
The Embedded I/O Company

CARRIER-S
Linux Device D

IPAC Carrie

Version 1.3.x

User Manu
Issue 1.3.3

April 2010

TEWS TECHNOLOGIES G
Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49
e-mail: info@tews.com www.tews
W-82
river

r

al

mbH
lstenbek, Germany
(0) 4101 4058 19
.com

CARRIER-SW-82 - Linux Device Driver Page 2 of 48

CARRIER-SW-82

Linux Device Driver

IPAC Carrier

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2006-2010 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue October 2, 2002

1.1 New driver naming convention January 30, 2003

1.2 VMEbus IPAC carrier support March 5, 2004

1.3 Reject specific Carrier Boards September 23, 2004

1.1.4 Issue format changed November 3, 2004

1.2.0 Kernel 2.6.x support November 30, 2004

1.2.1 Modified install description and file list February 13, 2006

1.3.0 Kernel 2.6.x VMEbus support, /proc interface June 7, 2006

1.3.1 Distribution file list and address of TEWS LLC modified December 21, 2006

1.3.2 Drivers for Tundra Universe and Generic IPAC added April 25, 2008

1.3.3 Address TEWS LLC removed April 13,2010

CARRIER-SW-82 - Linux Device Driver Page 3 of 48

Table of Contents
1 INTRODUCTION... 5
2 INSTALLATION.. 6

2.1 Build and install carrier drivers ...7
2.2 Uninstall the device driver ...7
2.3 Install the device driver in the running kernel ...7
2.4 Remove device driver from the running kernel ...8

3 VMEBUS IPAC CARRIER.. 9
3.1 Universe Device Driver...9
3.2 UniSDK Patch ..9

3.2.1 UniSDK 3.4 - RedHat Linux 7.1..9
3.2.2 UniSDK 4.1 - SUSE 10.0..9

3.3 Configuration...10

4 UNIVERSE DEVICE DRIVER... 11
4.1 Installation ...11

4.1.1 Build and install the device driver ...11
4.1.2 Uninstall the device driver ..11
4.1.3 Install device driver into the running kernel ..11
4.1.4 Remove device driver from the running kernel...12

4.2 User Interface Device Input/Output functions ...13
4.2.1 open() ...13
4.2.2 close() ...15
4.2.3 ioctl() ...16

4.2.3.1 UNIVERSE_IOCTL_ALLOCATE_REGION ...18
4.2.3.2 UNIVERSE_IOCTL_FREE_REGION...20

4.3 Possible problems ..21

5 CUSTOMER IPAC CARRIER SUPPORT... 22
6 GENERIC IPAC DRIVER.. 23

6.1 Installation ...23
6.1.1 Build and install the device driver ...23
6.1.2 Uninstall the device driver ..23
6.1.3 Install device driver into the running kernel ..23
6.1.4 Remove device driver from the running kernel...24

6.2 User Interface Device Input/Output functions ...25
6.2.1 open() ...25
6.2.2 close() ...27
6.2.3 ioctl() ...28

6.2.3.1 GEN_IPAC_IOCTL_READ_UCHAR..30
6.2.3.2 GEN_IPAC_IOCTL_READ_USHORT ...32
6.2.3.3 GEN_IPAC_IOCTL_READ_ULONG..34
6.2.3.4 GEN_IPAC_IOCTL_WRITE_UCHAR ..36
6.2.3.5 GEN_IPAC_IOCTL_WRITE_USHORT..38
6.2.3.6 GEN_IPAC_IOCTL_WRITE_ULONG ..40
6.2.3.7 GEN_IPAC_IOCTL_MOD_INFO..42
6.2.3.8 GEN_IPAC_IOCTL_RESET_SLOT ...44

CARRIER-SW-82 - Linux Device Driver Page 4 of 48

7 APPENDIX.. 45
7.1 Supported IPAC Carrier Boards ..45
7.2 Enumeration of IPAC slots...45
7.3 Exclude specific PCI Devices ..46
7.4 Diagnostic..47

7.4.1 /proc file system entry...47
7.4.2 Debug Statements (printk()) ...48

CARRIER-SW-82 - Linux Device Driver Page 5 of 48

1 Introduction
IndustryPack (IPAC) carrier boards have different implementations of the system to IndustryPack bus
bridge logic, different implementations of interrupt and error handling and so on. Also the different byte
ordering (big-endian versus little-endian) of CPU boards will cause problems on accessing the
IndustryPack I/O and memory spaces.

