
The Embedded I/O Company

CARRIER-S
VxWorks Device

IPAC Carrie

Version 2.0.x

User Manu
Issue 2.0.1

March 2010

TEWS TECHNOLOGIES G
Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49
e-mail: info@tews.com www.tews
W-42
Driver

r

al

mbH
lstenbek, Germany
(0) 4101 4058 19
.com

CARRIER-SW-42 - VxWorks Device Driver Page 2 of 35

CARRIER-SW-42

VxWorks Device Driver

IPAC Carrier

Supported Modules:
TPCI100
TPCI200
TCP201
TCP211
TCP212
TCP213
TCP220
TVME200
TVME201
TVME210
TVME211
TVME220
TVME230
PCI40
CPCI100/200

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2007-2010 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue September 16, 2005

1.1.0 Structure definition (ipac_resource) and example applications modified November 22, 2005

1.2.0 SBS TECHNOLOGIES Carrier Card Support January 11, 2006

1.2.1 Support of custom carrier boards April 10, 2006

1.2.2 New Address TEWS TECHNOLOGIES LLC
ChangeLog.txt added to file list

December 5, 2006

1.3.0 Type of Parameters in ipFindDevice() changed June26, 2007

2.0.0 VxBus and SMP support January 27, 2010

2.0.1 Legacy vs. VxBus Driver modified March 26, 2010

CARRIER-SW-42 - VxWorks Device Driver Page 3 of 35

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Legacy vs. VxBus Driver ..6
2.2 VxBus Driver Installation ...6

2.2.1 Direct BSP Builds...7
2.3 Legacy Driver Installation ..8

2.3.1 Include device driver in VxWorks projects ...8
2.3.2 Special installation for Intel x86 based targets ..8
2.3.3 BSP dependent adjustments ...9

3 CONFIGURATION.. 10
3.1 VME bus carrier board setup ...10
3.2 Auto interrupt enable facility ...11

4 INTERFACE FUNCTIONS.. 12
4.1 ipCarrierInit () ..12
4.2 ipCarrierPciInit() ..13
4.3 ipFindDevice() ...14
4.4 ipFreeDevice() ...19
4.5 ipac_map_space() ...20
4.6 ipac_request_irq() ...22
4.7 ipac_free_irq() ...24
4.8 ipac_interrupt_ack()..26
4.9 ipac_read_uchar() ...28
4.10ipac_read_ushort()..29
4.11ipac_read_ulong() ...30
4.12ipac_write_uchar() ..31
4.13ipac_write_ushort() ...32
4.14ipac_write_ulong() ..33
4.15ipCarrierShow() ...34

CARRIER-SW-42 - VxWorks Device Driver Page 4 of 35

1 Introduction
IndustryPack (IPAC) carrier boards have different implementations of the system to IndustryPack bus
bridge logic, different implementations of interrupt and error handling and so on. Also the different byte
ordering (big-endian versus little-endian) of CPU boards will cause problems on accessing the
IndustryPack I/O and memory spaces.

To simplify the implementation of IPAC device drivers which work with any supported carrier board,
TEWS TECHNOLOGIES has designed a so called carrier driver that hides all of these carrier board
differences under a well defined interface.

During the initialization phase the carrier driver will collect information of supported carrier boards and
plugged IPAC modules in an internal data base. The data base contains address information for all IP
spaces (IO, ID and MEM), the corresponding interrupt vector and level and additional information to
identify plugged IP modules and the underlying carrier board.

All resource information necessary for IPAC module driver initialization can be retrieved from this data
base by calling the ipFindDevice() function with appropriate arguments to specify the IPAC module we
are looking for. If necessary, this function will enable interrupts on the carrier board (e.g. PCI carrier)
and related system buses (PCIbus and VMEbus).

Due to the fact that the TEWS TECHNOLOGIES carrier driver and IPAC module drivers are
independent, the carrier driver can also be used by custom drivers without any modification.

The CARRIER-SW-42 supports the modules listed below:

TPCI100 PCI carrier for 2 IndustryPack modules

TPCI200 PCI carrier for 4 IndustryPack modules

TCP201 Compact PCI carrier for 4 IndustryPack modules

TCP211 Compact PCI carrier for 2 IndustryPack modules

TCP212 Compact PCI carrier for 2 IndustryPack modules

TCP213 Compact PCI carrier for 2 IndustryPack modules

TCP220 Compact PCI carrier for 4 IndustryPack modules

TVME200 VMEbus carrier for 4 IndustryPack modules

TVME201 VMEbus carrier for 4 IndustryPack modules

TVME210 VMEbus carrier for 2 IndustryPack modules

TVME211 VMEbus carrier for 2 IndustryPack modules

TVME220 VMEbus carrier for 4 IndustryPack modules

TVME230 PCI Expansion Card (SPAN) for 4 IndustryPack modules

PCI40 SBS PCI carrier for 4 IndustryPack modules

CPCI100/200 SBS CompactPCI carrier for 2/4 IndustryPack modules

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

Carrier Board User Manual

Carrier Board Engineering Manual

CARRIER-SW-42 - VxWorks Device Driver Page 5 of 35

2 Installation
Following files are located on the distribution media:

Directory path ‘CARRIER-SW-42’:

CARRIER-SW-42-2.0.1.pdf PDF copy of this manual
CARRIER-SW-42-VXBUS.zip Zip compressed archive with VxBus driver sources
CARRIER-SW-42-LEGACY.zip Zip compressed archive with legacy driver sources
ChangeLog.txt Release history
Release.txt Release information

The archive CARRIER-SW-42-VXBUS.zip contains the following files and directories:

