
 
 

 
 

 
 
 
 
 

TPMC550-SW-72 
LynxOS Device Driver 

TPMC550 – 8 Channel 12-Bit DAC 
 

Version 1.0.x 

Reference Manual 
Issue 1.0 

 
April 2002 

 
 
 

TEWS TECHNOLOGIES GmbH 
Am Bahnhof 7 

D-25469 Halstenbek 
Germany 

Tel.: +49 (0)4101 4058-0 
Fax.: +49 (0)4101 4058-19 

http://www.tews.com 
e-mail: info@tews.com 

 
 

http://www.tews.com/
mailto:info@tews.com


 

TPMC550-SW-72 
8 Channel 12-Bit DAC 
LynxOS Device Driver 

This document contains information, which is 
proprietary to TEWS TECHNOLOGIES. Any 
reproduction without written permission is 
forbidden. 

TEWS TECHNOLOGIES has made any effort 
to ensure that this manual is accurate and 
complete. However TEWS TECHNOLOGIES 
reserves the right to change the product 
described in this document at any time without 
notice. 

This product has been designed to operate 
with PCI Mezzanine Card (PMC) compatible 
carriers. Connection to incompatible hardware 
is likely to cause serious damage. 

TEWS TECHNOLOGIES is not liable for any 
damage arising out of the application or use of 
the device described herein. 

2002 by TEWS TECHNOLOGIES GmbH 
 

Issue Description Date 

1.0 First Issue April 5, 2002 
TPMC550-SW-72 – LynxOS Device Driver page 2 



 TPMC550-SW-72 – LynxOS Device Driver page 3 

Table of Contents 

1 INTRODUCTION .................................................................................................. 4 

2 INSTALLATION.................................................................................................... 5 
2.1 Device Driver Installation..................................................................................... 5 

2.1.1 Static Installation .................................................................................................... 5 
2.1.1.1 Build the driver object ..................................................................................... 5 
2.1.1.2 Create Device Information Declaration ........................................................... 6 
2.1.1.3 Modify the Device and Driver Configuration File ............................................. 6 
2.1.1.4 Rebuild the Kernel .......................................................................................... 6 

2.1.2 Dynamic Installation ............................................................................................... 7 
2.1.3 Device Information Definition File ........................................................................... 8 
2.1.4 Configuration File: CONFIG.TBL ............................................................................ 9 

3 TPMC550 DEVICE DRIVER PROGRAMMING.................................................. 10 
3.1 open() .................................................................................................................. 10 
3.2 close() ................................................................................................................. 11 
3.3 write() .................................................................................................................. 12 
3.4 ioctl() ................................................................................................................... 15 

3.4.1 TP550_READPARAM - (Read Module Parameters) ............................................ 16 
3.4.2 TP550_SEQSTOP - (Stop Sequencer Mode)....................................................... 18 
3.4.3 TP550_SEQSTART - (Setup and Start Sequencer Mode).................................... 19 
3.4.4 TP550_SEQWRITE - (Write Sequencer Data) ..................................................... 21 

4 DEBUGGING...................................................................................................... 23 
 



 TPMC550-SW-72 – LynxOS Device Driver page 4 

1 Introduction 
The TPMC550-SW-72 LynxOS device driver allows the operation of a TPMC550  
8 channel 12-bit DAC PMC on a PowerPC platform with DRM based PCI interface.  
 
The standard file (I/O) functions (open, close, write and ioctl) provide the basic 
interface for opening and closing a file descriptor and for performing device I/O and 
control operations. 
 
 
The TPMC550 device driver includes the following functions: 
 
! write a new value to the specified DAC channel 
! setup and start the DAC sequencer mode 
! write data to FIFO-buffer for sequencer mode 
! read module information 
! all writes can be made with data correction using the factory set correction 

data 



 TPMC550-SW-72 – LynxOS Device Driver page 5 

2 Installation 
The software is delivered on a PC formatted 3½" HD diskette. 
 
Following files are located on the diskette: 
 

tpmc550.c Driver source code 
tpmc550.h Definitions and data structures for driver and 

application 
tpmc550_info.c Device information definition 
tpmc550_info.h Device information definition header 
tpmc550.cfg Driver configuration file include 
tpmc550.import Linker import file 
Makefile Device driver make file 
Makefile.dldd Make file for dynamic driver installation 
tpmc550-sw-72.pdf This Manual in PDF format 

2.1 Device Driver Installation 
The two methods of driver installation are as follows: 

• Static Installation 
• Dynamic Installation (only native LynxOS systems) 

2.1.1 Static Installation 
With this method, the driver object code is linked with the kernel routines and is 
installed during system start-up. 
 
