TEWS &

The Embedded I/O Company
TECHNOLOGIES

CARRIER-SW-65

Windows 2000/XP Device Driver
IPAC-Carrier

Version 1.4.x

User Manual

Issue 1.4.0
December 2008
TEWS TECHNOLOGIES GmbH TEWS TECHNOLOGIES LLC
Am Bahnhof 7 Phone: +49 (0) 4101 4058 0 9190 Double Diamond Parkway, Phone: +1 (775) 850 5830

25469 Halstenbek, Germany Fax: +49 (0) 4101 4058 19 Suite 127, Reno, NV 89521, USA Fax: +1 (775) 201 0347
www.tews.com e-mail: info@tews.com www.tews.com e-mail: usasales@tews.com

CARRIER-SW-65
IPAC-Carrier
Windows 2000/XP Device Driver

TEWS <

TECHNOLOGIES

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

©2003-2008 by TEWS TECHNOLOGIES GmbH

Issue Description
1.0 First Issue
1.1 Description for Generic Driver added / File-list extended
1.2 Description for VME Support added, Win XP Installation Description
added, Win89/Me Installation Description removed
1.13 Description of Installation modified
114 File list changed
1.15 List of supported modules added, file list changed
1.2.0 TAMC100 support added, New address TEWS LLC
1.2.1 Files moved to subdirectory
1.3.0 Support of IPAC ID-PROM Type Il (VITA4) added
1.4.0 Description of IPDrvCustom (Custom IPAC driver) added,

TAMC200 support added

CARRIER-SW-65 — Windows WDM Device Driver

Date
October 22, 2003
December 18, 2003
May 26, 2004

November 1, 2004
July 13, 2005
July 03, 2006
May 23, 2008
June 20, 2008

October 17, 2008

December 23, 2008

Page 2 of 68

TEWS <

TECHNOLOGIES

Table of Content

1 INTRODUGCTION e et e e e e e e e e et e e e et e et e e eennns 5
2 INST ALLATION L.t e et e et et e et e e e et e et e e eennns 6
2.1 Software Installation ..., 7

2.1.1 General Installation INfOrmMationuuuiiiieiiiiie e e e 7

2.1.2 WINAOWS 2000.......cuueiiiieeeiiitirieireee s s s sitieeeeeee e s s s sarreeeeeeeessaaastaeeeeeeesaaasssrnereeeessaansnrnnereeeesaanns 8

P20 I VAV 0 To [0 1Y SRR 9

2.1.4 Confirming Windows 2000/XP INStallationuuurieieiiiiiiiieiiee e cesiiieer e e e sinreee e e e 9

2.2 CoNfigUIre VIME-Carri€r DIIVET ..ccccciiiceeieiieee e ettt e e e e s s e e e e e e e st e e e e e e s s sssanaeeeeeeseesnnnnnneeees 10

2.2.1 VMEDbus Interface Configurationoeieeiiiiiiiiiiieee e e s s e e e e e er e e e e e e eans 10

2.2.2 VMEbus Master Window Configurationcccuueiireeiiiiiiiiieieee s ssiiieie e e e e s ssneneneeee e e e 12

2.2.3 VMEDbus IPAC SIot ConfigUrationceeieeiiiiiiiiieieee e sscciie e e e e s s s e e e e e e s ssnnnnreeeeeeeeeaans 13

3 CUSTOMER IPAC CARRIER SUPPORT.....ei et 16
4 GENERIC IPAC DRIVER. ... et 17
s O 13 = 11 = L4 o Y PR 17

4,1.1 Before INStallationcoooeieiiii i 17

4,1.2 WINAOWS 2000.......ccci it 18

4.1.3 Confirming Windows 2000 INStallation.............ueevveeiiiiieiiiee e 18

4.1.4 Windows 98 SE /WINdOWS ME..........ccooiiiiiii i, 19

4.1.5 Confirming Windows 98 SE / Windows ME Installation ..o 19

4.2 Generic IPAC Device Driver Programmingccoooceeeeieeeeeiiiseiieeeeeeessssisseeesseessssnssnsssssesssnnssssens 20

4.2.1 IPAC Files and /O FUNCLONS.........uuuiiiieeiiiiiiieee e e s s s e e e e s s s seee e e e e e s s e eneeaeesennnnneens 21

4.2.1.1 Opening an IPAC DEVICEuuueiiiiiiiiiitiee ettt e e e e e e s neeee e 21

4.2.1.2 CloSING &N IPAC DEVICEeeetiiiiiiee ittt ettt e e e e et e e e e e e e s e aneee s 23

4.2.1.3 IPAC Device /O Control FUNCLIONSuuuuuiiiiiiiiiiiiiiiiiniienininenrernrnn ... 24

4.2.1.4 GENIPDRV_CONFIGUREootiiiiiiiiiiiie ettt e e eneae e e 26

4.2.1.5 GENIPDRV_UNCONFIGUREcutttiiiiii ettt snne e 29

4.2.1.6 GENIPDRV_READ _UCHARiiiiiiiii ittt e e 30

4.2.1.7 GENIPDRV_READ _USHORT ..iiiiiiitiiiiiiee ettt sttt st nnnre e e 32

4.2.1.8 GENIPDRV_READ _ULONGciiiitiitiiiiiiie ittt sttt nnnee e e 34

4.2.1.9 GENIPDRV_WRITE_UCHARoiiiiiiiie ettt 36

4.2.1.10 GENIPDRV_WRITE_USHORToitiiiiiiiiiiiiie et 38

4.2.1.11 GENIPDRV_WRITE_ULONGcotiiiiiiiiiieiitiie ettt 40

5 CUSTOM DRIVER DEVELOPMENT ...t e e e 42
5.1 Custom Device Driver EXample OVEIVIEWocccuiiiiiee e ieciieiee e e e e s sssiieee e e e e e e ssssnstane e e e e e s e nnnnneees 42

5.2 Modify the IPAC Driver EXamPle ...ttt a e 42

5.2.1 Copy and rename eXample SOUICESc.uuviiiiieeiiiiiieeie e e e e s e e e e e e e e s e e e e e e e snraraeeeees 43

5.2.2 INF-file MOIfiICAtIONS.....cciiiiiiiiiiiiiee e e e e e e e e e s raneeees 43

L7 B = O {1 1= 4T o [o7= 11 1 45

5.2.4 Source-file MOdIfiICAtIONSc..vviiiiiie i 45

5.2.5 Driver Source mModifiCAtiONS...........uuuuuuiiiiiiii e aaaraea i aaaaraaa—a 46

LT T8 R B 1=V o7 =Y [TN o 46

B5.2.5.2 DISPAICR.C .. a e as 47

LIS 0 T £ o RO 47

LT Y0 S (o B I T3 = o 47

5.25.5 10CAIDIVDET.N c.coeiiiiieeeeeeeeeeeeeeeee e 48

Lo ST G T o] B Y O U1 oo 2 T o 48

5.3 BUIAING ThE DIIVET ...ttt ettt e e e e e e st b et e e e e e e e e e anb b e e e e e e e e e e annneees 49

5.4 IPAC Carrier Interface FUNCLIONScooiiiiiiiiic et e e s e e e e e e e e e e e e s e nnnnees 50

Lo N o Y= Lol (= To 153 (] (o [1= TP 50

CARRIER-SW-65 — Windows WDM Device Driver Page 3 of 68

TEWS <

TECHNOLOGIES

L N oY= Lo oo L a Vi {o [0 Tt =T o 1)/ P 51
L B oY= Lol 4= 1o T 0L (o = 53
L oY= Lo 0 [1 = o T L= (o P 55
5.4.5 IPAC_IAU_UCKAeeeiiiiii et e e e e e e e e e e annreaeeeaans 57
L G I oY= Lol (= T= Vo I U £ g o] o AR TP PRI 58
L A oY= Lol (= T= Vo I U1 (oo o R PPTP RO 59
L S B oY= Lo 1 (= U o] =T TR UTUT RO 60
5.4.9 IPAC_WITEE USRIttt ettt e e e e e st e e e e e e e e snnbeaeeeaens 61
5.4.10 1= LY 1 (=T 0 (o] o Vo 62
5.4.11 10T Lo (=T 15 (=] (S 63
5.4.12 10T Lo] =T o 1) (= 65
5.4.13 0= L=V T 1 SR 66
5.5 Driver DeVelOPMENT TOOISttt et e e e e e e s aab e e e e e e e e s e aneeees 68
5.6 Example Application for Driver EXample ... 68

CARRIER-SW-65 — Windows WDM Device Driver Page 4 of 68

TEWS <

TECHNOLOGIES

1 Introduction

IndustryPack (IPAC) carrier boards have different implementations of the system to IndustryPack bus
bridge logic, different implementations of interrupt and error handling and so on. Also the different byte
ordering (big-endian versus little-endian) of CPU boards will cause problems on accessing the
IndustryPack 1/0 and memory spaces.

To simplify the implementation of IPAC device driver which work with any supported carrier board,
TEWS TECHNOLOGIES has designed a software architecture that hides all of these carrier board
differences under a well defined interface.

Basically the drivers are split into three layers. The first layer handles accesses to the IPAC-Carrier
cards. Different drivers are needed for different carriers. (We have implemented drivers for TEWS,
SBS Carriers and VME Carrier boards with a Universe Master). These drivers are configuring the
carrier boards and provide a function interface for the second layer. The second layer creates a device
for every installed IP-slot used or unused, all slots are using the same driver. The IPAC-slots are
checked, if an IPAC is mounted and for all mounted IPACs functions are provided for the IPAC drivers.
The last layer is the IPAC driver which is handling the function of the IPAC. The IPAC driver must use
the IPAC-slot functions for hardware accesses.

The CARRIER-SW-65 supports the modules listed below:

TEWS TPCI100 Carrier for 2 IndustryPack® modules (PCI)

TEWS TPCI200 Carrier for 4 IndustryPack® modules (PCI)

TEWS TCP201 Carrier for 4 IndustryPack® modules (compactPCl)
TEWS TCP211 Carrier for 2 IndustryPack® modules (compactPCl)
TEWS TCP212 Carrier for 2 IndustryPack® modules (compactPCl)
TEWS TCP213 Carrier for 2 IndustryPack® modules (compactPCl)
TEWS TCP220 Carrier for 4 IndustryPack® modules (compactPCl)
TEWS TAMC100 Carrier for 1 IndustryPack® module (AMC)

TEWS TAMC200 Carrier for 3 IndustryPack® modules (AMC)

SBS PCI40(B) Carrier for 4 IndustryPack® modules (PCI)

SBS PCI60 Carrier for 6 IndustryPack® modules (PCI)

SBS cPCI100/200 Carrier for 2/4 IndustryPack® modules (compactPCl)
Universe 2 All VME-bus IPAC carrier (VME)

CARRIER-SW-65 — Windows WDM Device Driver

Page 5 of 68

2 Installation

IPACBusFilter.sys
IPACBusFilter.inf
TEWSIPBus.sys
TEWSIPBuUSs.inf
SBSIPBus.sys
SBSIPBus.inf
UVmelpBus.sys
UVmelpBus.inf
UVmelpBus.reg
geniPDrv.sys
genlPDrv.h
genlPDrv.inf
Example/main.c
IPDrvCustom/*.*

TEWS <

TECHNOLOGIES

Following files are located in directory CARRIER-SW-65 on the distribution media:

Device driver binary for IPAC Slot Driver

Installation script for IPAC Slot Driver

Device driver binary for TEWS Carrier Driver
Installation script for TEWS Carrier Driver

Device driver binary for SBS Carrier Driver
Installation script for SBS Carrier Driver

Device driver binary for Universe2 VME Carrier Driver
Installation script for Universe2 VME Carrier Driver
Registry configuration script for Universe2 VME Carrier Driver
Device driver binary for Generic IPAC Driver
Application Include File for Generic IPAC Driver
Installation script for Generic IPAC Driver

Example Application using the Generic IPAC Driver)
Custom IPAC driver example (Source code)

IPDrvCustom/lib/ipacLib.lib IPAC function library files (Library and includes)
IPDrvCustom/example/*.* Example Application for Custom IPAC driver example
CARRIER-SW-65-1.4.0.pdf This document

Release.txt
ChangelLog.txt

CARRIER-SW-65 — Windows WDM Device Driver

Release information
Release history

Page 6 of 68

TEWS <

TECHNOLOGIES

2.1 Software Installation

When installing the Universe VME carrier driver, be sure there is no other driver installed for
the Universe PCl to VME Bridge.