Directory path ‘./tews/ipac_carrier’:

ipac_carrier_drv.c Device driver source
ipac_carrier_def.h Driver include file
ipac_slots.h Slot descriptions for VME bus carrier boards
include/tvxbHal.h Hardware dependent interface functions and definitions
export/ipac_carrier.h Carrier driver interface definitions
Makefile Driver Makefile
40ipac_carrier.cdf Component descriptions file for VxWorks development tools
ipac_carrier.dc Configuration stub file for direct BSP builds
ipac_carrier.dr Configuration stub file for direct BSP builds

The archive CARRIER-SW-42-LEGACY.zip contains the following files and directories:

Directory path ‘./ipac_carrier’:

carrier_drv.c Device driver source
carrier_def.h Driver include file
ipac_slots.h Slot descriptions for VME bus carrier boards
include/tdhal.h Hardware dependent interface functions and definitions
export/ipac_carrier.h Carrier driver interface definitions

CARRIER-SW-42 - VxWorks Device Driver Page 6 of 35

2.1 Legacy vs. VxBus Driver
In later VxWorks 6.x releases, the old VxWorks 5.x legacy device driver model was replaced by
VxBus-enabled device drivers. Legacy device drivers are tightly coupled with the BSP and the board
hardware. The VxBus infrastructure hides all BSP and hardware differences under a well defined
interface, which improves the portability and reduces the configuration effort. A further advantage is
the improved performance of API calls by using the method interface and bypassing the VxWorks
basic I/O interface.

VxBus-enabled device drivers are the preferred driver interface for new developments.

The checklist below will help you to make a decision which driver model is suitable and possible for
your application:

Legacy Driver VxBus Driver

 VxWorks 5.x releases

 VxWorks 6.5 and earlier
releases

 VxWorks 6.x releases without
VxBus PCI bus support

 VxWorks 6.6 and later releases
with VxBus PCI bus

 SMP systems (only the VxBus
driver is SMP safe!)

2.2 VxBus Driver Installation
Because Wind River doesn’t provide a standard installation method for 3rd party VxBus device drivers
the installation procedure needs to be done manually.

In order to perform a manual installation extract all files from the archive CARRIER-SW-42-VXBUS.zip
to the typical 3rd party directory installDir/vxworks-6.x/target/3rdparty (whereas installDir must be
substituted by the VxWorks installation directory).

After successful installation the CARRIER device driver is located in the vendor and driver-specific
directory installDir/vxworks-6.x/target/3rdparty/tews/ipac_carrier.

At this point the CARRIER driver is not configurable and cannot be included with the kernel
configuration tool in a Wind River Workbench project. To make the driver configurable the driver library
for the desired processer (CPU) and build tool (TOOL) must be built in the following way:

(1) Open a VxWorks development shell (e.g. C:\WindRiver\wrenv.exe -p vxworks-6.7)

(2) Change into the driver installation directory
installDir/vxworks-6.x/target/3rdparty/tews/ipac_carrier

(3) Invoke the build command for the required processor and build tool
make CPU=cpuName TOOL=tool

For Windows hosts this may look like this:

> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\ipac_carrier
> make CPU=PENTIUM4 TOOL=diab

To compile SMP-enabled libraries, the argument VXBUILD=SMP must be added to the command line

> make CPU=PENTIUM4 TOOL=diab VXBUILD=SMP

CARRIER-SW-42 - VxWorks Device Driver Page 7 of 35

To integrate the CARRIER driver with the VxWorks development tools (Workbench), the component
configuration file 40ipac_carrier.cdf must be copied to the directory installDir/vxworks-
6.x/target/config/comps/VxWorks.

> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\ipac_carrier
> copy 40ipac_carrier.cdf \Windriver\vxworks-6.7\target\config\comps\vxWorks

In VxWorks 6.7 and newer releases the kernel configuration tool scans the CDF file automatically and
updates the CxrCat.txt cache file to provide component parameter information for the kernel
configuration tool as long as the timestamp of the copied CDF file is newer than the one of the
CxrCat.txt. If your copy command preserves the timestamp, force to update the timestamp by a utility,
such as touch.

In earlier VxWorks releases the CxrCat.txt file may not be updated automatically. In this case, remove
or rename the original CxrCat.txt file and invoke the make command to force recreation of this file.

> cd \Windriver\vxworks-6.7\target\config\comps\vxWorks
> del CxrCat.txt
> make

After successful completion of all steps above and restart of the Wind River Workbench, the CARRIER
driver can be included in VxWorks projects by selecting the “TEWS IPAC CARRIER Driver“
component in the “hardware (default) - Device Drivers” folder with the kernel configuration tool.

2.2.1 Direct BSP Builds

In development scenarios with the direct BSP build method without using the Workbench or the vxprj
command-line utility, the CARRIER configuration stub files must be copied to the directory
installDir/vxworks-6.x/target/config/comps/src/hwif. Afterwards the vxbUsrCmdLine.c file must be
updated by invoking the appropriate make command.

> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\ipac_carrier
> copy ipac_carrier.dc \Windriver\vxworks-6.7\target\config\comps\src\hwif
> copy ipac_carrier.dr \Windriver\vxworks-6.7\target\config\comps\src\hwif

> cd \Windriver\vxworks-6.7\target\config\comps\src\hwif
> make vxbUsrCmdLine.c

CARRIER-SW-42 - VxWorks Device Driver Page 8 of 35

2.3 Legacy Driver Installation

2.3.1 Include device driver in VxWorks projects

In order to include the CARRIER-SW-42 device driver into a VxWorks project (e.g. Tornado IDE or
Workbench) follow the steps below:

(1) Extract all files from the archive CARRIER-SW-42-LEGACY.zip to your project directory.

