550.h

SEE ALSO

ioLib, basic 1/O routine - open()

TPMC550-SW-42 - VxWorks Device Driver Page 12 of 24

TEWS <

TECHNOLOGIES

4.2 close()

NAME

close() - closes a device or file.

SYNOPSIS

int close

(

int fd /* descriptor to close */

)

DESCRIPTION

This function closes opened devices.

EXAMPLE

int retval;

retval = close(fd);

RETURNS

A device descriptor number or ERROR (if the device does not exist or no device descriptors are
available)

INCLUDES
tpmc550.h

SEE ALSO

ioLib, basic 1/O routine - close()

TPMC550-SW-42 - VxWorks Device Driver Page 13 of 24

TEWS <

TECHNOLOGIES

4.3 write()

NAME

write() — writes new output value to the specified TPMC550 device.

SYNOPSIS

int write
(
int fd, [* device descriptor from opened TPMC550 device */
char *buffer, [* pointer to the write structure */
size_t nbytes /* not used */
)

DESCRIPTION

This function writes a new value to a specified channel.

PARAMETER

The parameter fd is a file descriptor specifying the device which shall be used.
The parameter buffer points to a data structure TP550_RW_ARGS (see below).
The argument nbytes is not used for the device driver.

data structure TP550_RW_ARGS:

typedef struct
unsigned long Flags;
long Channel;
long Value;

} TP550_ RW_ARGS;

The parameter Flags specifies how to make the conversion. The following values are allowed for this

function.
TP550 CORR This flag specifies, that the output value shall be
corrected with the board dependent correction data.
TP550 LATCHED The DAC will be loaded in latched mode.
TP550_SIMCONV This flag starts a simultaneous conversion.

The parameter Channel specifies the channel to use.

The Value specifies the new output data.

TPMC550-SW-42 - VxWorks Device Driver Page 14 of 24

TEWS <

TECHNOLOGIES

EXAMPLE
i nt fd;
i nt retval ;

TP550_RW ARGS rw_par;

rw_par. Channel = 3;
rw par.Flags = TP550 CORR,
rw_par.Value = 0x600;

retval = wite (fd, & w par, 0);
if (retval == ERROR)
{
/* Error witing new output value */
}
RETURNS

ERROR or number of bytes written
INCLUDE FILES

tpmc550.h

SEE ALSO

ioLib, tyWrite, basic I/O routine - write()

TPMC550-SW-42 - VxWorks Device Driver Page 15 of 24

TEWS <

TECHNOLOGIES

4.4 ioctl()

NAME

ioctl() - performs an I/O control function.

SYNOPSIS
int ioctl
(
int fd, [* device descriptor from opened TPMC550 device */
int function, /* function code */
int arg [* optional function dependent argument */
)
DESCRIPTION

Special 1/0 operation that do not fit to the standard basic 1/O calls will be performed by calling the
joctl() function with a specific function code and an optional function dependent argument.
PARAMETER

The parameter fd specifies the device descriptor of the opened TPMC550 device.
The parameter function selects the action, which will be executed by the driver.

The structure arg depends on the function (see description below).

RETURNS

OK or ERROR (if the device descriptor does not exist or the function code is unknown or an error
occurred)

INCULDES
tpmc550.h

SEE ALSO

ioLib, basic I/O routine - joctl(), VxWorks Programmer’s Guide: /O System

TPMC550-SW-42 - VxWorks Device Driver Page 16 of 24

TEWS <

TECHNOLOGIES

441 FIO_TP550_READ_CONV Read the module configuration

This command will read the configuration of the TPMC550. This configuration is made by the
hardware (see TPMC550-DOC User Manual). The function dependent argument arg points to a data
structure TP550_CONF_ARGS. The configuration of the board will be returned in this structure.

data structure TP550_CONF_ARGS:

typedef struct
unsigned long Channels;
unsigned long Voltage 1 4;
unsigned long Voltage 5 8;

} TP550_CONF_ARGS;

The parameter Channels will return the number of implemented channels on the board. This value will
be 8 for TPMC550-10/-20 and it will be 4 for TPMC550-11/-21.

The parameters Voltage_1_4 returns the selected voltage range of channel 1, 2, 3 and 4. Possible

values are:
TP550 0 10 This value specifies the channel are configured for a
voltage range between 0V and +10V.
TP550 10 10 This value specifies the channel are configured for a

voltage range between —10V and +10V.

The parameters Voltage_5_8 returns the selected voltage range of channel 5, 6, 7 and 8. Possible

values are:
TP550 0 10 This value specifies the channel are configured for a
voltage range between 0V and +10V.
TP550_10_10 This value specifies the channel are configured for a

voltage range between —10V and +10V.