In order to perform a static installation, copy the following files to the target directories: 
 
1. Create a new directory in the system drivers directory path. 

For example:   /sys/drivers.pp_drm/tpmc550 
2. Copy the following files to this directory:  tpmc550.c, Makefile  
3. Copy  tpmc550.h  to  /usr/include/ 
4. Copy  tpmc550_info.c  to  /sys/devices/  
5. Copy  tpmc550_info.h  to  /sys/dheaders/ 
6. Copy  tpmc550.cfg  to  /sys/cfg.ppc/  

2.1.1.1 Build the driver object 

1. Change to the directory  /sys/drivers.pp_drm/tpmc550 
2. To update the library  /sys/lib/libdrivers.a   enter: 

 
make install 



 TPMC550-SW-72 – LynxOS Device Driver page 6 

2.1.1.2 Create Device Information Declaration 

1. Change to the directory  /sys/devices/ 
2. Add the following dependencies to the Makefile  

 
DEVICE_FILES_prep = ...tpmc550_info.x 
 
And at the end of the Makefile 
... 
tpmc550_info.o:$(DHEADERS)/tpmc550_info.h
 

3. To update the library  /sys/lib/libdevices.a  enter: 
 
make install 

2.1.1.3 Modify the Device and Driver Configuration File 

In order to insert the driver object code into the kernel image, an appropriate entry in 
file CONFIG.TBL must be created. 
 
1. Change to the directory  /sys/lynx.os/ 
2. Create an entry in the file CONFIG.TBL 

Insert the entry after the console driver section 
 
# End of console devices 
I:tpmc550.cfg 

2.1.1.4 Rebuild the Kernel 

1. Change to the directory  /sys/lynx.os/ (/sys/bsp.pp_drm) 
2. To rebuild the kernel enter the following command: 

 
make install
 

3. Reboot the newly-created operating system by the following command: 
 
reboot –aN

The N flag instructs init to run mknod and create all the nodes mentioned in the new 
nodetab. 
 

4. After reboot you should find the following new devices (depends on the device 
configuration):  /dev/tp550a, [ /dev/tp550b, …] 



 TPMC550-SW-72 – LynxOS Device Driver page 7 

2.1.2 Dynamic Installation 
This method allows you to install the driver after the operating system is booted. The 
driver object code is attached to the end of the kernel image and the operating system 
dynamically adds this driver to its internal structures. The driver can also be removed 
dynamically. 
Unlike the description of the dynamic installation in the manual “Writing Device Drivers 
for LynxOS”, the driver source must be placed in a directory under /sys/drivers.pp_drm/ 
 
The following steps describe how to do a dynamic installation: 
1. Create a new directory in the system drivers directory path. 

For example:  /sys/drivers.pp_drm/tpmc550 
 

2. Copy the following files to this directory: 
- tpmc550.c 
- tpmc550_info.c 
- tpmc550_info.h 
- tpmc550.import 
- Makefile.dldd 
 

3. Copy  tpmc550.h  to  /usr/include 
 

4. Change to the directory   /sys/drivers.pp_drm/tpmc550 
 

5. To make the dynamic link-able driver enter : 
make –f Makefile.dldd
 

6. Create a device definition file for one major device 
gcc –DDLDD –o tpmc550_info tpmc550_info.c
./tpmc550_info > tp550a
 

7. To install the driver enter:  
drinstall –c tpmc550.obj
 
If successful drinstall returns a unique <driver-ID> 
 

8. To install the major device enter:  
devinstall –c –d <driver-ID> tp550a 
 
The <driver-ID> is returned by the drinstall command 
 

9. To create nodes for the devices enter: 
mknod /dev/tp550a c <major_no> 0
... 

If all steps are successful completed the TPMC550 is ready to use.  
 
To uninstall the TPMC550 device enter the following commands: 
devinstall –u –c <device-ID>
drinstall –u <driver-ID>



 TPMC550-SW-72 – LynxOS Device Driver page 8 

2.1.3 Device Information Definition File 
The device information definition contains information necessary to install the 
TPMC550 major device. 
The implementation of the device information definition is done through a C structure 
which is defined in the header file  tpmc550_info.h. 
 