(2) Add the device drivers C-files to your project.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your VxWorks User’s
Guide (e.g. Tornado, Workbench, etc.)

2.3.2 Special installation for Intel x86 based targets

The CARRIER device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU_FAMILY. If the content of this macro is equal to I80X86 special Intel x86 conforming code and
function calls will be included.

The second problem for Intel x86 based platforms can’t be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn’t map PCI memory spaces of devices
which are not used by the BSP, the required device memory spaces can’t be accessed.

To solve this problem a MMU mapping entry has to be added for the required carrier board PCI
memory spaces prior the MMU initialization (usrMmuInit()) is done.

The function ipCarrierPciInit() will add MMU table entries for all used PCI address spaces on
supported (compact)PCI carrier boards. Please insert a call to this function after the PCI initialization is
done and prior to MMU initialization (usrMmuInit()).

The right place to call the function ipCarrierPciInit() is at the end of the function sysHwInit() in sysLib.c
(it can be opened from the project Files window).

Be sure that the function is called prior to MMU initialization otherwise the carrier board PCI spaces
remains unmapped and an access fault occurs during driver initialization.

Please insert the following call at a suitable place in sysLib.c:

ipCarrierPciInit();

Modifying the sysLib.c file will change the sysLib.c in the BSP path. Remember this for future
projects and recompilations.

Because the number of free MMU table entries is limited, an error could occur and not all spaces were
mapped. In case of a mapping error the function ipFindDevice() will return with ERROR and a detailed
error description will appear on the console. To solve this problem, MMU entries must be added
manually to the MMU table in sysLib.c. Edit the file sysLib.c and search for the macro
DUMMY_MMU_ENTRY in the array sysPhysMemDesc. Now you can add new entries by copy and
paste of an existing DUMMY_MMU_ENTRY entry. Each TEWS TECHNOLOGIES (compact)PCI
carrier board requires 5 entries.

CARRIER-SW-42 - VxWorks Device Driver Page 9 of 35

2.3.3 BSP dependent adjustments

The driver includes a file called include/tdhal.h which contains functions and definitions for BSP
adaptation. It may be necessary to modify them for BSP specific settings. Most settings can be made
automatically by conditional compilation set by the BSP header files, but some settings must be
configured manually. There are two way of modification, first you can change the include/tdhal.h and
define the corresponding definition and its value, or you can do it, using the command line option –D.

There are 3 offset definitions (USERDEFINED_MEM_OFFSET, USERDEFINED_IO_OFFSET, and
USERDEFINED_LEV2VEC) that must be configured if a corresponding warning message appears
during compilation. These definitions always need values. Definition values can be assigned by
command line option -D<definition>=<value>.

definition description

USERDEFINED_MEM_OFFSET The value of this definition must be set to the offset
between CPU-Bus and PCI-Bus Address for PCI
memory space access

USERDEFINED_IO_OFFSET The value of this definition must be set to the offset
between CPU-Bus and PCI-Bus Address for PCI I/O
space access

USERDEFINED_LEV2VEC The value of this definition must be set to the
difference of the interrupt vector (used to connect the
ISR) and the interrupt level (stored to the PCI header)

Another definition allows a simple adaptation for BSPs that utilize a pciIntConnect() function to
connect shared (PCI) interrupts. If this function is defined in the used BSP, the definition of
USERDEFINED_SEL_PCIINTCONNECT should be enabled. The definition by command line option is
made by -D<definition>.

Please refer to the BSP documentation and header files to get information about the interrupt
connection function and the required offset values.

CARRIER-SW-42 - VxWorks Device Driver Page 10 of 35

3 Configuration

3.1 VME bus carrier board setup
Due to the fact that the VME bus isn’t a Plug&Play bus, VME bus resources (memory, interrupts, etc.)
must be configured manually.

The header file ipac_slots.h in the carrier driver directory contains a dynamically expandable array of
type “struct carrier_slot_desc”. Each array item must be filled with resource information of a single
IPAC slot. For a 4-slot IP carrier board (e.g. TVME200), 4 slot entries must be added. The maximum
number of slot entries is only limited by the system memory.

To terminate the array, a slot entry with slotIndex = -1 must be added at the end of the array.

static struct carrier_slot_desc {
int slotIndex;
unsigned long ioBase;
unsigned long idBase;
unsigned long memBase;
int intVec;
int int0Lvl;
int int1Lvl;

};

slotIndex

Specifies the slot on the carrier board (slot A = 0, slot B = 1 and so on or -1 for end of list).

ioBase

Mapped address of the IPAC IO space as seen from the CPU (usually not the real VME address).
For example if the VME Bus A16/D16 address window appears at CPU address 0xF1FF0000 and
the carrier board slot IO space is configured to A16/D16 address 0x6000, ioBase must be set to
0xF1FF6000. Please refer to the BSP documentation about mapping of VME bus spaces.

idBase

Mapped address of the IPAC ID space as seen from the CPU (see also ioBase).

memBase

Mapped address of the IPAC MEM space as seen from the CPU (see also ioBase). Usually this
space appears in the VME bus A24 or A32 address space.

intVec

VME bus interrupt vector used by this slot respective plugged IPAC module. Information of free
useable VME bus interrupt vectors should be found in the BSP user manual.

int0Lvl

VME bus interrupt level (1..7) for IPAC INTREQ0#. The level must match the configuration of the
carrier board. This level is used by the carrier driver to enable the VME bus interrupt level with
sysIntEnable().

int1Lvl

VME bus interrupt level (1..7) for IPAC INTREQ1# (see also int0Lvl).