2.1.1 General Installation Information

The Installation of the Carrier Driver Software has to be performed in two steps. Both steps must
be done before the IPAC-Driver installation starts.

@dware found: “IPAC-Carrier"
Install IPAC-Carrier Driver
Q For every IPAC-Carrier

U

A 4

Install IPAC-Slot Driver

For every IPAC-Slot

1oddns Jaalq 1811
JVvdl J0 uolre|eisu|

Install IPAC Driver
For every installed IPAC

CARRIER-SW-65 — Windows WDM Device Driver Page 7 of 68

TEWS <

TECHNOLOGIES

2.1.2 Windows 2000

This section describes how to install the IPAC-Carrier Device Drivers on a Windows 2000 operating
system.

After installing the IPAC Carrier board(s) and boot-up your system, Windows 2000 setup will show a
"New hardware found" dialog box.

The "Upgrade Device Driver Wizard" dialog box will appear on your screen.
Click "Next" button to continue.

In the following dialog box, choose "Search for a suitable driver for my device".
Click "Next" button to continue.

Insert the IPAC-Carrier driver disk; and select "Disk Drive" and/or “CD-ROM” in the dialog box.
Click "Next" button to continue.

Now the driver wizard should find a suitable device driver on the diskette.
Click "Next" button to continue.

Completing the upgrade device driver and click "Finish" to take all the changes effect.

Repeat the Instructions until drivers for all IPAC Carrier Boards are installed.

For VME Carrier we have to configure the resources now. (See 2.2 Configure VME-Carrier Driver)
The next step to do is to install the IPAC Slot Drivers. Simply repeat the steps once more.

Now copy all needed files (CARRIER-SW-65.pdf) to the desired target directories.

After successful installation the IPAC-Carrier device driver will start immediately and create devices for
all recognized carriers, IPAC-slots and mounted IPACs.

CARRIER-SW-65 — Windows WDM Device Driver Page 8 of 68

TEWS <

TECHNOLOGIES

2.1.3 Windows XP

This section describes how to install the IPAC-Carrier Device Drivers on a Windows XP operating
system.

After installing the IPAC Carrier board(s) and boot-up your system, Windows XP setup will show the
search for new hardware window.

Insert the IPAC-Carrier driver disk and choose “Automatic Software Install”.

Click "Next" button to continue.

A window will announce that the Windows-Logo test has failed.
Click “continue install” button to continue.

A window will announce that the driver has been installed.
Click "Finish" to take all the changes effect.

Repeat the Instructions until drivers for all IPAC Carrier Boards are installed.
For VME Carrier we have to configure the resources now. (See 2.2 Configure VME-Carrier Driver)

The next step to do is to install the IPAC Slot Drivers. Simply repeat the steps before again, until all
IPAC Slots are connected with a driver.

Now copy all needed files (CARRIER-SW-65.pdf) to the desired target directories.

After successful installation the IPAC-Carrier device driver will start immediately and create devices for
all recognized carriers, IPAC-slots and mounted IPACs.

2.1.4 Confirming Windows 2000/XP Installation

To confirm that the driver has been properly loaded in Windows 2000/XP, perform the following steps:
From Windows 2000/XP, open the "Control Panel" from "My Computer".
Click the "System" icon and choose the "Hardware" tab, and then click the "Device Manager" button.

Click the "+" in front of "Multifunction Devices".
The drivers for the IPAC-Carrier Boards should appear and also an IPAC-Slot driver for each of the
IPAC-Slots on the installed IPAC-Carrier Boards.

CARRIER-SW-65 — Windows WDM Device Driver Page 9 of 68

TEWS <

TECHNOLOGIES

2.2 Configure VME-Carrier Driver

The VME-Bus doesn’t support plug and play, so there must be a manual configuration for the VME
IPAC slots. This configuration is done in the UVmelpBus.reg file. This file splits into three parts:
“VMEbus Interface Configuration”, “VMEbus Master Window Configuration” and “VMEbus IPAC Slot
Configuration”

After installation of the VME-Carrier Driver the UVmelpBus.reg file must be installed to the system.
Follow these steps to make the installation.

Modify UVmelpBus.reg with a standard text editor.
Click right to the file and choose “Merge” from the context menu.
Restart the driver to complete the changes, or restart the system.

You will find the values in the windows registry in the following path and the subpathes:
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\UVmelpBus]

You can also change values in the registry using regedit.

After every change of the registry values, the driver has to be restarted to get the new values.

2.2.1 VMEDbus Interface Configuration

This part specifies the VME Controller Master setup.

For more detailed information of the values please refer to the VME-specification or the Universe
manual.

The registry path is:
[..\ VMEbuS]

Default configuration:

"VMEbusRequest Mbde" =dwor d: 00000000
"VMEbusRel easeMbde" =dwor d: 00000000
"VMEbusAr bi t rati onMode" =dwor d: 00000001
"VMEbusAr bitrationTi meout " =dwor d: 00000010
"VMEbusTi nmeout " =dwor d: 00000040
"VMEbusRequest Level " =dwor d: 00000003
"Nurmber Of Ret ri es" =dwor d: 00000008

"Post edW it eTr ansf er Count " =dwor d: 00000200
" SYSCON' =dwor d: 00000002

CARRIER-SW-65 — Windows WDM Device Driver Page 10 of 68

TEWS <

TECHNOLOGIES

Description
VMEbusRequestMode
Value (hex) Mode
0 Demand
1 Fair
VMEbusReleaseMode
Value (hex) Mode
0 Release When Done (RWD)
1 Release on Request (ROR)
VMEbusArbitrationMode
Value (hex) Mode
0 Round Robin
1 Priority

VMEDbusArbitrationTimeout

Value (hex) Timeout

0 O us

10 16 ps

100 256 ps
VMEbusTimeout

Value (hex) Timeout

0 disabled

10 16 ps

20 32 us

40 64 us

80 128 ps

100 256 ps

200 512 ps

400 1024 pus
VMEbusRequestLevel

Value (hex) Request Level

0 0

1 1

2 2

3 3

CARRIER-SW-65 — Windows WDM Device Driver Page 11 of 68

TEWS <

TECHNOLOGIES

NumberOfRetries

Specifies the number of retries multiplied by 64. (0 — retry for ever, 1 — 64 retries, ...) The value
must be between Oh and Fh.

PostedWriteTransferCount

Value (hex) Bytes
80 128
100 256
200 512
400 1024
800 2048
1000 4096
SYSCON
Value (hex) System controller mode
0 NOT System Controller
1 System Controller
2 AUTO

2.2.2 VMEbus Master Window Configuration

This part specifies the Master Window configuration of the eight windows.
The registry path is:

[.\ VMEbus\ W ndown]
n specifies the window number.

Default configuration:

[.\ VMEbus\ W ndowl]

; Wndowl : Al6/ D16

"Enabl ed" =dwor d: 00000001
"VMEbusBaseAddr ess" =dwor d: 00000000
"W ndowSi ze" =dwor d: 00010000

" Addr essMbdi fi er " =dwor d: 00000029

" Dat aW dt h" =dwor d: 00000010

[.\ VMEbus\ W ndow?2]

W ndowl : A24/ D16
" Enabl ed" =dwor d: 00000001
"VMEbusBaseAddr ess" =dwor d: 00000000
"W ndowSi ze" =dwor d: 01000000
" Addr essModi fi er " =dwor d: 00000039
" Dat aW dt h" =dwor d: 00000010

CARRIER-SW-65 — Windows WDM Device Driver Page 12 of 68

Description
Enabled
Value (hex) Description
0 Disable window
1 Enable window
VMEbusBaseAddress

VME-bus window start address

WindowsSize
Window size in bytes

AddressModifier
Value (hex) Access mode
9 A32 non-privileged data access
A A32 non-privileged program access
D A32 supervisory data access
E A32 supervisory program access
29 A16 non-privileged access
2D A16 supervisory access
39 A24 non-privileged data access
3A A24 non-privileged program access
3D A24 supervisory data access
3E A24 supervisory program access
DataWidth
Value (hex) Datawidth
8 8 bit
10 16 bit
2 32 bit

2.2.3 VMEbus IPAC Slot Configuration

TEWS <

TECHNOLOGIES

This part specifies the IPAC Slot configuration of every IPAC slot on VME-bus. Each slot must get an
own entry. These values mainly depend on the configuration of the VME IPAC catrrier.

The registry path is:

[.\ VMEbus\ S| ot n]
n specifies the slot number.

CARRIER-SW-65 — Windows WDM Device Driver

Page 13 of 68

TEWS <

TECHNOLOGIES

Default configuration:

[.\ VMEbus\ Sl ot 1]
" Enabl ed" =dwor d: 00000001

"I D_Addr ess" =dwor d: 00006080
"1 D_Si ze" =dwor d: 00000080
"1 D_W ndow"' =dwor d: 00000001

"1 O_Addr ess" =dwor d: 00006000
"1 O_Si ze" =dwor d: 00000080
"1 O_W ndow' =dwor d: 00000001

" MEM Addr ess" =dwor d: 00D00000
"MEM _Si ze" =dwor d: 00040000
" MEM W ndow' =dwor d: 00000002

"BaseVect or " =dwor d: 000000A0
"Level _| NTO" =dwor d: 00000001
"Level | NT1"=dwor d: 00000002

Description

Enabled
Value (hex) Description
0 Disable slot
1 Enable slot

ID_Address

Specifies the address offset of the ID space in the specified window.
ID_Size
Specifies the size of the ID space in bytes.

ID_Window

Specifies the window number the ID space is mapped to. The window number must be between
1 and 8. (see 2.2.2 VMEbus Master Window Configuration)

I0_Address
Specifies the address offset of the 1/O space in the specified window.

I0_Size
Specifies the size of the I/O space in bytes.

CARRIER-SW-65 — Windows WDM Device Driver Page 14 of 68

TEWS <

TECHNOLOGIES

I0_Window

Specifies the window number the 1/O space is mapped to. The window number must be
between 1 and 8. (see 2.2.2 VMEbus Master Window Configuration)

MEM_Address
Specifies the address offset of the memory space in the specified window.

MEM_Size
Specifies the size of the memory space in bytes.