This structure contains following parameter: 
 
PCIBusNumber Contains the PCI bus number at which the TPMC550 is 

connected. Valid bus numbers are in range from 0 to 255. 
 
PCIDeviceNumber Contains the device number (slot) at which the TPMC550 is 

connected. Valid device numbers are in range from 0 to 31. 
 
  NOTE. If both PCIBusNumber and PCIDeviceNumber are –1 

then the driver will auto scan for the TPMC550 device. The first 
device found in the scan order will be allocated by the driver for 
this major device.  
Already allocated devices can’t be allocated twice. This is 
important to know if you have more than one TMPC550 major 
device.  
 

 
A device information definition is unique for every TPMC550 major device. The file 
tpmc550_info.c on the distribution disk contains two device information declarations, 
tp550a_info for the first major device and tp550b_info for the second major device.  
 
If the driver should support more than two major devices it is necessary to copy and 
paste an existing declaration and rename it with unique name for example 
tp550c_info, tp550d_info and so on.  
 
NOTE. It is also necessary to modify the device and driver configuration file 
respectively the configuration include file tpmc550.cfg. 
 
 
The following device declaration information uses the auto find method to detect the 
TPMC550 module on PCI bus.  
 
 
TP550_INFO tp550a_info = {

-1, /* auto find the TPMC550 on any PCI bus */
-1,

};



 TPMC550-SW-72 – LynxOS Device Driver page 9 

2.1.4 Configuration File: CONFIG.TBL 
The device and driver configuration file CONFIG.TBL contains entries for device drivers 
and its major and minor device declarations. Each time the system is rebuild, the config 
utility reads this file and produces a new set of driver and device configuration tables 
and a corresponding nodetab. 
 
To install the TPMC550 driver and devices into the LynxOS system, the configuration 
include file tpmc550.cfg must be included in the CONFIG.TBL (see also 2.1.1.3). 
The file tpmc550.cfg on the distribution disk contains the driver entry (C:tpmc550:\....) 
and one enabled major device entry ( D:TPMC550 1:tp550a_info:: ) with one minor 
device entry ( N: tp550a:0 ).  
 
If the driver should support more than one major device the following entries for major 
and minor devices must be enabled by removing the comment character (#). By copy 
and paste an existing major and minor entry and renaming the new entries, it is 
possible to add any number of additional TPMC550 device. 
 
NOTE. The name of the device information declaration (info-block-name) must match 
to an existing C structure in the file  tpmc550_info.c. 
 
This example shows a driver entry with one major device and 8 minor devices: 
 
#Format:
#C:driver-name:open:close:read:write:select:control:install:uninstall
#D:device-name:info-block-name:raw-partner-name
#N:node-name:minor-dev

C:tpmc550:\
:tp550open:tp550close:tp550read::\
::tp550ioctl:tp550install:tp550uninstall

D:TPMC550 1:tp550a_info::
N:tp550a:0
 
 
The configuration above creates the following node in the /dev directory. 
 
/dev/tp550a



 TPMC550-SW-72 – LynxOS Device Driver page 10 

3 TPMC550 Device Driver Programming 
LynxOS system calls are all available directly to any C program. They are implemented 
as ordinary function calls to "glue" routines in the system library, which trap to the OS 
code.  
Note that many system calls use data structures, which should be obtained in a 
program from appropriate header files. Necessary header files are listed with the 
system call synopsis. 

3.1 open() 

NAME 

open() - open a file 

SYNOPSIS 

#include <sys/file.h> 
#include <sys/types.h> 
#include <fcntl.h> 
 
int open ( char *path, int oflags[, mode_t mode] ) 

DESCRIPTION 

Opens a file (TPMC550 device) named in path for reading and writing. The value of 
oflags indicates the intended use of the file. In case of a TPMC550 devices oflags 
must be set to O_WRONLY to open the file for writing. 
The mode argument is required only when a file is created. Because a TPMC550 
device already exists this argument is ignored. 

EXAMPLE 
int fd

…

/*
** open the device named "/dev/tp550a" for Input
*/

fd = open ("/dev/tp550a", O_WRONLY);

…

RETURNS 

open returns a file descriptor number if successful, or –1 on error. 

SEE ALSO 

LynxOS System Call - open() 



 TPMC550-SW-72 – LynxOS Device Driver page 11 

3.2 close() 

NAME 

close() – close a file 

SYNOPSIS 

int close( int fd ) 

DESCRIPTION 

This function closes an opened device. 