CARRIER-SW-42 - VxWorks Device Driver Page 11 of 35

EXAMPLE

The example below configures a 4 slot carrier (e.g. TVME200 with a TVME8240A CPU board)

static struct carrier_slot_desc slot_desc[] = {

/* Interrupt */
/* slot IO-Space ID-Space MEM-Space Vector Level */
/* index base base base INT0 INT1 */
/* --*/

{ 0, 0xF1FF6000, 0xF1FF6080, 0xF0D00000, 0xA0, 1, 2 },
{ 1, 0xF1FF6100, 0xF1FF6180, 0xF0D40000, 0xA4, 3, 4 },
{ 2, 0xF1FF6200, 0xF1FF6280, 0xF0D80000, 0xA8, 5, 6 },
{ 3, 0xF1FF6300, 0xF1FF6380, 0xF0DC0000, 0xAC, 7, 0 },

/* Please add slot entries here! */

/* end of list entry (slot_index must be -1) */
{ -1, 0, 0, 0, 0, 0, 0 },

};

See also the comments in ipac_slots.h for a detailed description of this configuration example.

By default this example configuration is disabled by conditional compilation. To enable the
configuration the macro EXAMPLE must be defined, either inside ipac_slots.h (#define EXAMPLE) or
at the build command line (-DEXAMPLE).

3.2 Auto interrupt enable facility
By default bus related interrupt levels (PCI bus, VME bus) will be enabled automatically if the IPAC
module driver requires interrupt handling.

The following macros in the driver source file (ipac_carrier_drv.c respective carrier_drv.c) can be
defined or not to control the auto interrupt level enable facility.

AUTO_PCI_INT_ENABLE

Define this macro to enable PCI interrupt level by the carrier driver.

AUTO_VME_INT_ENABLE

Define this macro to enable VME interrupt level by the carrier driver.

For TEWS TECHNOLOGIES IPAC module drivers the interrupts must be enabled automatically.

CARRIER-SW-42 - VxWorks Device Driver Page 12 of 35

4 Interface Functions

4.1 ipCarrierInit ()

NAME

ipCarrierInit() - IPAC carrier driver initialization

SYNOPSIS

#include “ipac_carrier.h”

STATUS ipCarrierInit(void)

DESCRIPTION

For the legacy carrier driver this function must be called before the first call to ipFindDevice(). For the
VxBus carrier driver the initialization function is called automatically from the VxBus subsystem during
startup.

During carrier driver initialization, the peripheral busses will be scanned for supported carrier boards.
All found slots on PnP (PCI) carrier boards and manually configured slots (VME bus) will be added to
an internal data base. In a second phase, the carrier driver will check every slot for mounted IPAC
modules. All collected information will now be available for the ipFindDevice() function.

Calling the ipCarrierInit() function is mandatory for the legacy carrier driver and unnecessary
for the VxBus carrier driver. For compatibility purposes this function is also available (dummy)
for the VxBus carrier driver.

EXAMPLE

#include "ipac_carrier.h”

/*
** First initialize the IP carrier driver if not already done.
** Note: ipCarrierInit() can be called several times.
*/
if (ipCarrierInit() == ERROR) {

printf("ERROR: IPAC carrier driver initialization failed\n");
}

RETURNS

OK if initialization was successful or ERROR if not.

CARRIER-SW-42 - VxWorks Device Driver Page 13 of 35

4.2 ipCarrierPciInit()

NAME

ipCarrierPciInit() – Generic PCI device initialization

SYNOPSIS

void ipCarrierPciInit()

DESCRIPTION

This function is only required for Intel x86 VxWorks platforms (see also 2.3.2). The purpose is to setup
the MMU mapping for all required carrier board PCI spaces (base address register) on supported
(Compact)PCI carrier boards.

The right place to call the function ipCarrierPciInit() is at the end of the function sysHwInit() in sysLib.c
(it can be opened from the project Files window).

This function is only declared and necessary for legacy carrier driver.

EXAMPLE

extern void ipCarrierPciInit();

ipCarrierPciInit();

CARRIER-SW-42 - VxWorks Device Driver Page 14 of 35

4.3 ipFindDevice()

NAME

ipFindDevice() – Find the specified IPAC module on supported carrier boards

SYNOPSIS

STATUS ipFindDevice
(

unsigned long manufacturerID,
unsigned long modelNumber,
int index,
unsigned long slotConfig,
struct ipac_resource *ipac

)

DESCRIPTION

This function searches for the IPAC module specified by the manufacturer ID, the IPAC model number
and the sequence index in the internal database. If the specified module was found (return value OK),
the carrier slot will be configured as specified in the argument slotConfig and the structure
ipac_resource will be filled with information required to setup the appropriate IPAC module driver.

The argument index specifies the sequence number if more than one module of the same type is
installed on supported carrier boards. To select the first module, index must be set to 0, for the second
module set index to 1 and so on.

The sequence of IPAC modules is always deterministic. Usually the PCI bus will be searched from
lower buses to higher buses and from lower devices to higher devices. On carrier boards the slots will
be enumerated from lower slots to higher slots. For VME bus carrier boards the sequence index is
given by the setup of the slot description array in ipac_slots.h.

The configuration for the carrier slot where the allocated IPAC module is installed is passed by the
argument slotConfig to the carrier driver. More than one configuration items can be combined by using
a bit-wise OR.

CARRIER-SW-42 - VxWorks Device Driver Page 15 of 35

PARAMETER

manufacturerID

Specifies an 8-bit (IDPROM Data Format I) or 24-bit (IDPROM Data Format II) board
manufacturer ID (e.g. 0xB3 for TEWS TECHNOLOGIES).

modelNumber

Specifies an 8-bit (IDPROM Data Format I) or 24-bit (IDPROM Data Format II) model number
(manufacturer specific).

index

Sequence index to select a certain IPAC module if more than one module of the same type is
installed.

slotConfig

Specifies configuration items for the carrier slot where the IPAC module is installed. The
following configuration flags are defined. Use a bit-wise OR to combine more than one flag.