MEM_Window
Specifies the window number the memory space is mapped to. The window number must be
between 1 and 8. (see 2.2.2 VMEbus Master Window Configuration)

BaseVector
Specifies the interrupt base vector for this IPAC slot, 8 vectors are reserved for each of the
slots. Valid vectors are between 40h and F8h

Level INTO
Specifies the VME interrupt level INTO will generate on the VME Bus. Valid VME interrupt levels
are between 1 and 7. (0 — no interrupt is generated on INTO)

Level INT1

Specifies the VME interrupt level INT1 will generate on the VME Bus. Valid VME interrupt levels
are between 1 and 7. (0 — no interrupt is generated on INT1)

CARRIER-SW-65 — Windows WDM Device Driver Page 15 of 68

TEWS <

TECHNOLOGIES

3 Customer IPAC Carrier Support

If your IPAC carrier isn't supported by the carrier port drivers on the distribution diskette and your
carrier board is a PCI bus carrier please contact TEWS TECHNOLOGIES.

Usually we will implement the carrier driver without any charge within a few days.

CARRIER-SW-65 — Windows WDM Device Driver Page 16 of 68

TEWS <

TECHNOLOGIES

4 Generic IPAC Driver

The Generic Driver can be used for first steps using an IPAC. The driver allows access to the IPAC.
The module interface (IP-Clockrate, Space size ...) can be configured by the application. Only
interrupts are not implemented.

The Generic Driver allows following functions:

writing bytes, shorts and longwords
reading bytes, shorts and longwords
configuring the IPAC-slot (allocate)
unconfiguring the IPAC-slot (free)

YV VVYV

4.1 Installation

4.1.1 Before Installation

To use the driver for a specific IPAC, copy the driver files to a local directory and modify the
installation-file. The supported modules are identified by the hardware identifier. For the IPAC modules
identified by the IPAC Carrier driver this will be ‘IPACSIot\’ followed by the IPAC Name. For undefined
modules it will be ‘IPACSIot\’ followed by ‘MAN<manufacturer ID>_MOD<model number> where
manufacturer ID and model number are read from the IPACs ID-Prom. If the IPAC has an 8-bit
ID-Prom (“IPAC”") manufacturer and model number will have a length of 2 characters, a 16-bit ID-Prom
(type 11 “VITA4") will have a manufacturer ID length of 6 characters and the model number will have a
length of 4 characters.

Find the following line.

[TEWS. M g]

This line identifies a list of hardware identifiers, specifying the IPACs the driver will handle.
The TIP255 (identified) will be handled by the following example.

[TEWS. M g]
W TG SvcDesc% = TTG, | PACSI ot \ Tl P255

If the TIP255 has not been identified the following example the following modification will handle it.

[TEWS. M g]
YWITG SvcDesc% = TTG | PACSI ot \ MANb3_MOD31

The following example shows an example if two modules shall be handled by the driver.

[TEWS. M ¢]
YWITG SvcDesc% = TTG | PACSI ot \ TI P255
YWITG SvecDesc% = TTG | PACSI ot \ MANb3_MOD30

CARRIER-SW-65 — Windows WDM Device Driver Page 17 of 68

TEWS <

TECHNOLOGIES

If a module with an ID-Prom type Il (VITA4 format) shall be used the following modification will handle
it. (Manufacturer ID: 12ab56 --- Module Number: 34cd)

[TEWS.

M g]

% TG SvcDesc% = TTG | PACSI ot \ MAN12ab56 MOD34cd

4.1.2 Windows 2000

This section describes how to install the Generic IPAC Device Driver on a Windows 2000 operating

system.

1.

6.

After installing the IPAC card(s) and boot-up your system, Windows 2000 setup will show a
"New hardware found" dialog box.

The "Upgrade Device Driver Wizard" dialog box will appear on your screen.
Click "Next" button to continue.

In the following dialog box, choose "Search for a suitable driver for my device".
Click "Next" button to continue.

Select local path with the modified inf-File.
Click "Next" button to continue.

Now the driver wizard should find a suitable device driver.
Click "Next" button to continue.

Completing the upgrade device driver and click "Finish" to take all the changes effect.

After successful installation the Generic IPAC device driver will start immediately and creates devices
(genIPDrv_1, genlPDrv_2, ...) for all recognized IPAC modules.

4.1.3 Confirming Windows 2000 Installation

To confirm that the driver has been properly loaded in Windows 2000, perform the following steps:

1.
2.

From Windows 2000, open the "Control Panel" from "My Computer".

Click the "System" icon and choose the "Hardware" tab, and then click the "Device
Manager" button.

Click the "+" in front of "Other Devices".
The driver "genlIPDrv" should appear.

CARRIER-SW-65 — Windows WDM Device Driver Page 18 of 68

TEWS <

TECHNOLOGIES

4.1.4 Windows 98 SE / Windows ME

This section describes how to install the Generic IPAC Device Driver on a Windows 98 Second Edition
(SE) operating system.

1. After installing the IPAC card(s) and boot-up your system, Windows 98 SE setup will show a
"New hardware found" dialog box.

2. The "Add New Hardware Wizard" dialog box will appear on your screen, informing you that it
has found a new PCI device.
Click "Next" button to continue.

3. In the following dialog box, choose "Search for a better driver than the one your device is
using now".
Click "Next" button to continue.

4. In the following dialog box, select "Specify a location".

5. Select local path with the modified inf-File.
Click "Next" button to continue.

After successful installation the Generic IPAC device driver will start immediately and creates devices
(genIPDrv_1, genlPDrv_2, ...) for all recognized IPAC modules.

4.1.5 Confirming Windows 98 SE / Windows ME Installation

To confirm that the driver has been properly loaded in Windows, perform the following steps:
1. Choose "Settings" from the "Start" menu.
2. Choose "Control Panel" and then double-click on the "System" icon.

3. Choose the "Device Manager" tab, and then click the "+" in front of "Other Devices".
The driver "genlIPDrv" should appear.

CARRIER-SW-65 — Windows WDM Device Driver Page 19 of 68

TEWS <

TECHNOLOGIES

4.2 Generic IPAC Device Driver Programming

The Generic IPAC WDM device driver is a kernel mode device driver.

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceloControl) provide
the basic interface for opening and closing a device handle and for performing device 1/O control
operations.

All of these standard Win32 functions are described in detail in the Windows Platform SDK
Documentation (Windows base services / Hardware / Device Input and Output).

For details refer to the Win32 Programmers Reference of your used programming tools (C++, Visual
Basic etc.)

CARRIER-SW-65 — Windows WDM Device Driver Page 20 of 68

TEWS <

TECHNOLOGIES

4.2.1 IPAC Files and I/O Functions

The following section doesn’t contain a full description of the Win32 functions for interaction with the
Generic IPAC device driver. Only the required parameters are described in detail.

4.2.1.1 Opening an IPAC Device

Before you can perform any 1/O the IPAC device must be opened by invoking the CreateFile function.
CreateFile returns a handle that can be used to access the IPAC device.

HANDLE CreateFile(

LPCTSTR IpFileName, /I pointer to filename
DWORD dwDesiredAccess, /[access (read-write) mode
DWORD dwShareMode, /I share mode
LPSECURITY_ATTRIBUTES IpSecurityAttributes, // pointer to security attributes
DWORD dwCreationDistribution, /I how to create
DWORD dwFlagsAndAttributes, /I file attributes
HANDLE hTemplateFile /I handle to file with attributes to copy
)i
Parameters
IpFileName

Points to a null-terminated string that specifies the name of the IPAC to open.
The IpFileName string should be of the form \\.\genIPDrv_x to open the device x. The ending x
is a one-based number. The first device found by the driver is \.\genlPDrv_1, the second

\.\genIPDrv_2 and so on.

dwDesiredAccess
Specifies the type of access to the IPAC. For a Generic IPAC this parameter must be set to
read-write access (GENERIC_READ | GENERIC_WRITE).

dwShareMode
A set of bit flags that specifies how the object can be shared for read and write. Unimportant for
Generic IPAC, set to 0.

IpSecurityAttributes
Pointer to a security structure. Set to NULL for generic IPAC devices.

dwCreationDistribution

Specifies which action to take on files that exist and which action to take when files that do not
exist. Generic IPAC devices must be always opened OPEN_EXISTING.

dwFlagsAndAttributes
Specifies the file attributes and flags for the file. This value must be set to 0 (no overlapped 1/O).

hTemplateFile
This value must be 0 for Generic IPAC devices.

CARRIER-SW-65 — Windows WDM Device Driver Page 21 of 68

TEWS <

TECHNOLOGIES

Return Value

If the function succeeds, the return value is an open handle to the specified IPAC device. If the
function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call
GetlLastError.

Example

HANDLE hDevi ce;

hDevi ce = CreateFil ¢(
“\\\\.\\genlPDrv_1",
GENERI C_READ | GENERI C_WRI TE,

0,
NULL, /1l no security attrs
OPEN_EXI STI NG, /1 1 PAC device al ways open existing
0, /1 no overlapped 1/0
NULL
)
i f (hDevice == I NVALI D_ HANDLE VALUE) {
Error Handl er (" Coul d not open device"); /1 process error
}
See Also

CloseHandle(), Win32 documentation CreateFile()

CARRIER-SW-65 — Windows WDM Device Driver Page 22 of 68

TEWS <

TECHNOLOGIES

4.2.1.2 Closing an IPAC Device
The CloseHandle function closes an open IPAC handle.

BOOL CloseHandle(
HANDLE hDevice; /I handle to a IPAC device to close
);

Parameters

hDevice
Identifies an open IPAC handle.

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Example

HANDL E hDevi ce;

hDevi ce = CreateFil ¢(
“\\\\.\\gei I PDrv_1",
GENERI C_READ | GENERI C_WRI TE,

0,
NULL, /1l no security attrs
OPEN_EXI STI NG, /1 1 PAC device al ways open existing
0, /1 no overlapped 1/0
NULL

)

i f(hDevice == | NVALI D HANDLE_VALUE) {

Error Handl er (" Coul d not open device"); // process error
}
[* ... do some device I/O ... */

i f(!d oseHandl e(hDevice)) {
Error Handl er (" Coul d not cl ose device"); /1 process error

See Also

CreateFile(), Win32 documentation CloseHandle()

CARRIER-SW-65 — Windows WDM Device Driver Page 23 of 68

TEWS <

TECHNOLOGIES

42.1.3 IPAC Device I/O Control Functions

The DeviceloControl function sends a control code directly to a specified device driver, causing the
corresponding device to perform the specified operation.

BOOL DeviceloControl(

HANDLE hDevice, /I handle to device of interest
DWORD dwloControlCode, /I control code of operation to perform
LPVOID IpInBuffer, /I pointer to buffer to supply input data
DWORD nInBufferSize, /I size of input buffer
LPVOID IpOutBuffer, /I pointer to buffer to receive output data
DWORD nOutBufferSize, /I size of output buffer
LPDWORD IpBytesReturned, /I pointer to variable to receive output byte
count
LPOVERLAPPED IpOverlapped /I pointer to overlapped structure for
asynchronous /I operation
)i
Parameters
hDevice

Handle to the IPAC that is to perform the operation.

dwloControlCode

Specifies the control code for an operation. This value identifies the specific operation to be
performed. The following values are defined in genlPDrv.h:

Value Meaning

GENIPDRV_CONFIGURE Configure Carrier IPAC Slot and allocate IPAC
addresses

GENIPDRV_UNCONFIGURE Release IPAC addresses

GENIPDRV_READ_UCHAR Get data from IPAC Device (8-bit accesses)

GENIPDRV_READ_USHORT Get data from IPAC Device (16-bit accesses)

GENIPDRV_READ_ULONG Get data from IPAC Device (32-bit accesses)

GENIPDRV_WRITE_UCHAR Write data to IPAC Device (8-bit accesses)

GENIPDRV_WRITE_USHORT Write data to IPAC Device (16-bit accesses)

GENIPDRV_WRITE_ULONG Write data to IPAC Device (32-bit accesses)

See behind for more detailed information on each control code.