EXAMPLE 
int result;

…

/*
** close the device
*/

result = close(fd);

…

RETURNS 

close returns 0 (OK) if successful, or –1 on error 

SEE ALSO 

LynxOS System Call - close() 



 TPMC550-SW-72 – LynxOS Device Driver page 12 

3.3 write() 

NAME 

write() - write to a file  

SYNOPSIS 

#include <tpmc550.h> 
 
int write ( int fd, char *buff, int count ) 

DESCRIPTION 

The write function writes a DAC value to the specified channel. 
The argument buff contains a pointer to the write buffer (TP550_WRITE_BUFFER), 
which contains information for the desired write operation. 
The argument count is not required and should be 0. 

 
The TP550_WRITE_BUFFER structure has the following layout: 
 
typedef struct 
{ 
 unsigned short  channel; /* channel number */ 
 unsigned short  flags; 
 short value; /* DAC output value */ 
} TP550_WRITE_BUFFER, *PTP550_WRITE_BUFFER; 
 
 
The parameter channel specifies the DAC channel that will be used. Allowed values 
are 1 to 8 for TPMC550-10/-20 and 1 to 4 for TPMC550-11/-21. 
 
The parameter flags value is an ORed value of the flags shown in the following table. 
 

Name Meaning 
TP550_FL_CORR If this flag is set, the driver will correct the DAC 

output value with the factory programmed 
correction data. Otherwise the data will be written 
directly. 

TP550_FL_LATCHED The DAC output values will be latched. The output 
must be activated with the TP550_FL_SIMCONV 
flag. If the TP550_FL_SIMCONV is not set, the 
data will be just written to the channel, but the 
conversion will not be started. 

TP550_FL_SIMCONV This flag must be set to start a parallel conversion 
on all channels. This flag allows to output latched 
values. 

 
The parameter value specifies the DAC output value. The values must be between 0 
and 4095 for 0V..+10V mode and between –2048 and +2047 for –10V..+10V mode. 



 TPMC550-SW-72 – LynxOS Device Driver page 13 

EXAMPLE 
int fd;
int result;
unsigned short value;
TP550_WRITE_BUFFER WriteBuf;

…

/*******************************************
Write new values to channel 5 and channel 2
correct the output data for channel 5
latch values and make a parallel output
conversion.
*******************************************/
WriteBuf.channel = 5;
WriteBuf.flags = TP550_FL_CORR | TP550_FL_LATCHED;
WriteBuf.value = 1024;

result = write(fd, (char*)& WriteBuf, 0);
if( result == sizeof(TP550_WRITE_BUFFER)) {

printf(“Write OK\n”);
}
else {
printf( "\nWrite failed --> Error = %d.\n", errno );

}

WriteBuf.channel = 2;
WriteBuf.flags = TP550_FL_LATCHED | TP550_FL_SIMCONV;
WriteBuf.value = 512;

result = write(fd, (char*)& WriteBuf, 0);
if( result == sizeof(TP550_WRITE_BUFFER)) {

printf(“Write OK\n”);
}
else {
printf( "\nWrite failed --> Error = %d.\n", errno );

}

…



 TPMC550-SW-72 – LynxOS Device Driver page 14 

RETURNS 

When write succeeds, the size of the write buffer is returned. If write fails, -1 (SYSERR) 
is returned. 
 
On error, errno will contain a standard read error code (see also LynxOS System Call – 
read) or one of the following TPMC550 specific error codes: 
 
ENXIO Invalid minor device specified. 
 
EBUSY Sequencer mode is active. This function can not be called while the 

sequencer mode is active. 
 
ETIMEDOUT The maximum allowed time to finish the read request is exhausted. 
 
EINVAL Invalid parameter. Please check the parameter. 

SEE ALSO 

LynxOS System Call - read() 



 TPMC550-SW-72 – LynxOS Device Driver page 15 

3.4 ioctl() 

NAME 

ioctl() - I/O device control 

SYNOPSIS 

#include <ioctl.h> 
#include <tpmc550.h> 
 
int ioctl ( int fd, int request, char *arg ) 

DESCRIPTION 

ioctl provides a way of sending special commands to a device driver. The call sends 
the value of request and the pointer arg to the device associated with the descriptor 
fd. 
 