Value Description

IPAC_INT0_EN Enable INTREQ0# on the carrier board and the related bus
interrupt level.
If the auto enable interrupt level feature is enable the CPU
board interrupt level will be enabled also with the
appropriate system function (intEnable(), sysIntEnable() or
vxbIntEnable()).

IPAC_INT1_EN Same as INTREQ0# for IPAC INTREQ1#

IPAC_EDGE_SENS Enable edge-sensitive interrupt requests. Only supported
by the VxBus enabled carrier driver.

IPAC_LEVEL_SENS Enable level-sensitive interrupt requests (default)

IPAC_CLK_8MHZ IPAC clock rate is 8 MHz (default)

IPAC_CLK_32MHZ IPAC clock rate is 32 MHz

IPAC_MEM_8BIT The IPAC MEM space is 8-bit wide. Only supported by
TEWS PCI carrier boards.

IPAC_MEM_16BIT The IPAC MEM space is 16-bit wide (default)

IPAC_IACK_CYC If the IPAC module requires an IACK cycle to acknowledge
a pending interrupt, this flag must be set. This configuration
is only relevant for PCI carrier boards. If set, the carrier
driver will install an ISR which is called before the IPAC
module driver ISR is called. This ISR performs a read
access to the carrier slot INT space to obtain the interrupt
vector from the module (IACK cycle).

CARRIER-SW-42 - VxWorks Device Driver Page 16 of 35

ipac

On success this structure is filled with resource information of the slot where the IPAC module is
installed. This information can be used to setup the appropriate IPAC module driver.
The memory for the IPAC resource information must be allocated statically (e.g. in the device
control block) and must be unique for every IPAC module. Because the IPAC carrier access
functions reference the space descriptors within this structure they must be available as long as
the IPAC module is referenced by the device driver or application program.

struct ipac_resource {
int carrier_type;
int slotIndex;
unsigned char *ioBase;
unsigned char *idBase;
unsigned char *memBase;
int intVec;
int int0Lvl;
int int1Lvl;
int moduleId;
struct addr_space_desc idSpace;
struct addr_space_desc ioSpace;
struct addr_space_desc memSpace;
unsigned long slotConfig;
void *pSlotInfo;
void *pVxBusInst;

};

carrier_type

Type of carrier board where the IP module is plugged (IPAC_TEWS_PCI,
IPAC_SBS_PCI, IPAC_VME …).

slotIndex

Specifies the slot on the carrier board (slot A = 0, slot B = 1…).

ioBase, idBase, memBase

Pointer to the IPAC module IO, ID and MEM space

intVec

Interrupt vector which can be used to connect the module ISR. Only valid for legacy
driver PCI bus and VME bus carrier boards.

int0Lvl, int1Lvl

Interrupt level which corresponds to the IPAC module INTREQ0# and INTREQ1#.
Only valid for legacy driver PCI bus and VME bus carrier boards.

moduleId

1:1 copy of the ipCarrierFind() argument index.

idSpace, ioSpace, memSpace

Address space descriptor for IPAC module ID, IO and MEM space. Beside the real
address an address space descriptor defines the type of access (e.g. endian mode).

CARRIER-SW-42 - VxWorks Device Driver Page 17 of 35

EXAMPLE

#include ”ipac_carrier.h”

STATUS result;
struct ipac_resource ipac1, ipac2, ipac3;

/*
** Find an IP module from TEWS TECHNOLOGIES (manufacturer = 0xB3)
** with model number 0x33. This module does not use interrupts and
** we need only the IO space base address for the related driver.
*/

result = ipFindDevice(0xB3, 0x33, 0, IPAC_CLK_8MHZ, &ipac1);

if (result == ERROR)
{

printf("ERROR: No IP found\n");
}

/*
** Find the same module type as above but attach the second module
** found.
*/

result = ipFindDevice(0xB3, 0x33, 1, IPAC_CLK_8MHZ, &ipac2);

if (result == ERROR)
{

printf("ERROR: No IP found\n");
}

/*
** The following module generates level sensitive interrupts at INT0.
** and has a 16-bit wide memory interface. Important for PCI carrier,
** this module requires an IACK cycle to acknowledge a pending
** interrupt.
*/

result = ipFindDevice(0xB3,
0x1C,
0,

CARRIER-SW-42 - VxWorks Device Driver Page 18 of 35

IPAC_INT0_EN | IPAC_LEVEL_SENS
| IPAC_CLK_8MHZ | IPAC_MEM_16BIT | IPAC_IACK_CYC,
&ipac3);

if (result == ERROR)
{

printf("ERROR: No IP found\n");
}

RETURNS

OK if the specified IPAC module was found or ERROR if not.

CARRIER-SW-42 - VxWorks Device Driver Page 19 of 35

4.4 ipFreeDevice()

NAME

ipFreeDevice() – Free IPAC module resources

SYNOPSIS

STATUS ipFreeDevice(struct ipac_resource *ipac)

DESCRIPTION

This function returns allocated resources for this IPAC module instance and setup the carrier board
slot (only PCI carrier) to a well known inactive state. Before calling this function the IPAC interrupt
handling must be disabled by calling the ipac_free_irq() function.

On success the carrier board “in use” count will be decremented to make this VxBus instance
removable for hot-plugging purposes (if supported).

This function is only implemented in the VxBus carrier driver.