To use these Generic IPAC specific control codes the header file genlPDrv.h must be included
in the application.

IpInBuffer
Pointer to a buffer that contains the data required to perform the operation.

ninBufferSize
Specifies the size, in bytes, of the buffer pointed to by IpInBuffer.

CARRIER-SW-65 — Windows WDM Device Driver Page 24 of 68

TEWS <

TECHNOLOGIES
IpOutBuffer
Pointer to a buffer that receives the operation’s output data.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by IpOutBuffer.

IpBytesReturned

Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed to
by IpOutBuffer. A valid pointer is required.

IpOverlapped
Pointer to an Overlapped structure. This value must be set to NULL (no overlapped I/O).

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

See Also

Win32 documentation DeviceloControl()

CARRIER-SW-65 — Windows WDM Device Driver Page 25 of 68

TEWS <

TECHNOLOGIES

4.2.1.4 GENIPDRV_CONFIGURE

The configure function allocates address spaces to access the IPAC and sets up the IPAC slot. This
function must be used before any other access to the IPAC is done.

The parameter IpinBuffer and IpOutBuffer must pass a pointer to the configuration buffer
(GENIPDRV_CONFIGURE_BUF) to the device driver.

typedef struct _GENIPDRV_CONFIGURE_BUF

{
BOOLEAN enable8BitlP; /l TRUE - 8 Bit IP Bus
/I FALSE - 16 Bit IP Bus (startup)
BOOLEAN enable32MHz; /I TRUE - 32 MHz IP Clock
/I FALSE - 8 MHz IP Clock (startup)
ULONG sizelDSpace; /I Size of ID-Space
BOOLEAN swaplDSpace; /I Little <-> Big Endian swapping enable
ULONG sizelOSpace; /I Size of 1/0-Space
BOOLEAN swaplOSpace; /I Little <-> Big Endian swapping enable
ULONG sizeMEMSpace; /I Size of Memory-Space
BOOLEAN swapMEMSpace; // Little <-> Big Endian swapping enable
} GENIPDRV_CONFIGURE_BUF, *PGENIPDRV_CONFIGURE_BUF;
enable8BitIP
This parameter specifies the width of the IPAC bus. (If supported by hardware)
Value Description
TRUE The IPAC bus will be configured as 8-bit bus
FALSE The IPAC bus will be configured as 16-bit bus
enable32MHz
This parameter specifies the IPAC clock speed. (If supported by hardware)
Value Description
TRUE The IPAC clock speed will be set to 32MHz
FALSE The IPAC clock speed will be set to 8MHz
sizelDSpace

This parameter must specify the needed size of the ID-space.

swaplDSpace
This parameter specifies if the data should be swapped for read and write accesses to

ID-space.
Value Description
TRUE Data will be swapped
FALSE Data will not be swapped

CARRIER-SW-65 — Windows WDM Device Driver Page 26 of 68

TEWS <

TECHNOLOGIES
sizelOSpace
This parameter must specify the needed size of the I/O-space.

swaplOSpace
This parameter specifies if the data should be swapped for read and write accesses to

I/O-space.
Value Description
TRUE Data will be swapped
FALSE Data will not be swapped
sizeMEMSpace

This parameter must specify the needed size of the Memory-space.

swapMEMSpace

This parameter specifies if the data should be swapped for read and write accesses to
Memory-space.

Value Description
TRUE Data will be swapped
FALSE Data will not be swapped
Example
#i ncl ude “genl PDrv. h”

GENI PDRV_CONFI GURE_BUF conf i gBuf ;

HANDL E hDevi ce;
BOOLEAN SuUccess;
ULONG NunByt es;

CARRIER-SW-65 — Windows WDM Device Driver Page 27 of 68

TEWS <

TECHNOLOGIES

/1 Configure | PAC slot:

/11 - 16-bit bus width

/1 - 32 MHz cl ock speed

/1 - 32 Byte I D Space (not swapped)
/1 - 18 Byte |/ O Space (swapped)
/1 - no Menory- Space

confi gBuf. enabl e8BitlP = FALSE;
confi gBuf. enabl e32MHz = TRUE;
confi gBuf. si zel DSpace = 32;
confi gBuf . swapl DSpace = FALSE;
confi gBuf. si zel OSpace = 18;
confi gBuf . swapl OSpace = TRUE;
confi gBuf . si zeMEMSpace = 0xO0;
conf i gBuf . swapMEMSpace = FALSE;

/1 Send request to the device driver

11
success = Devicel oControl (
hCurrent, /1 1 PAC handl e
CGENI PDRV_CONFI GURE, /1l control code
&conf i gBuf,
si zeof (GENI PDRV_CONFI GURE_BUF) ,
&confi gBuf,
si zeof (GENI PDRV_CONFI GURE_BUF) ,
&NunByt es, /1 nunber of bytes transferred
NULL /1 not over |apped

);
i f(success) {
/1 1 PAC- Sl ot Configured

}
el se {

/1 1 PAC-Slot Configuration failed
}

Error Codes

All returned error codes are system error conditions.

See Also

Win32 documentation DeviceloControl()

CARRIER-SW-65 — Windows WDM Device Driver Page 28 of 68

TEWS <

TECHNOLOGIES

4215 GENIPDRV_UNCONFIGURE

The unconfigure function releases address spaces allocater for IPAC access.

The parameter IpInBuffer and IpOutBuffer must pass a NULL pointer to the device driver.

Example

#i ncl ude “genl PDrv. h”
HANDL E hDevi ce;
BOOLEAN success;
ULONG NunByt es;

success = Devicel oControl (

hCurrent, /1 1 PAC handl e
GENI PDRV_UNCONFI GURE, /'l control code
NULL,
0,
NULL,
0,
&NunByt es, /1 number of bytes transferred
NULL /'l not over |apped
)
11
/1 Check the result of the last device I/O control operation
11

i f(success) {
/1 1 PAC- Sl ot unconfi gured

}
el se {

/1 1 PAC-Sl ot Unconfiguration failed
}

Error Codes

All returned error codes are system error conditions.

See Also

Win32 documentation DeviceloControl()

CARRIER-SW-65 — Windows WDM Device Driver Page 29 of 68

TEWS <

TECHNOLOGIES

4216 GENIPDRV_READ_UCHAR

The read uchar function reads a buffer of 8-bit data from a specified address space. Before this
function is used the GENIPDRV_CONFIGURE function must be called.

The parameter IpInBuffer and IpOutBuffer must pass a pointer to the 1/0 buffer (GENIPDRV_IO_BUF)
to the device driver.

typedef struct GENIPDRV_IO_BUF

{
UCHAR space; // address space to read from
ULONG offset; // address offset in space
ULONG size; /I number of uchar/ushort/ulong
UCHAR bufferfGENIPDRV_MAXIOBUF]; /I pointer to buffer
} GENIPDRV_IO_BUF, *PGENIPDRV_IO_BUF;
space
This parameter specifies the address of the IPAC the data shall be read from.
Value Description
GENIPDRV_IDSPACE Read from ID Space
GENIPDRV_IOSPACE Read from I/O space
GENIPDRV_MEMSPACE Read from memory space
offset

This parameter specifies the starting offset in the selected space.
size
This parameter specifies the length of the buffer to read.

buffer(]

This array will be filled with the data read from the specified position. The size of the buffer can
be changed by changing the value of GENIPDRV_MAXIOBUF in genlPDrv.h. The value is
specified in byte.

Example

#i ncl ude “genl PDrv. h”
GENI PDRV_| O_BUF i oBuf;

HANDL E hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
PUCHAR uchktr;

CARRIER-SW-65 — Windows WDM Device Driver Page 30 of 68

TEWS <

TECHNOLOGIES

/1l Read 16 Bytes from | PAC | D-Space starting at offset 0x10
i oBuf . space = GEN PDRV_| DSPACE;

i oBuf . of f set =0x10;

i oBuf . size = 0x10;

/1 Send request to the device driver

11

success = DeviceloControl (
hCurrent, /1 1 PAC handl e
CGENI PDRV_READ UCHAR, /1 control code
& oBuf ,
si zeof (GENI PDRV_I O_BUF),
& oBuf ,
si zeof (GENI PDRV_I O _BUF),
&NunByt es, /1 nunmber of bytes transferred
NULL /'l not over |apped

)
i f(success) {
/'l read access K

uchPtr = & oBuf.Buffer[O0]; /1 Set pointer to data
}
el se {

/'l read access failed
}

Error Codes

All returned error codes are system error conditions.

See Also

Win32 documentation DeviceloControl()

CARRIER-SW-65 — Windows WDM Device Driver Page 31 of 68

TEWS <

TECHNOLOGIES

4.2.1.7 GENIPDRV_READ_USHORT

The read ushort function reads a buffer of 16-bit data from a specified address space. Before this
function is used the GENIPDRV_CONFIGURE function must be called.

The parameter IpInBuffer and IpOutBuffer must pass a pointer to the 1/0 buffer (GENIPDRV_IO_BUF)
to the device driver.

typedef struct GENIPDRV_IO_BUF

{
UCHAR space; // address space to read from
ULONG offset; // address offset in space
ULONG size; /I number of uchar/ushort/ulong
UCHAR bufferfGENIPDRV_MAXIOBUF]; /I pointer to buffer
} GENIPDRV_IO_BUF, *PGENIPDRV_IO_BUF;
space
This parameter specifies the address of the IPAC the data shall be read from.
Value Description
GENIPDRV_IDSPACE Read from ID Space
GENIPDRV_IOSPACE Read from I/O space
GENIPDRV_MEMSPACE Read from memory space
offset

This parameter specifies the starting offset in the selected space.
size
This parameter specifies the number of words to read.

buffer(]

This array will be filled with the data read from the specified position. The size of the buffer can
be changed by changing the value of GENIPDRV_MAXIOBUF in genlPDrv.h. The value is
specified in byte.

Example

#i ncl ude “genl PDrv. h”
GENI PDRV_| O_BUF i oBuf;

HANDL E hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
PUSHORT uskPtr;

CARRIER-SW-65 — Windows WDM Device Driver Page 32 of 68

TEWS <

TECHNOLOGIES

/1 Read 8 Wrds fromI|PAC |/ O Space starting at offset 0x10

i oBuf . space = GEN PDRV_| OSPACE;
i oBuf . of f set =0x10;
i oBuf.size = O0x8;

/1 Send request to the device driver
11
success = Devicel oControl (
hCurrent,
GENI PDRV_READ_USHORT,
&i oBuf ,
si zeof (GENI PDRV_I O_BUF),
&i oBuf ,
si zeof (GENI PDRV_I O _BUF),
&NunByt es,
NULL
);
i f(success) {
/'l read access K
usPtr = (PUSHORT) & oBuf . Buffer[0];

}
el se {

/'l read access failed
}

Error Codes

All returned error codes are system error conditions.

See Also

Win32 documentation DeviceloControl()

CARRIER-SW-65 — Windows WDM Device Driver

11
11

11
11

11

| PAC handl e
control code

nunber of bytes transferred

not over | apped

Set pointer to data

Page 33 of 68

TEWS <

TECHNOLOGIES

4.2.1.8 GENIPDRV_READ_ULONG

The read ulong function reads a buffer of 32-bit data from a specified address space. Before this
function is used the GENIPDRV_CONFIGURE function must be called.