The following request values are support by a TPMC550 device : 
 
Value Meaning 
TP550_READPARAM Read module parameters, this includes the model 

type, the correction data, the number of channels 
and the output range selection. 

TP550_SEQSTOP Stop sequencer, set module to normal mode. 
TP550_SEQSTART Setup and start sequencer, set module in 

sequencer mode. 
TP550_SEQWRITE Write data to sequencer buffer. 
 
See behind for more detailed information on each control code.  

 
Note 

To use these TPMC550 specific control codes the header file 
tpmc550.h must be included in the application. 

RETURNS 

ioctl returns 0 if successful, or –1 on error. 
The TPMC550 ioctl function returns always standard error codes. See LynxOS system 
call ioctl of a detailed description of possible error codes. 

SEE ALSO 

LynxOS System Call - ioctl(). 



 TPMC550-SW-72 – LynxOS Device Driver page 16 

3.4.1 TP550_READPARAM - (Read Module Parameters) 
The function TP550_READPARAM reads the module parameters of the TPMC550 
including the model, the correction data, the number of channels and the output range 
selection. 
The argument arg contains a pointer to the TP550_PARA_BUFFER data structure. 
 
The TP550_PARA_BUFFER structure has the following layout: 
 
typedef struct 
{ 
 int ModuleType; /* TPMC550 variant type */ 
 int NumChans; /* Number of channels */ 
 int vMode1_4; /* Voltage Mode 1..4 */ 
 int vMode5_8; /* Voltage Mode 5..8, if present */ 
 signed char OffsCorr[8]; /* Offset correction Data */ 
 signed char GainCorr[8]; /* Gain correction Data */ 
} TP550_PARA_BUFFER, *PTP550_PARA_BUFFER; 
 
The entry ModuleType returns the model type. A value of 10 specifies a TPMC550-10, 
a value of 11 specifies a TPMC550-11 and so on. 
 
The entry NumChans returns the number of channels supported by the module. 
 
The entry vMode1_4 returns TRUE or FALSE. If TRUE the channels 1 to 4 are 
configured for –10V..+10V output range. If FALSE the channels 1 to 4 are configured 
for 0V..+10V output range. 
 
The entry vMode5_8 returns TRUE or FALSE. If TRUE the channels 5 to 8 are 
configured for –10V..+10V output range. If FALSE the channels 5 to 8 are configured 
for 0V..+10V output range. 
 
The array OffsCorr returns the offset correction data. The index of the array specifies 
the channel the value is assigned to. Index 0 for channel 1, index 1 for channel 2 and 
so on. 
 
The array GainCorr returns the gain correction data. The index of the array specifies 
the gain the value is assigned to. Index 0 for channel 1, index 1 for channel 2 and so 
on. 
 

Note 
More information about data correction is printed in the 

TPMC550 User Manual 



 TPMC550-SW-72 – LynxOS Device Driver page 17 

EXAMPLE 

int fd;
int result;
TP550_PARA_BUFFER ParamBuf;

…

/*
** Read module parameters
*/
result = ioctl (fd, TP550_READPARAM, (char*)&ParamBuf);

if (result < 0) {
/* handle ioctl error */

}
else {
printf("\nModule type = TPMC550-%02d\n",

ParamBuf.ModuleType);
printf("\nChannels = %d\n",

ParamBuf.NumChans);
printf("\nRange 1..4 = %3dV..+10V \n",

ParamBuf.vMode1_4 ? -10 : 0);
printf("\nRange 5..8 = %3dV..+10V \n",

ParamBuf.vMode5_8 ? -10 : 0);
printf("Offset Error = %d, %d, %d, %d, %d, %d, %d, %d\n",

ParamBuf.OffsCorr[0],
ParamBuf.OffsCorr[1],
ParamBuf.OffsCorr[2],
ParamBuf.OffsCorr[3],
ParamBuf.OffsCorr[4],
ParamBuf.OffsCorr[5],
ParamBuf.OffsCorr[6],
ParamBuf.OffsCorr[7]);

printf("Gain Error = %d, %d, %d, %d, %d, %d, %d, %d\n",
ParamBuf.GainCorr[0],
ParamBuf.GainCorr[1],
ParamBuf.GainCorr[2],
ParamBuf.GainCorr[3],
ParamBuf.GainCorr[4],
ParamBuf.GainCorr[5],
ParamBuf.GainCorr[6],
ParamBuf.GainCorr[7]);

}

…



 TPMC550-SW-72 – LynxOS Device Driver page 18 

3.4.2 TP550_SEQSTOP - (Stop Sequencer Mode) 
The function TP550_SEQSTOP stops the sequencer and returns the module to normal 
mode. The last value written to the channels will be held at the output. 
The argument arg is unused and should be set to zero. 