PARAMETER

ipac

Pointer to IPAC module resource handle that was allocated by a prior call to ipFindDevice().

EXAMPLE

#include “ipac_carrier.h”

STATUS result;
struct ipac_resource ipac;

result = ipFreeDevice(&ipac)

if (result == ERROR)
{

printf("ERROR: freeing IPAC device failed\n");
}

RETURNS

OK if the specified IPAC device was successful freed ERROR if not.

CARRIER-SW-42 - VxWorks Device Driver Page 20 of 35

4.5 ipac_map_space()

NAME

ipac_map_space() – Obtain an IPAC address space descriptor

SYNOPSIS

struct addr_space_desc *ipac_map_space (struct ipac_resource *ipac, int space_id)

DESCRIPTION

This function returns a space descriptor handle for specified IPAC module space. This handle will be
used to access the corresponding IPAC space with the ipac_read_*() and ipac_write_*() access
functions.

As long as the returned address space descriptor is used to access the IPAC spaces the
referenced ipac resource descriptor must be available.

PARAMETER

ipac

Pointer to IPAC module resource handle that was allocated by ipFindDevice().

space_id

Selects the address space. Valid space identifiers are:

Value Description

IPAC_IO_SPACE IPAC module IO space

IPAC_ID_SPACE IPAC module ID space

IPAC_MEM_SPACE IPAC module MEM space

CARRIER-SW-42 - VxWorks Device Driver Page 21 of 35

EXAMPLE

#include “ipac_carrier.h”

struct ipac_resource ipac;
struct addr_space_desc *id_space;

result = ipFindDevice(0xB3, 0x33, 0, IPAC_CLK_8MHZ, &ipac);

/*...*/

if ((id_space = ipac_map_space(ipac, IPAC_ID_SPACE)) == NULL)
{

printf("mapping ID space failed");
}

RETURNS

Returns a pointer to the space descriptor inside the module resource handle or NULL if an error
occurred.

CARRIER-SW-42 - VxWorks Device Driver Page 22 of 35

4.6 ipac_request_irq()

NAME

ipac_request_irq() – Connect an interrupt service routine to the module interrupt

SYNOPSIS

STATUS ipac_request_irq
(

struct ipac_resource *ipac,
VOIDFUNCPTR *vector,
VOIDFUNCPTR routine,
int parameter

);

DESCRIPTION

This function connects an interrupt service routine to the module interrupt and enables the appropriate
interrupt level if the auto interrupt enable facility is enabled.

PARAMETER

ipac

Pointer to IPAC module resource handle that was allocated by ipFindDevice().

vector

Interrupt vector to connect. This parameter is not used for VxBus devices.

routine

Pointer to the interrupt service routine to connect.

parameter

Argument that will be passed to the interrupt service routine.

CARRIER-SW-42 - VxWorks Device Driver Page 23 of 35

EXAMPLE

#include “ipac_carrier.h”

struct ipac_resource ipac;
STATUS result;
int arg;

result = ipFindDevice(0xB3, 0x33, 0, IPAC_CLK_8MHZ, &ipac);

/*...*/

result = ipac_request_irq(ipac,
INUM_TO_IVEC(ipac.intVec),
ISR_func,
arg);

if (result == ERROR)
{

printf(“connectig ISR failed\n”);
}

RETURNS

OK on success or ERROR if the ISR cannot be connected.

CARRIER-SW-42 - VxWorks Device Driver Page 24 of 35

4.7 ipac_free_irq()

NAME

ipac_free_irq() – Disconnect an interrupt service routine from the module interrupt

SYNOPSIS

STATUS ipac_free_irq
(

struct ipac_resource *ipac,
VOIDFUNCPTR *vector,
VOIDFUNCPTR routine,
int parameter

);

DESCRIPTION

This function disconnects an interrupt service routine from the module interrupt and disables the
appropriate interrupt level if the auto interrupt enable facility is enabled.

This function is only implemented in the VxBus carrier driver.

PARAMETER

ipac

Pointer to IPAC module resource handle that was allocated by ipFindDevice().

vector

Interrupt vector to disconnect

routine

Pointer to the interrupt service routine to disconnect

parameter

Argument passed to the interrupt service routine.

CARRIER-SW-42 - VxWorks Device Driver Page 25 of 35

EXAMPLE

#include “ipac_carrier.h”

struct ipac_resource ipac;
STATUS result;
int arg;

result = ipFindDevice(0xB3, 0x33, 0, IPAC_CLK_8MHZ, &ipac);

/*...*/

result = ipac_request_irq(ipac,
INUM_TO_IVEC(ipac.intVec),
ISR_func,
arg);

/*...*/

result = ipac_free_irq(ipac,
INUM_TO_IVEC(ipac.intVec),
ISR_func,
arg);

if (result == ERROR)
{

printf(“connectig ISR failed\n”);
}

RETURNS

OK on success or ERROR if the ISR cannot be connected.

CARRIER-SW-42 - VxWorks Device Driver Page 26 of 35

4.8 ipac_interrupt_ack()

NAME

ipac_interrupt_ack() – Acknowledge a pending interrupt and return the interrupt status

SYNOPSIS

STATUS ipac_interrupt_ack(struct ipac_resource *ipac, struct ipac_intstatus *intstatus);

DESCRIPTION

This function performs an IACK cycle by reading the INT space of PCI based carrier boards and
returns the vector and status of both IPAC interrupt request lines.

For IPAC module interrupts that are acknowledged by this function the slot configuration flag
IPAC_IACK_CYC should not be set, otherwise a pending interrupt may be acknowledged by the auto
IACK facility (see also 4.3) before this function is called.

Usually this function will be called within the interrupt service routine for an IPAC module which does
not provide a dedicated interrupt status register.