The parameter IpInBuffer and IpOutBuffer must pass a pointer to the 1/0 buffer (GENIPDRV_IO_BUF)
to the device driver.

typedef struct GENIPDRV_IO_BUF

{
UCHAR space; // address space to read from
ULONG offset; // address offset in space
ULONG size; /I number of uchar/ushort/ulong
UCHAR bufferfGENIPDRV_MAXIOBUF]; /I pointer to buffer
} GENIPDRV_IO_BUF, *PGENIPDRV_IO_BUF;
space
This parameter specifies the address of the IPAC the data shall be read from.
Value Description
GENIPDRV_IDSPACE Read from ID Space
GENIPDRV_IOSPACE Read from I/O space
GENIPDRV_MEMSPACE Read from memory space
offset

This parameter specifies the starting offset in the selected space.
size
This parameter specifies the number of longwords | to read.

buffer(]

This array will be filled with the data read from the specified position. The size of the buffer can
be changed by changing the value of GENIPDRV_MAXIOBUF in genlPDrv.h. The value is
specified in byte.

Example

#i ncl ude “genl PDrv. h”
GENI PDRV_| O_BUF i oBuf;

HANDL E hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
PULONG ul Ptr;

CARRIER-SW-65 — Windows WDM Device Driver Page 34 of 68

TEWS <

TECHNOLOGIES

/1 Read 4 Longwords from | PAC Menory- Space starting at offset 0x10

i oBuf . space = GEN PDRV_MEMSPACE;
i oBuf . of f set =0x10;
i oBuf.size = 0x4;

/1 Send request to the device driver
11
success = Devicel oControl (

hCurrent,

GENI PDRV_READ ULONG

& oBuf ,

si zeof (GENI PDRV_| O_BUF) ,

& oBuf ,

si zeof (GENI PDRV_| O _BUF),

&NunByt es,
NULL
);
i f(success) {
/'l read access OKO
ul Ptr = (PULONG) & oBuf. Buf fer[O0];

}
el se {

/'l read access failed
}

Error Codes

All returned error codes are system error conditions.

See Also

Win32 documentation DeviceloControl()

CARRIER-SW-65 — Windows WDM Device Driver

11
11

11
11

11

| PAC handl e
control code

nunber of bytes transferred

not over | apped

Set pointer to data

Page 35 of 68

TEWS <

TECHNOLOGIES

4219 GENIPDRV_WRITE_UCHAR

The write uchar function writes a buffer of 8-bit data to a specified address space. Before this function
is used the GENIPDRV_CONFIGURE function must be called.

The parameter IpinBuffer must pass a pointer to the I/O buffer (GENIPDRV_IO_BUF) to the device
driver. The parameter IpOutBuffer must pass a NULL pointer to the device driver.

typedef struct GENIPDRV_IO_BUF

{
UCHAR space; // address space to read from
ULONG offset; // address offset in space
ULONG size; /I number of uchar/ushort/ulong
UCHAR bufferfGENIPDRV_MAXIOBUF]; /I pointer to buffer
} GENIPDRV_IO_BUF, *PGENIPDRV_IO_BUF;
space
This parameter specifies the address of the IPAC the data shall be read from.
Value Description
GENIPDRV_IDSPACE Read from ID Space
GENIPDRV_IOSPACE Read from I/O space
GENIPDRV_MEMSPACE Read from memory space

offset

This parameter specifies the starting offset in the selected space.
size

This parameter specifies the length of the buffer to write.

buffer(]

This array must be filled with the data to write to the specified position. The size of the buffer
can be changed by changing the value of GENIPDRV_MAXIOBUF in genlPDrv.h. The value is
specified in byte.

Example

#i ncl ude “genl PDrv. h”
GENI PDRV_| O_BUF i oBuf;

HANDL E hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
PUCHAR uchktr;

CARRIER-SW-65 — Windows WDM Device Driver Page 36 of 68

TEWS <

TECHNOLOGIES

/1 Wite 3 Bytes (0x11,0x22,0x33) to I PAC I/ O Space starting at offset 0x10

i oBuf . space = GEN PDRV_| OSPACE;
i oBuf . of f set =0x10;
i oBuf.size = 0x3;

uchPtr = & oBuf.Buffer[O0];

uckPtr[0] = 0Ox11;
uchktr[1] = 0x22;
uchtr[2] = 0x33;

/1 Send request to the device driver
/11
success = Devicel oControl (
hCurrent,
GENI PDRV_WRI TE_UCHAR,
& oBuf,
si zeof (GENI PDRV_I O _BUF),
NULL,
0,
&NunByt es,
NULL
)
i f(success) {
/'l wite access K

}
el se {

// wite access failed
}

Error Codes

All returned error codes are system error conditions.

See Also

Win32 documentation DeviceloControl()

CARRIER-SW-65 — Windows WDM Device Driver

11
11

11
11

/1 Set pointer to data

| PAC handl e
control code

nunber of bytes transferred
not over | apped

Page 37 of 68

TEWS <

TECHNOLOGIES

4.2.1.10 GENIPDRV_WRITE_USHORT

The write ushort function writes a buffer of 16-bit data to a specified address space. Before this
function is used the GENIPDRV_CONFIGURE function must be called.

The parameter IpinBuffer must pass a pointer to the I/O buffer (GENIPDRV_IO_BUF) to the device
driver. The parameter IpOutBuffer must pass a NULL pointer to the device driver.

typedef struct GENIPDRV_IO_BUF

{
UCHAR space; // address space to read from
ULONG offset; // address offset in space
ULONG size; /I number of uchar/ushort/ulong
UCHAR bufferfGENIPDRV_MAXIOBUF]; /I pointer to buffer
} GENIPDRV_IO_BUF, *PGENIPDRV_IO_BUF;
space
This parameter specifies the address of the IPAC the data shall be read from.
Value Description
GENIPDRV_IDSPACE Read from ID Space
GENIPDRV_IOSPACE Read from I/O space
GENIPDRV_MEMSPACE Read from memory space

offset

This parameter specifies the starting offset in the selected space.
size

This parameter specifies number of words to write.

buffer(]

This array must be filled with the data to write to the specified position. The size of the buffer
can be changed by changing the value of GENIPDRV_MAXIOBUF in genlPDrv.h. The value is
specified in byte.

Example

#i ncl ude “genl PDrv. h”
GENI PDRV_| O_BUF i oBuf;

HANDL E hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
PUSHORT usktr;

CARRIER-SW-65 — Windows WDM Device Driver Page 38 of 68

TEWS <

TECHNOLOGIES

/] Wite 3 Wrds (0x1111, 0x2222,0x3333) to I PAC I/ O Space starting
/1 at offset 0x10

i oBuf . space = GEN PDRV_| OSPACE;

i oBuf . of f set =0x10;

i oBuf . size = 0x3;

usPtr = (PUSHORT) & oBuf . Buffer[0]; /1 Set pointer to data

usPtr[0] = O0x1111;
usPtr[1] = 0x2222;
usPtr[2] = 0x3333;

/1 Send request to the device driver

11

success = Devicel oControl (
hCurrent, /1 1 PAC handl e
GENI PDRV_WRI TE_USHORT, /'l control code
&i oBuf ,
si zeof (GENI PDRV_I O _BUF),
NULL,
0,
&NunByt es, /1 number of bytes transferred
NULL /1l not over |apped

)
i f(success) {
/'l wite access K

}
el se {

// wite access failed
}

Error Codes

All returned error codes are system error conditions.

See Also

Win32 documentation DeviceloControl()

CARRIER-SW-65 — Windows WDM Device Driver Page 39 of 68

TEWS <

TECHNOLOGIES

4.2.1.11 GENIPDRV_WRITE_ULONG

The write ulong function writes a buffer of 32-bit data to a specified address space. Before this
function is used the GENIPDRV_CONFIGURE function must be called.

The parameter IpinBuffer must pass a pointer to the I/O buffer (GENIPDRV_IO_BUF) to the device
driver. The parameter IpOutBuffer must pass a NULL pointer to the device driver.

typedef struct GENIPDRV_IO_BUF

{
UCHAR space; // address space to read from
ULONG offset; // address offset in space
ULONG size; /I number of uchar/ushort/ulong
UCHAR bufferfGENIPDRV_MAXIOBUF]; /I pointer to buffer
} GENIPDRV_IO_BUF, *PGENIPDRV_IO_BUF;
space
This parameter specifies the address of the IPAC the data shall be read from.
Value Description
GENIPDRV_IDSPACE Read from ID Space
GENIPDRV_IOSPACE Read from I/O space
GENIPDRV_MEMSPACE Read from memory space

offset

This parameter specifies the starting offset in the selected space.
size

This parameter specifies the number of longwords to write.

buffer(]

This array must be filled with the data to write to the specified position. The size of the buffer
can be changed by changing the value of GENIPDRV_MAXIOBUF in genlPDrv.h. The value is
specified in byte.

Example

#i ncl ude “genl PDrv. h”
GENI PDRV_| O_BUF i oBuf;

HANDL E hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
PULONG ul Ptr;

CARRIER-SW-65 — Windows WDM Device Driver Page 40 of 68

TEWS <

TECHNOLOGIES

/1 Wite 2 Longwords (0x11111111, 0x22222222) to | PAC Menory- Space
/1 starting at offset 0x10

i oBuf . space = GEN PDRV_MEMSPACE;

i oBuf . of f set =0x10;

i oBuf . size = 0x2;

ul Ptr = (PULONG) & oBuf.Buffer[0];// Set pointer to data
ul Ptr[0] 0x11111111;
ul Ptr[1] 0x22222222;

/1 Send request to the device driver

/11

success = Devicel oControl (
hCurrent, /1 1 PAC handl e
GENI PDRV_WRI TE_ULONG, /'l control code
& oBuf,
si zeof (GENI PDRV_I O _BUF),
NULL,
0,
&NunByt es, /1 number of bytes transferred
NULL /1 not over |apped

)
i f(success) {
/'l wite access K

}
el se {

// wite access failed
}

Error Codes

All returned error codes are system error conditions.

See Also

Win32 documentation DeviceloControl()

CARRIER-SW-65 — Windows WDM Device Driver Page 41 of 68

TEWS <

TECHNOLOGIES

5 Custom Driver Development

5.1 Custom Device Driver Example Overview

The following chapter should not be an introduction into windows driver development, it
should just give a simple overview over the modifications necessary for a simple driver using
TEWS Technologies IPAC carrier driver concept.

This chapter describes how an IPAC driver with carrier support can be developed for custom or 3"
party IPAC modules.

The advantage of a custom driver against the generic driver is that this driver may contain functions
special for the device, this allows direct multiple access to the device in one I/O function without the
overhead of multiple windows I/O function calls. The second and maybe more important advantage is
that interrupts can be used, which allows an event handling without polling and superfluous effort of
system performance.

For simple modifications and build of a custom device driver some preconditions must be fulfilled. A
matching Windows DDK and SDK must be installed on the development system. Sometimes it may be
helpful to use a windows debugger for testing. The modifications should be done with at least a basic
knowledge of programming WDM device drivers.

The delivered example sources are thought as a base for custom developments and are
generally not useable without modification.

TEWS Technologies GmbH will not provide support Custom Device Drivers.

5.2 Modify the IPAC Driver Example

This chapter describes the modification steps that will be necessary for a custom made driver based
on the delivered example driver.