TPMC550-SW-42 - VxWorks Device Driver Page 17 of 24

TEWS <

TECHNOLOGIES

4.4.2 FIO _TP550 SEQ_START Start sequencer mode

This function will setup and start the TPMC550 to work in sequencer mode. The function dependent
argument arg points to a data structure called TP550_SEQ_START_ARGS. The data structure holds
the values for the first and the second cycle.

data structure TP550_SEQ_START_ARGS:

typedef struct
unsigned short Time;
TP550_CHANNEL_ARGS ChannelA[8];
TP550_CHANNEL_ARGS ChannelB[8];

} TP550_SEQ_START_ARGS;

The argument Time specifies the cycle time of the sequencer. The time is scaled to 100us steps.

The array ChannelA specifies the values for the first cycle. The array ChannelB specifies the values
for the second cycle. Both arrays are arrays of the data structure TP550_CHANNEL_ARGS.

data structure TP550_CHANNEL_ARGS:

typedef struct

{
unsigned long Flags;
long Value;

} TP550_CHANNEL_ARGS;

The parameter Flags specifies the settings for this channel. Allowed Flags are:

TP550_CORR This flag specifies, that the output value shall be
corrected with the board dependent correction data.

TP550 UPDATE This flag must be set to allow a new conversion for the
channel. If this flag is not set, the output of the channel
will not change. This value is only used for ChannelB
data.

TP550_ENABLE This flag enables this channel to be used by the
sequencer. This flag is only valid for ChannelA data. The
value of a channel which is not enabled will be never
changed after starting the sequencer.

The parameter Value specifies the output value.

TPMC550-SW-42 - VxWorks Device Driver Page 18 of 24

TEWS <

TECHNOLOGIES

44.3 FIO_TP550_SEQ_WRITE Update sequencer output data

This function will update the output data. The changes will be used for the next sequencer cycle. The
function dependent argument arg points to a data structure called TP550 SEQ _ARGS. The data
structure holds the values for the next cycle.

data structure TP550_SEQ_ARGS:
typedef struct

TP550_CHANNEL_ARGS Channel[8];
} TP550_SEQ_ARGS:

The array Channel specifies the values for the next cycle. The array is an array of the data structure
TP550_CHANNEL_ARGS.

data structure TP550_CHANNEL_ARGS:

typedef struct
unsigned long Flags;
long Value;

} TP550_CHANNEL_ARGS;

The parameter Flags specifies the settings for this channel. Allowed Flags are:
TP550 _CORR This flag specifies, that the output value shall be
corrected with the board dependent correction data.

TP550_UPDATE This flag must be set to allow a new conversion for this
channel. If this flag is not set, the output of the channel
will not change.

The parameter Value specifies the new output value.

444 FIO_TP550 SEQ_STOP Stop sequencer mode
This command stops the sequencer. The function dependent argument arg is not used for this
function.

TPMC550-SW-42 - VxWorks Device Driver Page 19 of 24

445 EXAMPLE for control functions

i nt fd;

STATUS retval ;
TP550 CONF_ARGS conf _par;
TP550_SEQ START_ARGS seq_st _par;
TP550_SEQ ARGS seq_par;

/*****************************/

/* Read nmodul e configuration */

/*****************************/

retval = ioctl(fd, FI O TP550 _READ CONV, (int)&conf_par);

if (retval == ERROR)
{

/* Handl e error */

/**********************************/

/* Start the sequencer: */
/* Use channel 1 and channel 3 */
/* Cycle tine: 0.5 sec */
/* channel 1: 0x100 -> 0x200 */
/* use data correction */
/* channel 3: 0x400 -> 0x700 */

/**********************************/

/* Channel 1 */

seq_st _par. Channel A[0] . Fl ags = TP550_ENABLE |
seq_st _par. Channel A[0] . Val ue = 0x100;

seq_st _par. Channel B[0] . Fl ags = TP550_UPDATE |
seq_st _par. Channel B[0] . Val ue = 0x200;

/* Channel 3 */

seq_st _par. Channel Al 2] . Fl ags = TP550_ENABLE;
seq_st _par. Channel A] 2] . Val ue = 0x400;

seq_st _par. Channel B[2] . Fl ags = TP550_UPDATE;
seq_st _par. Channel B[2] . Val ue = 0x700;

TPMC550-SW-42 - VxWorks Device Driver

TP550_CORR;

TP550_CORR;