This function is only implemented in the VxBus carrier driver.

PARAMETER

ipac

Pointer to IPAC module resource handle that was allocated by ipFindDevice().

intstatus

Pointer to a variable of type struct ipac_intstatus, which obtains the read vector and interrupt
status

struct ipac_intstatus {
int INT0_active;
int INT0_vector;
int INT1_active;
int INT1_vector;

};

INT0_active

TRUE if the IPAC INT0 interrupt is active

INT0_vector

Read interrupt vector (INT space IACK cycle) if INT0 is active and this feature is
available.

CARRIER-SW-42 - VxWorks Device Driver Page 27 of 35

INT1_active

TRUE if the IPAC INT1 interrupt is active

INT1_vector

Read interrupt vector (INT space IACK cycle) if INT1 is active and this feature is
available.

EXAMPLE

#include “ipac_carrier.h”

struct ipac_resource ipac;
struct ipac_intstatus intstatus;
STATUS result;

result = ipac_interrupt_ack(&ipac, &instatus);

if (result == ERROR)
{

printf(“Feature is not available\n”);
}

RETURNS

Returns OK if this feature is available (TEWS PCI carrier boards) or ERROR if not.

CARRIER-SW-42 - VxWorks Device Driver Page 28 of 35

4.9 ipac_read_uchar()

NAME

ipac_read_uchar() – Read one byte (8-bit) from IPAC space

SYNOPSIS

unsigned char ipac_read_uchar(struct addr_space_desc *space, unsigned long offset);

DESCRIPTION

Read one byte (8-bit) from the IPAC space location specified by the address space descriptor and the
relative offset.

This access function always expects big-endian IPAC spaces either by hardware design (TVME8xx
CPU boards) or re-programming the BAR layout of TEWS TECHNOLOGIES (Compact)PCI carrier
boards. For little-endian SBS (Compact)PCI carrier boards the byte lanes will be swapped.

On PowerPC boards the access will be ordered (EIEIO).

PARAMETER

space

Address space descriptor pointer.

offset

Address offset (bytes) within this space.

EXAMPLE

#include ”ipac_carrier.h”

struct addr_space_desc *id_space;
unsigned char modelNumber;

/* ... */

modelNumber = ipac_read_uchar(id_space, 0x0B);

RETURNS

Returns the read byte.

CARRIER-SW-42 - VxWorks Device Driver Page 29 of 35

4.10 ipac_read_ushort()

NAME

ipac_read_ushort() – Read one word (16-bit) from IPAC space

SYNOPSIS

unsigned char ipac_read_ushort(struct addr_space_desc *space, unsigned long offset);

DESCRIPTION

Read one word (16-bit) from the IPAC space location specified by the address space descriptor and
the relative offset.

This access function always performs a big-endian access. Depending on the CPU architecture and
carrier board hardware byte lanes will be swapped as necessary.

On PowerPC boards the access will be ordered (EIEIO).

PARAMETER

space

Address space descriptor pointer.

offset

Address offset (bytes) within this space.

EXAMPLE

#include ”ipac_carrier.h”

struct addr_space_desc *io_space;
unsigned short data;

/* ... */

data = ipac_read_ushort(io_space, 0x40);

RETURNS

Returns the read word.

CARRIER-SW-42 - VxWorks Device Driver Page 30 of 35

4.11 ipac_read_ulong()

NAME

ipac_read_ulong() – Read one long word (32-bit) from IPAC space

SYNOPSIS

unsigned char ipac_read_ulong(struct addr_space_desc *space, unsigned long offset);

DESCRIPTION

Read one long word (32-bit) from the IPAC space location specified by the address space descriptor
and the relative offset.

This access function always performs a big-endian access. Depending on the CPU architecture and
carrier board hardware word byte and word lanes will be swapped as necessary.

On PowerPC boards the access will be ordered (EIEIO).

PARAMETER

space

Address space descriptor pointer.

offset

Address offset (bytes) within this space.

EXAMPLE

#include ”ipac_carrier.h”

struct addr_space_desc *mem_space;
unsigned long data;

/* ... */

data = ipac_read_ulong(mem_space, 0x1000);

RETURNS

Returns the read long word.

CARRIER-SW-42 - VxWorks Device Driver Page 31 of 35

4.12 ipac_write_uchar()

NAME

ipac_write_uchar() – Write one byte (8-bit) to an IPAC space

SYNOPSIS

void ipac_write_uchar(struct addr_space_desc *space, unsigned long offset , unsigned char value);

DESCRIPTION

Write one byte (8-bit) to the IPAC space location specified by the address space descriptor and the
relative offset.

This access function always expects big-endian IPAC spaces either by hardware design (TVME8xx
CPU boards) or re-programming the BAR layout of TEWS TECHNOLOGIES (Compact)PCI carrier
boards. For little-endian SBS (Compact)PCI carrier boards the byte lanes will be swapped.

On PowerPC boards the access will be ordered (EIEIO).

PARAMETER

space

Address space descriptor pointer.

offset

Address offset (bytes) within this space.

value

Data byte (8-bit) to write to the specified location.

EXAMPLE

#include ”ipac_carrier.h”

struct addr_space_desc *io_space;

/* ... */

/* write 0x55 to offset 0x20 within the IO space */
ipac_write_uchar(io_space, 0x20, 0x55);

CARRIER-SW-42 - VxWorks Device Driver Page 32 of 35

4.13 ipac_write_ushort()

NAME

ipac_write_ushort() – Write one word (16-bit) to an IPAC space

SYNOPSIS

void ipac_write_ushort(struct addr_space_desc *space, unsigned long offset , unsigned short value);

DESCRIPTION

Write one word (16-bit) to the IPAC space location specified by the address space descriptor and the
relative offset.