Copy example sources

Modify file names

Modify INF-file (setup installation file)
Modify RC-file (resource script file)
Modify the “Sources” file

Modify driver sources

YVVVVYY

The paragraphs below give an overview of these steps.

The examples below shows how to make the modifications for a driver named “digitallO”.

CARRIER-SW-65 — Windows WDM Device Driver Page 42 of 68

TEWS <

TECHNOLOGIES

5.2.1 Copy and rename example sources

First all sources of the example driver must be copied to an appropriate position where the driver can
be built. Typically this will be a development path and the name of the supported module
(<development_path>\<module_name>, e.g. “...\myDrivers\digitallo”).

Next the device dependent filenames ipDrvCustom.inf, ipDrvCustom.rc, and ipDrvCustom.h should be
renamed.

For example rename:
ipDrvCustom.inf = digitallO.inf
ipDrvCustom.rc - digitallO.rc
ipDrvCustom.h - digitallO.h

5.2.2 INF-file modifications

The INF-file contains setup information for the driver. The following sections of the file must be
modified to match for the driver and the supported module.

This manual only describes the necessary and basic modification. More information about
INF-files must be taken from of other sources (e.g. books or web)

Only necessary entries in the sections will be listed below, to keep this manual as transparent as
possible.

Section [Version]

DriverVer

This entry specifies data and version of the driver and will be shown in the device manager. The

format of the entry is mm/dd/yyy [,a.b.c.d].

For a driver version 1.0.0.0 built on December 24™, 2006 the line should be set to:
DriverVer=12/ 24/ 2006, 1.0.0.0

Section [SourceDisksFiles]

ipDrvCustom.sys

This name must be modified matching the name of the custom driver. For example the name
should be changed into “di gi tal | O. sys”.

CARRIER-SW-65 — Windows WDM Device Driver Page 43 of 68

TEWS <

TECHNOLOGIES

Section [CUSTOM.Mfg]

%TTG.SveDesc%

The assigned value specified a hardware ID of the supported device. If there are different
devices supported by the driver, additional entries can attached. The hardware IDs are
generated by the carrier driver and typically contain the manufacturer ID and model number of
the IPAC board. There are two different formats, the first for boards using ID-prom type | and
the second for boards using ID-prom type 1l (VITA 4).
A line identifying a board with type | ID-prom will look like:

%TTG.SvcDesc% = TTG,IPACSIot\MANmMmM_MODnNnN
A line identifying a board with type Il (VITA 4) ID-prom will look like:

%TTG.SveDesc% = TTG,IPACSIot\MANmMmmmmm_MODnnnn

For example the driver supports two different boards with manufacturer ID 0xAA and model
numbers 0x01 and 0x02, than the section should look like this:
[CUSTOM M g]

%W TG SvcbDesc% = TTG, | PACS| ot \ MANAA_MODO1
%W TG SvcDesc% = TTG, | PACSI ot \ MANAA_MODO2

Section [TTG_Service_Inst]

ServiceBinary

This entry specifies the driver SYS-file. The value must be filled with the name of the customs
drivers SYS-file.
For example:

ServiceBinary = %2%digitallQ sys

Section [TTG_EventLog_AddReq]

This section creates registry entries for the driver. The value must be modified by replacing
“ipDrvCustom.sys” into the SYS-file name of the custom device driver (e.g. digitallO.sys).

Localizable Strings

The values defined below this comment must be modified matching to the driver. For the described
example this passage should look like this:

; Localizable Strings

TTG SvcDesc="TEWS Technol ogies - digitallO (Dig. 1/O"
CUSTOM Devi ceDescO = "digitall O

Di skldi="digital I O

CUSTOME" TEWS Technol ogi es”
COPYFLG_NOsKI P=2

CARRIER-SW-65 — Windows WDM Device Driver Page 44 of 68

TEWS <

TECHNOLOGIES

5.2.3 RC-file modifications

This file contains driver information values. Below the definitions which must be modified are
described:

VER_FILEDESCRIPTION_STR
VER_PRODUCTNAME_STR

<IPDRVCUSTOM> should be exchanged by an appropriate string (e.g. “digitallO”)

VER_INTERNALNAME_STR
VER_ORIGINALFILENAME_STR

These values must be set to the name of the drivers SYS-file (e.g. “digitallO.sys”)
VER_PRODUCTVERSION

This definition should be set to the current driver version (e.g. for V1.0.0 “1,00,00,000")
VER_PRODUCTVERSION_STR

This definition sets a string with the definition (e.g. for V1.0.0 “1.00.00")

VER_LEGALCOPYRIGHT_YEARS
This defines a string with the copyright years (e.g. for “2004-2008")

VER_LEGALCOPYRIGHT_STR
COMPANYNAME

<CUSTOM_COMPANY> should be replaced by the name of the company. (e.g. “TEWS
TECHNOLOGIES")

5.2.4 Source-file modifications

The Source-file contains information for the driver build process. This information includes driver
name, path information for driver include and library files, and the source files needed for compilation.
The following positions must be changed:

TARGETNAME
This value must be modified to the driver name (e.g. “digitallO”)
SOURCES

This value contains the list of the used source-code driver files. The last entry specifies the
RC-file. Because the name has been changed we have to change the name in the list too. (e.g.
“digitallO.rc")

CARRIER-SW-65 — Windows WDM Device Driver Page 45 of 68

TEWS <

TECHNOLOGIES

5.2.5 Driver source modifications

This chapter shows the position in the C-source files where changes have to be done typically, the
positions are marked with “(modi fy! 1) " If files typically are not affected by the modification they
will not be listed below. All the changes are very special for the device and knowledge about the
devices registers and the functions is necessary.

5.25.1 Devicelo.c

This file contains device specific functions for starting and stopping the device.

Function tpStartDevice

The necessary modifications in this function depend on the modules abilities and resources. All
settings are highly depending from the used IPAC Behind the marked position the DCB (device
extension) is initialized. Than the IPAC slot has to be configured (i pac_configure_driver()). In
the next step the used IP address areas (ID, I1/0O and memory) are mapped, this allows special settings
for every address area. The next step is to connect the ISR to a special interrupt vector. After that the
device must be initialized, this is done synchronized with the interrupt (not interruptible by the ISR).

Function FreeDeviceResources

This function must free or unmap all allocated or mapped resources.

Function tplnitHardware
This function makes the basic initialization of the device. This function is called if the device starts, a

typical implementation will make necessary setups like global interrupt enable, interrupt vector setup,
default setup of the I/O lines etc.

Function tpShutDownDevice
This function will be called if the system shuts down, typically this driver will call the

t pl ni t Har dwar e() function to make the default settings and it must take care that all interrupts are
disabled.

CARRIER-SW-65 — Windows WDM Device Driver Page 46 of 68

TEWS <

TECHNOLOGIES

5.2.5.2 Dispatch.c

Function Dispatch
This function contains the control functions for the devices. Control functions (handling of additional
functions codes) for custom devices can be added here. The definition of the parameter structure
and I/O-control code must be done in drivers header file (e.g. digitallO.h)

Function ipStartJob

This function starts a job waiting for an interrupt event. The function allows interrupt save access to
the device extension, because it is called viai pac_sync_i sr () function.

Function ipCancellrp

This function shows how a pending Irp can be canceled, this may be necessary for waiting jobs.

525.3 Isr.c

Function tplsr

This function shows a simple interrupt service function. This is the place where pending interrupts
must be released. This function should always be kept short and quick. Only necessary action
should take place here. For more complex interrupt handling a solution with a post called DPC
should be taken in consideration. (The delivered example queues a DPC)

Function tpDpcForlsr
This is the DPC. This function is nearly an interrupt call, but is less time critical, because
processing new incoming interrupts is possible during execution. The DPC should do the work,

which must be done in the follow of an interrupt event. The DPC is especially necessary for
functions that take some time which may be critical in an ISR.

5254 loTimer.c

This file contains an example function making the timeout handling for waiting functions.

CARRIER-SW-65 — Windows WDM Device Driver Page 47 of 68

TEWS <

TECHNOLOGIES

5255 localDrvDef.h

This file contains all definitions, structures, etc. which are only used by the driver and are not visible to
the application. There are some sections marked with “(modi fy!'!!1)".

The section below the comment “Various constants” must be modified with the used driver and device
name.

For example it must be modified to look like below:

I

/1 Various constants (nodify!!!)

11

#defi ne DEBUG_NAME "Dl G TALI O

#defi ne PARAMETER NAME L"\\ Par anet er s"

#defi ne NT_DEVI CE_NAME L"\\ Device\\digital 1O "

#def i ne W N32_DEVI CE_NAME L"\\ DosDevi ces\\digitallO"

A custom driver must be fully adapted to the used IPAC module. Register offset, flags and so on must
be defined. This highly depends on the used IPAC module and it will not be described here in detail.

A very important structure is the DCB or device extension. This data is accessible in the whole driver.
All data which must be available during device or driver lifetime has to be inserted here.

5.2.5.6 ipDrvCustom.h

This function contains all definitions, structures, etc. which will be needed by applications accessing
the devices. The device I/0O control codes and the 1/O structures must be defined here.

CARRIER-SW-65 — Windows WDM Device Driver Page 48 of 68

TEWS <

TECHNOLOGIES

5.3 Building the Driver

The last step to get a usable custom driver is to build the driver. Therefore an installed development kit
is necessary. The development kit may have more than one build environment for different target
systems where that one matching for the system must be chosen. There will be a free and a checked
version for every target system. The checked version will create a driver file containing debug
information for windows debugger and the free version will create a driver file without debug
information.

For building the drivers and a usable installation medium the steps below must be executed:
Start development shell, using the windows start-menu:

Devel oprment Kits/Wndows DDK nn/Build Environents/Wn xx Build Environnent

Change to the development path. For example:

C \ xxx> W
W\ > cd devel opment path/digitallO
W\ devel opnent path/digitall OG> nakedriver

The last step is to copy the driver files to a medium which can be used to install the driver (e.g. floppy
disk, CD). Therefore copy the INF-file and the built SYS-file from the development path to the medium
in a matching path.

For example:
./freel/i386/digitallQ sys = A\digitallO
./digitall QO inf = A\digitallO

After these steps, the medium can be used to install the driver on the target system. Simply follow
standard windows installation procedure.

CARRIER-SW-65 — Windows WDM Device Driver Page 49 of 68

TEWS <

TECHNOLOGIES

5.4 IPAC Carrier Interface Functions

This chapter will give a short description of the functions of the IPAC Carrier Driver carrier which are
used by the custom driver. The description correlates on the custom driver example and describes the
use in it. The header file “ipacLib.h” must always be included.

5.4.1 ipac_register_driver

NAME

ipac_register_driver() — Register the IPAC device at IPAC carrier interface

SYNOPSIS

LONG ipac_register_driver

IN PDEVICE_OBJECT DeviceObject,
OUT PIPACSLOT_INTERFACE_STANDARD pIPACInterface
)
DESCRIPTION

This function registers the device at the IPAC carrier interface. The function will return a handle for the
used slot, which will identify the device in following accesses.

This must always be the first access to the IPAC Interface.

Parameters

DeviceObject
This parameter specifies the IPAC slot device (next lower device in IRP stack). The value of this
parameter must be the NextStackDevice entry of the device extension.

pIPACInterface
This returned pointer is a handle to the IPAC interface, which identifies the IPAC slot. It will be

used for future access to the device.
Return Value
If the function succeeds, the status check NT_SUCCESS(status) will return a TRUE value, otherwise

an error occurred and a windows error/status number will be returned. This value can be used as a
return value of the driver function.