EXAMPLE 

int fd;
int result;

…

/*
** Get module parameters
*/
result = ioctl (fd, TP550_SEQSTOP, 0);
if (result < 0) {
/* handle ioctl error */

}

…



 TPMC550-SW-72 – LynxOS Device Driver page 19 

3.4.3  TP550_SEQSTART - (Setup and Start Sequencer Mode) 
The function TP550_SEQSTART sets up the TPMC550 to work in sequencer mode. 
The cycle time and the channel configuration are set up. 
The argument arg contains a pointer to the TP550_ST_SEQ_BUFFER data structure. 
 
The TP550_ST_SEQ_BUFFER structure has the following layout: 
 
typedef struct 
{ 
 unsigned short channels; /* channel selection */ 
 unsigned short cycleTime; /* cycle time */ 
 unsigned short flags; /* flags */ 
} TP550_ST_SEQ_BUFFER, *PTP550_ST_SEQ_BUFFER; 
 
The entry cycleTime specifies the cycle time that will be used. The value will be copied 
into the sequencer timer register. The value has a resolution of 100µs steps. This value 
will not be used if TP550_FL_HANDSHAKE is specified. 
 
The argument channel specifies the channels that shall be used in sequencer mode. If 
bit 0 is set channel 1 will be used, if channel 2 shall be used, bit 1 must be set, and so 
on. 
 
The flags parameter is an ORed value of the following described flags. 
 

Name Meaning 
TP550_FL_LATCHED If this flag is set, the driver will use output the 

data in latched mode, the data will be visible at 
the same time. Otherwise the data will be used 
in transparent mode. 

TP550_FL_HANDSHAKE The sequencer will work in handshake mode. 
The data will be written when new data is written 
with the TP550_SEQWRITE command. 



 TPMC550-SW-72 – LynxOS Device Driver page 20 

EXAMPLE 
int fd;
int result;
TP550_ST_SEQ_BUFFER SeqStartBuf;

…

/***********************************************************
Start sequencer with a cycle time of 1 sec
Enable following channels:

Channel 1
Channel 6

Use latched mode
************************************************************/
SeqStartBuf.cycleTime = 10000; /* 10000 * 100µs */
SeqStartBuf.channels = (1 << 0) | (1 << 5); /* Enable channel */
SeqStartBuf.flags = TP550_FL_LATCHED;

result = ioctl (fd, TP550_SEQSTART, (char*)&SeqStartBuf);

if (result < 0) {
/* handle ioctl error */

}

…



 TPMC550-SW-72 – LynxOS Device Driver page 21 

3.4.4 TP550_SEQWRITE - (Write Sequencer Data) 
The function TP550_SEQWRITE writes DAC data for sequencer output. This function 
writes data to the sequencer software-FIFO if the timer mode is selected, if the 
handshake mode is enabled, the data will be written directly to the sequencer data 
registers and if the sequencer is stopped, the data will be stored as default start values. 
If timer mode is active, the data is stored in a FIFO and will be written during a function 
which is called when the sequencer indicates, that new data can be written. The clock 
rate is defined with the TP550_SEQSTART command. 
If handshake mode is enabled, this function will trigger the sequencer. The refresh time 
for new output values depends on the application. 
The argument arg contains a pointer to the TP550_WR_SEQ_BUFFER data structure. 
 
The TP550_WR_SEQ_BUFFER structure has the following layout: 
 
typedef struct 
{ 
 unsigned short channels; /* channel flags */ 
 unsigned short correction; /* correction flags */ 
 unsigned short values[8]; /* buffer */ 
 unsigned long stat; /* write status */ 
} TP550_WR_SEQ_BUFFER, *PTP550_WR_SEQ_BUFFER;  
 
The argument channels specifies the channels that shall be updated with this data set. 
If bit 0 is set channel 1 will be updated, if channel 2 shall be updated, bit 1 must be set, 
and so on. Channel which are active and not specified to be updated, will held their 
value. 
 
The argument correction specifies the channels that shall use corrected output values. 
If bit 0 is set channel 1 will be use corrected data, if channel 2 shall use corrected data, 
bit 1 must be set, and so on. Data correction uses the factory stored correction data. 
 