TEWS <

TECHNOLOGIES

Page 20 of 24

TEWS <

TECHNOLOGIES

/* Disable the other channels */
seq_st _par. Channel Al 1] . Fl ags = O;
seq_st _par. Channel Al 3] . Fl ags = O;
seq_st _par. Channel Al 4] . Fl ags = O;
seq_st _par. Channel Al 5] . Fl ags = O;

seq_st _par. Channel A[6] . Fl ags = 0O;

seq_st _par. Channel Al 7] . Fl ags = O;

/* Setup the cycle time */

seq_st_par.Tine = 5000;

retval = ioctl(fd, FIO TP550_SEQ START, (int)&seq_st_par);
if (retval == ERROR)

{

/* Handl e the error */

/**********************************/

/* Wite new data to sequencer: */
/* Use channel 1 and channel 3 */
/* channel 1: xxxx -> 0x300 */
/* use data correction */
/* channel 3: xxxx -> 0x123 */

/**********************************/

[* Channel 1 */
seq_par . Channel [0] . Fl ags
seq_par. Channel [0] . Val ue

TP550_UPDATE | TP550_CORR;
0x300;

seq_par. Channel [2] . Fl ags
seq_par. Channel [2] . Val ue

TP550_UPDATE;
0x123;

retval = ioctl(fd, FIO TP550 SEQ WRI TE, (int)&seq_par);
if (retval == ERROR)

{
/* Handl e the error */

/**********************/

/* Stop the sequencer */

/**********************/

retval = ioctl(fd, FIO TP550_SEQ STOP, 0);

TPMC550-SW-42 - VxWorks Device Driver Page 21 of 24

TEWS <

TECHNOLOGIES

if (retval == ERROR)
{
/* Handl e the error */

TPMC550-SW-42 - VxWorks Device Driver Page 22 of 24

5 Appendix

TEWS <

TECHNOLOGIES

This chapter describes the symbols which are defined in the file tpmc550h.

5.1 Predefined Symbols

loctl Function Codes

FIO_TP550_SEQ_START 0x05500100
FIO_TP550 SEQ WRITE 0x05500101
FIO_TP550_SEQ_STOP 0x05500102
FIO_TP550 READ_CONV 0x05500103
Conversion flags
TP550_CORR (1<<0)
TP550_LATCHED (1<<1)
TP550_SIMCONV (1<<2)
TP550 _UPDATE (1<<8)
TP550_ENABLE (1<<9)
Voltage Ranges
TP550_0_10 0
TP550_10_10 1

TPMC550-SW-42 - VxWorks Device Driver

Start and setup the sequencer

Write a new output value for the next
sequencer cycle

Stop the sequencer
Read module configuration

Correct the output value using the board
dependent correction data

Load DAC in latched mode

Start simultaneous conversion

Update the channel with the next cycle
Enable this channel for sequencer

Channels are configured in unipolar mode
(OV ... +10V)

Channels are configured in bipolar mode
(-10V ... +10V)

Page 23 of 24

5.2 Error Codes

TEWS <

TECHNOLOGIES

If the device driver creates an error the error codes are stored in the errno. They can be read with the

VxWorks function errnoGet() or printErrno().

S_tp550Drv._NOERR 0x00000000
S_tp550Drv_IDEVICE 0x05500001
S_tp550Drv._NOMEM 0x05500002
S_tp550Drv._NOSEM 0x05500003
S_tp550Drv._CHANERR 0x05500005
S_tp550Drv_MODBUSY 0x05500006
S_tp550Drv_TIMEOUT 0x05500007
S_tp550Drv_ICMD 0x05500008
S_tp550Drv._SEQOFF 0x0550000A
S_tp550Drv_SEQERR 0x05500008

TPMC550-SW-42 - VxWorks Device Driver

No error, operation successful
lllegal device number

Not enough memory, driver can not
allocate memory

Driver can not create a semaphore
lllegal channel number specified

Module is busy, sequencer is running,
or another access is still active

Waiting for completion of conversion
timed out

lllegal command

Sequencer is disabled, command only
valid for running sequencer

Sequencer hardware detected an error

Page 24 of 24

	Introduction
	Installation
	Install the driver to VxWorks system
	Hardware dependent Configuration
	Including the driver in VxWorks
	Example application
	Special installation for Intel x86 based targets

	I/O system functions
	tp550Drv()
	tp550DevCreate()

	I/O interface functions
	open()
	close()
	write()
	ioctl()
	FIO_TP550_READ_CONVRead the module configuration
	FIO_TP550_SEQ_STARTStart sequencer mode
	FIO_TP550_SEQ_WRITEUpdate sequencer output data
	FIO_TP550_SEQ_STOPStop sequencer mode
	EXAMPLE for control functions

	Appendix
	Predefined Symbols
	Error Codes