CARRIER-SW-65 — Windows WDM Device Driver Page 50 of 68

TEWS <

TECHNOLOGIES

Example

#i ncl ude <i paclLib. h>

PDEVI CE_EXTENSI ON pExt ensi on;
NTSTATUS st at us;

status = ipac_register_driver(pExt ensi on- >Next St ackDevi ce,
&pExt ensi on- >| PACI nt er f ace) ;

i f(!NT_SUCCESS(status))

{

return status;

5.4.2 ipac_configure_driver

NAME

ipac_configure_driver() — Configure the IPAC device

SYNOPSIS

LONG ipac_configure_driver

(
IN PIPACSLOT_INTERFACE_STANDARD pIPACInterface,
IN ULONG SlotConfigln,
OUT PULONG pSystemIntVector,
OUT PULONG pModulelntVector

)

DESCRIPTION

This function configures the IPAC slot the device is mounted on. The function will return the base
interrupt vectors used for system configuration and module configuration. The returned vector base
numbers correlates, one for software and the other for hardware (module) site.

Parameters

pIPACInterface

This pointer is the handle to the IPAC interface, it identifies the IPAC slot. This handle has been
returned by the function ipac_register_driver().

CARRIER-SW-65 — Windows WDM Device Driver Page 51 of 68

TEWS <

TECHNOLOGIES

SlotConfigin

This value defines the settings for the used IPAC slot. This setting must match to the IPAC
abilities. The following definitions can be used in an OR’ed value:

Define Description
IPAC_INTO_EN This must be set if the IPAC generates interrupts on INTO.
IPAC_INT1_EN This must be set if the IPAC generates interrupts on INT1.
IPAC_EDGE_SENS This must be set if the IPAC uses edge sensitive
interrupts.
(Excludes selection of IPAC_LEVEL_SENS)
IPAC_LEVEL_SENS This must be set if the IPAC uses level sensitive
interrupts.
(Excludes selection of IPAC_EDGE_SENS)
IPAC_CLK _8MHZ This sets the IPAC system clock to 8MHz.
(Excludes selection of IPAC_CLK_32MHZ)
IPAC_CLK 32MHZ This sets the IPAC system clock to 32MHz.
(Excludes selection of IPAC_CLK_8MHZ)
IPAC_MEM_8BIT If this value is chosen, the memory space of the module

has a width of 8-bit.
(Excludes selection of IPAC_MEM_16BIT)

IPAC_MEM_16BIT If this value is chosen, the memory space of the module
has a width of 16-bit.

(Excludes selection of IPAC_MEM_8BIT)

pSystemIintVector
This is a system dependent interrupt vector base representing the first interrupt number which
will be used for the device. This is the right interrupt vector to be used on software site.
pModulelntVector

This is a system dependent interrupt vector base representing the first interrupt number which
will be used for the device. This is the right interrupt vector to be used on hardware site, which
must be written to the interrupt vector register.

Return Value

If the function succeeds, the status check NT_SUCCESS(status) will return a TRUE value, otherwise
an error occurred and a windows error/status number will be returned. This value can be used as a
return value of the driver function.

CARRIER-SW-65 — Windows WDM Device Driver Page 52 of 68

TEWS <

TECHNOLOGIES

Example

#i ncl ude <i paclLib. h>

PDEVI CE_EXTENSI ON pExt ensi on;
NTSTATUS st at us;

/1 Configure Slot with nodul e depending settings

11 - Use Level sensitive INTO
11 - Use 8MHz | P clock
status = ipac_configure_driver(&pExtension->|PAClInterface,
| PAC_I NTO_EN | | PAC_LEVEL_SENS |

| PAC_CLK_8MHZ,
&pExt ensi on- >sysl nt Vect or
&pExt ensi on- >nodl nt Vect or) ;
i f(!'NT_SUCCESS(status))

{
KdPrint (("Probl emconfiguring the | PAC-Slot\n"));

return status;

5.4.3 ipac_map_space

NAME

ipac_map_space() — Maps and configure IPAC address space access.

SYNOPSIS

LONG ipac_map_space

(
IN PIPACSLOT_INTERFACE_STANDARD pIPACInterface,
IN UCHAR SpacelD,
IN ULONG Size,
IN BOOLEAN Swapping,
OUT PIPAC_ADRSPACE_HANDLE Handle

)

CARRIER-SW-65 — Windows WDM Device Driver Page 53 of 68

TEWS <

TECHNOLOGIES

DESCRIPTION

A specified address space of the IPAC device is mapped, space configuration is made and a handle to
the space will be returned for access to the space in future.

This function must be called before an access to an IPAC space is done.

Parameters

pIPACInterface

This pointer is the handle to the IPAC interface, it identifies the IPAC slot. This handle has been
returned by the function ipac_register_driver().

SpacelD
This value specifies which address space shall be mapped. The following defines can be used:
IPAC address space Description
IPAC_ID_SPACE This specifies the IPAC ID-space.
IPAC_IO_SPACE This specifies the IPAC 10-space.
IPAC_MEMORY_SPACE This specifies the IPAC memory-space.
Size

This specifies the size of the address space. The value must be specified in bytes.

Swapping

This value enables or disabled byte swapping within the address space. If the returned values
on access to the address space are not matching the expected endian format, the values can
be easily switched. FALSE will disable and TRUE will enable byte swapping.

Handle
This parameter will contain a handle to the mapped address space. This handle must be used

for IPAC address access functions.
Return Value

If the function succeeds, the status check NT_SUCCESS(status) will return a TRUE value, otherwise
an error occurred and a windows error/status number will be returned. This value can be used as a
return value of the driver function.

CARRIER-SW-65 — Windows WDM Device Driver Page 54 of 68

TEWS <

TECHNOLOGIES

Example

#i ncl ude <i paclLib. h>

PDEVI CE_EXTENSI ON pExt ensi on;
NTSTATUS st at us;

/1 Map | D-regi ster space

/1 - size of 0x20 byte

/1 - no byte swapping

status = ipac_nmap_space(&pExt ensi on- >| PACI nt er f ace,
| PAC_| D_SPACE,
0x20,
FALSE,

&pExt ensi on- >| DSpaceHandl e) ;
i f(!'NT_SUCCESS(status))

{
KdPrint(("Can't Map | D-Space\n"));

return status;

5.4.4 ipac_unmap_space

NAME

ipac_unmap_space() — Release IPAC address space mapping.

SYNOPSIS

LONG ipac_unmap_space

(
)

IN PIPAC_ADRSPACE_HANDLE Handle

CARRIER-SW-65 — Windows WDM Device Driver Page 55 of 68

TEWS <

TECHNOLOGIES

DESCRIPTION

This function releases a previous mapping of IPAC address space. This function will allow a
remapping of an address space with modified parameters by ipac_map_space().

Parameters

Handle

This pointer is the handle to the IPAC address space, identifying the space. This handle has
been returned by the function ipac_map_space().

Return Value

If the function succeeds, the status check NT_SUCCESS(status) will return a TRUE value, otherwise
an error occurred and a windows error/status number will be returned. This value can be used as a
return value of the driver function.

Example

#i ncl ude <i paclLib. h>

PDEVI CE_EXTENSI ON pExt ensi on;
NTSTATUS st at us;

/1 Unmap | D-regi ster space
status = i pac_unmap_space(&Ext ensi on- >| DSpaceHandl e) ;
i f(!'NT_SUCCESS(status))

{
KdPrint(("Can't unmap | D Space\n"));

return status;

CARRIER-SW-65 — Windows WDM Device Driver Page 56 of 68

TEWS <

TECHNOLOGIES

5.4.5ipac_read_uchar

NAME

ipac_read_uchar() — Read a character value (8-bit) from the IPAC.

SYNOPSIS
UCHAR ipac_read_uchar
(
IN PIPAC_ADRSPACE_HANDLE Handle,
IN ULONG Offset
)
DESCRIPTION

This function reads an 8-bit value from a specified IPAC address space.

Parameters

Handle

This pointer is a handle to the IPAC address space, identifying the space. This handle has been
returned by the function ipac_map_space ().

Offset

This value specifies the access offset in the specified address space. The offset value is
specified in byte.

Return Value

The function returns the read value.

Example

#i ncl ude <i paclLib. h>

PDEVI CE_EXTENSI ON pExt ensi on;
UCHAR val ue;

/1 Read a byte from a mapped | OSpace offset 0x10
val ue = i pac_read_uchar (&Ext ensi on- >l OSpaceHandl e, 0x10);

CARRIER-SW-65 — Windows WDM Device Driver Page 57 of 68

TEWS <

TECHNOLOGIES

5.4.6 ipac_read_ushort

NAME

ipac_read_ushort() — Read a unsigned short value (16-bit) from the IPAC.

SYNOPSIS
USHORT ipac_read_ushort
(
IN PIPAC_ADRSPACE_HANDLE Handle,
IN ULONG Offset
)
DESCRIPTION

This function reads a 16-bit value from a specified IPAC address space.

Parameters

Handle

This pointer is a handle to the IPAC address space, identifying the space. This handle has been
returned by the function ipac_map_space ().

Offset

This value specifies the access offset in the specified address space. The offset value is
specified in byte.

Return Value

The function returns the read value.

Example

#i ncl ude <i paclLib. h>

PDEVI CE_EXTENSI ON pExt ensi on;
USHORT val ue;

/1 Read a 16-bit value froma mapped | OSpace of fset 0x10
val ue = i pac_read_ushort (&Ext ensi on->| OSpaceHandl e, 0x10);

CARRIER-SW-65 — Windows WDM Device Driver Page 58 of 68

TEWS <

TECHNOLOGIES

5.4.7 ipac_read_ulong

NAME

ipac_read_ulong() — Read a unsigned long value (32-bit) from the IPAC.

SYNOPSIS
ULONG ipac_read_ulong
(
IN PIPAC_ADRSPACE_HANDLE Handle,
IN ULONG Offset
)
DESCRIPTION

This function reads a 32-bit value from a specified IPAC address space.

Parameters

Handle

This pointer is a handle to the IPAC address space, identifying the space. This handle has been
returned by the function ipac_map_space ().

Offset
This value specifies the access offset in the specified address space. The value is specified in

byte.

Return Value

The function returns the read value.

Example

#i ncl ude <i paclLib. h>

PDEVI CE_EXTENSI ON pExt ensi on;
ULONG val ue;

/1 Read a 32-bit value froma mapped | OSpace of fset 0x10
val ue = i pac_read_ul ong(&Ext ensi on- >| OSpaceHandl e, 0x10);

CARRIER-SW-65 — Windows WDM Device Driver Page 59 of 68

TEWS <

TECHNOLOGIES

5.4.8 ipac_write_uchar

NAME

ipac_write_uchar() — Write a character value (8-bit) to the IPAC.

SYNOPSIS

VOID ipac_write_uchar

(
IN PIPAC_ADRSPACE_HANDLE Handle,
IN ULONG Offset,
IN UCHAR Value

)

DESCRIPTION

This function writes an 8-bit value to a specified IPAC address space.

Parameters

Handle

This pointer is a handle to the IPAC address space, identifying the space. This handle has been
returned by the function ipac_map_space ().

Offset

This value specifies the access offset in the specified address space. The offset value is
specified in byte.

Value
This value specifies the value that shall be written to the specified address space.