The array values specifies the new output values. The array index specifies the 
channel number the data assigned to. Index 0 for channel 1, index 1 for channel 2 and 
so on. The values must be between 0 and 4095 for 0V..+10V mode and between  
–2048 and +2047 for –10V..+10V mode. Only the values for channels specified for 
update will be used. 
 
The argument stat returns the sequencer status. The status returns number of cycles 
which had not been used for new data output, because the has been no output data 
available in the FIFO. And the status can signal, that an output error has occurred. This 
will happen if the software is not able to handle a cycle before the next cycle starts. The 
stat argument is split in this way: 

bits 27 .. 0 number of lost cycles 
bit 30 (TP550_E_ERROR) sequencer error has occurred 



 TPMC550-SW-72 – LynxOS Device Driver page 22 

EXAMPLE 
int fd;
int result;
TP550_WR_SEQ_BUFFER SeqWriteBuf;

…

/***********************************************************
Update Sequencer data
Enable following channels:

Channel 1
Channel 6

Use correction for channel 6
************************************************************/

SeqWriteBuf.channels = (1 << 0) | (1 << 5);
SeqWriteBuf.correction = (1 << 5);
SeqWriteBuf.values[0] = 0x123;
SeqWriteBuf.values[5] = 0x700;

result = ioctl (fd, TP550_SEQWRITE, (char*)&SeqWriteBuf);

if (result < 0) {
/* handle ioctl error */

}
else {
/* Check SeqWriteBuf.stat */

}

…



 TPMC550-SW-72 – LynxOS Device Driver page 23 

4 Debugging 
This driver was successful tested on a Motorola MVME3600-1 (PMCSPAN) and 
MVME2305-900 board in a native LynxOS environment and a Windows Cross 
development.  
 
If the driver will not work properly, usually a PCI bus or interrupt problem, you can 
enable debug outputs by removing the comments around the symbols DEBUG, 
DEBUG_PCI and DEBUG_TPMC. The debug output will appear on the console.  
 
The debug output displays the PCI Header, the address of each base address register 
and a memory dump of all mapped memory and I/O spaces of the TPMC550 like this 
(see also TPMC550 User Manual – PCI Configuration). 
 
TPMC550 Device Driver Install
Bus = 0 Dev = 16 Func = 0
[00] = 905010B5
[04] = 02800000
[08] = 11800001
[0C] = 00000008
[10] = 02042000
[14] = 0000C001
[18] = 0000D001
[1C] = 02043000
[20] = 00000000
[24] = 00000000
[28] = 00000000
[2C] = 02261498
[30] = 00000000
[34] = 00000000
[38] = 00000000
[3C] = 00000109
PCI Base Address 0 (PCI_RESID_BAR0)

E8142000 : E1 FF FF 0F E0 FF FF 0F 00 00 00 00 00 00 00 00
E8142010 : 00 00 00 00 01 00 00 00 01 01 00 00 00 00 00 00
PCI Base Address 1 (PCI_RESID_BAR1)

E0108000 : E1 FF FF 0F E0 FF FF 0F 00 00 00 00 00 00 00 00
E0108010 : 00 00 00 00 01 00 00 00 01 01 00 00 00 00 00 00
PCI Base Address 2 (PCI_RESID_BAR2)

E0109000 : 00 00 00 00 00 0A 00 00 00 00 00 00 00 00 00 00
E0109010 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
PCI Base Address 3 (PCI_RESID_BAR3)

E8143000 : FF FE FA FA F7 FD FC FE 06 04 03 0E 09 0C 06 08
E8143010 : FF FE FD FC FB FE FD FE 03 02 02 07 05 06 03 04

Moduletype TPMC550-10 


	Introduction
	Installation
	Device Driver Installation
	Static Installation
	Build the driver object
	Create Device Information Declaration
	Modify the Device and Driver Configuration File
	Rebuild the Kernel

	Dynamic Installation
	Device Information Definition File
	Configuration File: CONFIG.TBL


	TPMC550 Device Driver Programming
	open()
	close()
	write()
	ioctl()
	TP550_READPARAM - (Read Module Parameters)
	TP550_SEQSTOP - (Stop Sequencer Mode)
	TP550_SEQSTART - (Setup and Start Sequencer Mode)
	TP550_SEQWRITE - (Write Sequencer Data)


	Debugging