This access function always performs a big-endian access. Depending on the CPU architecture and
carrier board hardware byte lanes will be swapped as necessary.

On PowerPC boards the access will be ordered (EIEIO).

PARAMETER

space

Address space descriptor pointer.

offset

Address offset (bytes) within this space.

value

Data word (16-bit) to write to the specified location.

EXAMPLE

#include ”ipac_carrier.h”

struct addr_space_desc *mem_space;

/* ... */

/* write 0xaa55 to offset 0x1000 within the MEM space */
ipac_write_ushort(io_space, 0x1000, 0xaa55);

CARRIER-SW-42 - VxWorks Device Driver Page 33 of 35

4.14 ipac_write_ulong()

NAME

ipac_write_ulong() – Write one long word (32-bit) to an IPAC space

SYNOPSIS

void ipac_write_ulong(struct addr_space_desc *space, unsigned long offset , unsigned long value);

DESCRIPTION

Write one long word (32-bit) to the IPAC space location specified by the address space descriptor and
the relative offset.

This access function always performs a big-endian access. Depending on the CPU architecture and
carrier board hardware word byte and word lanes will be swapped as necessary.

On PowerPC boards the access will be ordered (EIEIO).

PARAMETER

space

Address space descriptor pointer.

offset

Address offset (bytes) within this space.

value

Data long word (32-bit) to write to the specified location.

EXAMPLE

#include ”ipac_carrier.h”

struct addr_space_desc *mem_space;

/* ... */

/* write 0xdadada55 to offset 0x1000 within the MEM space */
ipac_write_ulong(mem_space, 0x1000, 0xdadada55);

CARRIER-SW-42 - VxWorks Device Driver Page 34 of 35

4.15 ipCarrierShow()

NAME

ipCarrierShow() – Show the contents of IPAC carrier data base

SYNOPSIS

void ipCarrierShow()

DESCRIPTION

This function can be used for debugging purposes to display the contents of the internal IPAC carrier
data base. Usually this function is called at the VxWorks target shell to get information on found carrier
boards, IPAC modules and slot resources (e.g. to access IPAC spaces manually).

EXAMPLE

-> ipCarrierInit
value = 0 = 0x0

-> ipCarrierShow

TVME8240 carrier with 4 slots found @ PCI bus=0, device=16
- Slot[0]: IO=0xF5000000, ID=0xF5000080, INT=0xF50000C0, MEM8=0xF4000000,

MEM16=0xF2000000, IVEC=0x34, INT0_LVL=0
x34, INT1_LVL=0x34

+++ Valid IP module mounted (Manufacturer=0xB3, Model=0x22)
- Slot[1]: IO=0xF5000100, ID=0xF5000180, INT=0xF50001C0, MEM8=0xF4400000,

MEM16=0xF2800000, IVEC=0x34, INT0_LVL=0
x34, INT1_LVL=0x34

--- NO or BAD IP module
- Slot[2]: IO=0xF5000200, ID=0xF5000280, INT=0xF50002C0, MEM8=0xF4800000,

MEM16=0xF3000000, IVEC=0x34, INT0_LVL=0
x34, INT1_LVL=0x34

--- NO or BAD IP module
- Slot[3]: IO=0xF5000300, ID=0xF5000380, INT=0xF50003C0, MEM8=0xF4C00000,

MEM16=0xF3800000, IVEC=0x34, INT0_LVL=0
x34, INT1_LVL=0x34

+++ Valid IP module mounted (Manufacturer=0xB3, Model=0x1C)

CARRIER-SW-42 - VxWorks Device Driver Page 35 of 35

VMEbus carrier with 4 slots found
- Slot[0]: IO=0xF1FF6000, ID=0xF1FF6080, INT=0x00000000, MEM8=0xF0D00000,

MEM16=0xF0D00000, IVEC=0xa0, INT0_LVL=0
x1, INT1_LVL=0x2

--- NO or BAD IP module
- Slot[1]: IO=0xF1FF6100, ID=0xF1FF6180, INT=0x00000000, MEM8=0xF0D40000,

MEM16=0xF0D40000, IVEC=0xa4, INT0_LVL=0
x3, INT1_LVL=0x4

--- NO or BAD IP module
- Slot[2]: IO=0xF1FF6200, ID=0xF1FF6280, INT=0x00000000, MEM8=0xF0D80000,

MEM16=0xF0D80000, IVEC=0xa8, INT0_LVL=0
x5, INT1_LVL=0x6

--- NO or BAD IP module
- Slot[3]: IO=0xF1FF6300, ID=0xF1FF6380, INT=0x00000000, MEM8=0xF0DC0000,

MEM16=0xF0DC0000, IVEC=0xac, INT0_LVL=0
x7, INT1_LVL=0x0

--- NO or BAD IP module

	Introduction
	Installation
	Legacy vs. VxBus Driver
	VxBus Driver Installation
	Direct BSP Builds

	Legacy Driver Installation
	Include device driver in VxWorks projects
	Special installation for Intel x86 based targets
	BSP dependent adjustments

	Configuration
	VME bus carrier board setup
	Auto interrupt enable facility

	Interface Functions
	ipCarrierInit ()
	ipCarrierPciInit()
	ipFindDevice()
	ipFreeDevice()
	ipac_map_space()
	ipac_request_irq()
	ipac_free_irq()
	ipac_interrupt_ack()
	ipac_read_uchar()
	ipac_read_ushort()
	ipac_read_ulong()
	ipac_write_uchar()
	ipac_write_ushort()
	ipac_write_ulong()
	ipCarrierShow()