Example

#i ncl ude <i paclLib. h>

PDEVI CE_EXTENSI ON pExt ensi on;

/1 Wite a byte (0xAA) to the nmapped | OSpace at offset 0x10
i pac_write_uchar(&pExtension->|I OSpaceHandl e,

0x10,
OxAA) ;

CARRIER-SW-65 — Windows WDM Device Driver Page 60 of 68

TEWS <

TECHNOLOGIES

5.4.9 ipac_write_ushort

NAME

ipac_write_ushort() — Write an unsigned short value (16-bit) to the IPAC.

SYNOPSIS

VOID ipac_write_uchar

(
IN PIPAC_ADRSPACE_HANDLE Handle,
IN ULONG Offset,
IN USHORT Value

)

DESCRIPTION

This function writes a 16-bit value to a specified IPAC address space.

Parameters

Handle

This pointer is a handle to the IPAC address space, identifying the space. This handle has been
returned by the function ipac_map_space ().

Offset

This value specifies the access offset in the specified address space. The offset value is
specified in byte.

Value
This value specifies the value that shall be written to the specified address space.

Example

#i ncl ude <i paclLib. h>

PDEVI CE_EXTENSI ON pExt ensi on;

/1 Wite a 16-bit value (OxAABB) to the napped | CSpace at offset 0x10
i pac_write_ushort(&pExtension->|I OSpaceHandl e,

0x10,
OxAABB,) ;

CARRIER-SW-65 — Windows WDM Device Driver Page 61 of 68

TEWS <

TECHNOLOGIES

5.4.10 ipac_write_ulong

NAME

ipac_write_ulong() — Write an unsigned long value (32-bit) to the IPAC.

SYNOPSIS

VOID ipac_write_uchar

(
IN PIPAC_ADRSPACE_HANDLE Handle,
IN ULONG Offset,
IN ULONG Value

)

DESCRIPTION

This function writes a 32-bit value to a specified IPAC address space.

Parameters

Handle

This pointer is a handle to the IPAC address space, identifying the space. This handle has been
returned by the function ipac_map_space ().

Offset

This value specifies the access offset in the specified address space. The offset value is
specified in byte.

Value
This value specifies the value that shall be written to the specified address space.

Example

#i ncl ude <i paclLib. h>

PDEVI CE_EXTENSI ON pExt ensi on;

/1 Wite a 32-bit value (OXxAABBCCDD) to the mapped | OSpace at of fset 0x10
i pac_write_ ulong(&pExtension->lOSpaceHandl e,

0x10,
0xAABBCCDD) ;

CARRIER-SW-65 — Windows WDM Device Driver Page 62 of 68

TEWS <

54.11 ipac_register_isr

NAME

ipac_register_isr() — Register an ISR for a specified Vector.

SYNOPSIS
NTSTATUS ipac_register_isr
(
IN PIPACSLOT_INTERFACE_STANDARD pIPACInterface,
IN ULONG Vector,
IN PKSERVICE_ROUTINE Handler,
IN PVOID Arg,
OUT PVOID *IntHandle
)
DESCRIPTION

This function registers an ISR for a specified interrupt vector. This registered handler function will be
called with the specified argument always when an interrupt with the specified vector occurs.

Parameters

pIPACInterface
This pointer is the handle to the IPAC interface, it identifies the IPAC slot. This handle has been
returned by the function ipac_register_driver().
Vector
This value specifies the interrupt vector the handler function should be connected to. The vector
number must base on the returned pSystemintVector of ipac_configure_driver() function.
Handler

This parameter specifies the entry point to an interrupt handler function. The function will be
called every time an interrupt with the specified interrupt vector occurs. The handler function
has to return a boolean value, wich indicates that the handler has handled the interrupt (TRUE)
or not (FALSE).

Arg
This value specifies an argument that will be supplied to the interrupt handler function. In
general use this will be the device extension.

IntHandle

This parameter returns a handle for the specified interrupt handler. This will be necessary for
identification for interrupt synchronization and for unregistering.

CARRIER-SW-65 — Windows WDM Device Driver Page 63 of 68

TEWS <

TECHNOLOGIES

Return Value

If the function succeeds, the status check NT_SUCCESS(status) will return a TRUE value, otherwise
an error occurred and a windows error/status number will be returned. This value can be used as a
return value of the driver function.

Example

#i ncl ude <i paclLib. h>
BOOLEAN t pl sr (I N PKINTERRUPT Interrupt, I N PVO D pContext);

PDEVI CE_EXTENSI ON pExt ensi on;
NTSTATUS st at us;

/1 Regi ster an interrupt handler for interrupts with the base vector
status = ipac_register_isr(&pExtension->|PAC nterface,

pExt ensi on- >sysl nt Vect or,

(PKSERVI CE_ROUTI NE) t pl sr,

(PVA D) pExt ensi on,

&pExt ensi on->plnterrupt);
i f(!NT_SUCCESS(status))

{
KdPrint(("Interrupt connect failed\n"));
return status;
}
/Il 1SR
BOOLEAN t pl sr
(
I N PKI NTERRUPT I nt errupt,
IN PVO D pCont ext
)
{
PDEVI CE_EXTENSI ON pExt ensi on = (PDEVI CE_EXTENSI ON) pCont ext ;
if (/* Interrupt occurred */)
return TRUE;
el se
return FALSE
}

CARRIER-SW-65 — Windows WDM Device Driver Page 64 of 68

TEWS <

TECHNOLOGIES

5.4.12 ipac_unregister_isr

NAME

ipac_unregister_isr() — Unregister an ISR.

SYNOPSIS

VOID ipac_unregister_isr

(
IN PIPACSLOT_INTERFACE_STANDARD pIPACInterface,
IN PVOID IntHandle

)

DESCRIPTION

This function unregisters an ISR. This function must be called if the device will be disabled.

After this function has been called, no interrupts for the corresponding vector will be handled.
Therefore it is necessary, that the corresponding interrupt will be disabled in the IPAC module.

Parameters

pIPACInterface

This pointer is the handle to the IPAC interface, it identifies the IPAC slot. This handle has been
returned by the function ipac_register_driver().

IntHandle

This parameter specifies the interrupt that shall be unregistered. This handle has been returned
by the function ipac_register_isr().

Example

#i ncl ude <i paclLib. h>

PDEVI CE_EXTENSI ON pExt ensi on;

/1 Unregi ster a previous registered interrupt handl er

i pac_unregister _isr(&pExt ensi on->| PACI nt er f ace,
pExt ensi on->plnterrupt);

CARRIER-SW-65 — Windows WDM Device Driver Page 65 of 68

TEWS <

TECHNOLOGIES
5.4.13 ipac_sync_isr

NAME

ipac_sync_isr() — Call function synchronized with an ISR.

SYNOPSIS
NTSTATUS ipac_sync_isr
(
IN PIPACSLOT_INTERFACE_STANDARD pIPACInterface,
IN PVOID IntHandle,
IN PKSYNCHRONIZE_ROUTINE Routine,
IN PVOID Arg
)
DESCRIPTION

This function calls a function that will be executed uninterruptible by the specified interrupt handler.

Parameters

pIPACInterface
This pointer is the handle to the IPAC interface, it identifies the IPAC slot. This handle has been
returned by the function ipac_register_driver().

IntHandle
This parameter specifies the registered interrupt handler the function should be synchronized to.
This handle has been returned by the function ipac_register_isr().

Handler

This parameter specifies is the entry point to the function that shall be called. The handler
function has to return a boolean value, wich indicates if the function has been executed
successful (TRUE) or not (FALSE).

Arg

This value specifies an argument that will be supplied to the interrupt handler function. In
general use this will be the device extension.

Return Value

The function returns the return value of the called function.

CARRIER-SW-65 — Windows WDM Device Driver Page 66 of 68

TEWS <

TECHNOLOGIES

Example

#i ncl ude <i paclLib. h>
BOOLEAN syncFunct (PDEVI CE_EXTENSI ON pExt ensi on) ;
PDEVI CE_EXTENSI ON pExt ensi on;

/1 Regi ster an interrupt handler for interrupts with the base vector
i f (ipac_sync_isr(&pExtension->IPACI nterface,

pExt ensi on- >pl nt errupt,

(PKSERVI CE_RQUTI NE) syncFunct,

(PVA D) pExt ensi on))

{
/1 Function successf ul
}
el se
{
/1 Function failed
}

/1 Synchronized function
BOOLEAN syncFunct

(
PDEVI CE_EXTENSI ON pExt ensi on
)
{
if (/* Error occurred */)
return FALSE;
el se
return TRUE
}

CARRIER-SW-65 — Windows WDM Device Driver Page 67 of 68

TEWS <

TECHNOLOGIES

5.5 Driver Development Tools

For development of a custom driver the following tools will be necessary or helpful:

Text editor (e.g. Microsoft editor, or any other)
Microsoft driver development kit (DDK)
Microsoft software development kit (SDK)
Windows debugger (WinDbg)

YV VVY

The development tools (DDK, SDK and WinDbg) can be found on the Microsoft Website and they can
be downloaded for free. How the installation of the tools will be done is described in the corresponding
manuals.

The Windows debugger may be very helpful if problems or at least crashes occur during driver
installation and use, otherwise the debugger is not necessary. For more information refer to the
debuggers documents.

After installation of the tools on an environment system the modification of a custom driver can be
done as described above.

5.6 Example Application for Driver Example

There is a simple example for the delivered custom driver example. The example application shows
the usage of driver. There is no detailed documentation how to use the custom IPAC driver. For a
detailed description refer to the description of generic IP driver use in this manual.

CARRIER-SW-65 — Windows WDM Device Driver Page 68 of 68

	Introduction
	Installation
	Software Installation
	General Installation Information
	Windows 2000
	Windows XP
	Confirming Windows 2000/XP Installation

	Configure VME-Carrier Driver
	VMEbus Interface Configuration
	VMEbus Master Window Configuration
	VMEbus IPAC Slot Configuration

	Customer IPAC Carrier Support
	Generic IPAC Driver
	Installation
	Before Installation
	Windows 2000
	Confirming Windows 2000 Installation
	Windows 98 SE / Windows ME
	Confirming Windows 98 SE / Windows ME Installation

	Generic IPAC Device Driver Programming
	IPAC Files and I/O Functions
	Opening an IPAC Device
	Closing an IPAC Device
	IPAC Device I/O Control Functions
	GENIPDRV_CONFIGURE
	GENIPDRV_UNCONFIGURE
	GENIPDRV_READ_UCHAR
	GENIPDRV_READ_USHORT
	GENIPDRV_READ_ULONG
	GENIPDRV_WRITE_UCHAR
	GENIPDRV_WRITE_USHORT
	GENIPDRV_WRITE_ULONG

	Custom Driver Development
	Custom Device Driver Example Overview
	Modify the IPAC Driver Example
	Copy and rename example sources
	INF-file modifications
	RC-file modifications
	Source-file modifications
	Driver source modifications
	DeviceIo.c
	Dispatch.c
	Isr.c
	loTimer.c
	localDrvDef.h
	ipDrvCustom.h

	Building the Driver
	IPAC Carrier Interface Functions
	ipac_register_driver
	ipac_configure_driver
	ipac_map_space
	ipac_unmap_space
	ipac_read_uchar
	ipac_read_ushort
	ipac_read_ulong
	ipac_write_uchar
	ipac_write_ushort
	ipac_write_ulong
	ipac_register_isr
	ipac_unregister_isr
	ipac_sync_isr

	Driver Development Tools
	Example Application for Driver Example