To simplify the implementation of IPAC device drivers which work with any supported carrier board,
TEWS TECHNOLOGIES has designed a software architecture that hides all of these carrier board
differences under a well defined interface.

Basically the IPAC and carrier device drivers are implemented with a three level module stacking. The
carrier port driver is the lowest level. It handles the implementation details of the IPAC carrier board.
The carrier class driver at the second level includes the management of IPAC slots and modules and
provides a common interface between the IPAC driver and the carrier board driver. At the highest level
resides the IPAC port driver.

Other benefits of this software architecture are the hot-plugging and Plug and Play facility. After
installation of the required device drivers and loading the carrier class driver, this driver will recognize
supported carrier boards by itself. He will start the required carrier port drivers; collect information
about plugged IPAC modules and starts appropriate IPAC port drivers.

Figure 1: Stacked Driver Architecture

TIP600 ...TIP903TIP700

Carrier Class Driver

Default TPCI200 PCI40 ...

IPAC
Port Driver

Carrier
Port Driver

Carrier
Class Driver

CARRIER-SW-82 - Linux Device Driver Page 6 of 48

2 Installation
Usually the software is delivered together with the IPAC port driver.

The directory CARRIER-SW-82 on the distribution media contains the following files and directories:

CARRIER-SW-82-1.3.3.pdf This manual in PDF format
CARRIER-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
unisdk-patch.tar.gz GZIP compressed archive with SBS UniSDK patches
ChangeLog.txt Release history
Release.txt Release information

The GZIP compressed archive CARRIER-SW-82-SRC.tar.gz contains the following files and
directories:

Directory path ‘./ipac_carrier/’:

ipac_carrier.h Common used include file
Makefile Makefile to build the complete carrier driver distribution
class Sub-directory with carrier class driver sources
default Sub-directory with default carrier port driver sources
tews_pci Sub-directory with TEWS PCI carrier port driver sources
sbs_pci Sub-directory with SBS PCI carrier port driver sources
universe Sub-directory with Tundra Universe® driver sources
vme Sub-directory with VME carrier port driver files
generic_ipac Sub-directory with generic IPAC driver sources
include Sub-directory with driver independent library functions

In order to perform an installation, extract all files of the archive CARRIER-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf CARRIER-SW-82-SRC.tar.gz’ will extract the files
into the local directory.

The common used include file ipac_carrier.h must be copied also into the standard Linux include
directory to /lib/modules/<kernel-version>/build/include and /usr/include to be available for installed
IPAC port drivers. This file also provides the list of rejected PCI devices.

CARRIER-SW-82 - Linux Device Driver Page 7 of 48

2.1 Build and install carrier drivers
 Login as root

 Change to the sub-directory ./class in the installation directory

 To create and install the driver in the module directory /lib/modules/<kernel-version>/misc
enter:

make install

 Change to the appropriate sub-directory for your carrier board (e.g. ./tews_pci if the IPAC
modules are plugged on a TEWS TPCI200 carrier board)

 To create and install the driver in the module directory /lib/modules/<kernel-version>/misc
enter:

make install

 Also after the first build we have to execute depmod to create a new dependency description
for loadable kernel modules. This dependency file is later used by modprobe to automatically
load dependent kernel modules.

depmod –aq

2.2 Uninstall the device driver
 Login as root

 Change to the desired carrier driver sub-directory.

 To remove the driver from the module directory /lib/modules/<kernel-version>/misc enter:

make uninstall

 Update kernel module dependency description file

depmod –aq

2.3 Install the device driver in the running kernel
If KMOD support is available (should be standard for most of all Linux distributions) and all module
dependencies are known (depmod) it’s only necessary to load the carrier class driver with:

modprobe carrier_class

The carrier class driver will check the entire PCI bus for known IPAC carrier boards and start the
appropriate carrier port drivers (e.g. carrier_tews_pci). Loaded carrier port drivers will announce their
resources (IPAC slots) to the carrier class driver. The carrier class driver checks each IPAC slot for
plugged modules and starts the appropriate IPAC port drivers (e.g. tip903drv) if necessary.

In this scenario, it’s not necessary to start any other device driver manually except the carrier class
driver.

If this automatic starting mechanism isn’t desired the macro CARRIER_PnP in ./class/carrier_class.c
must be removed (#undef).

CARRIER-SW-82 - Linux Device Driver Page 8 of 48

Because all driver (module) dependencies are known, it’s also possible to start the IPAC port
driver (e.g. tip903drv) or the carrier port driver (e.g. carrier_tews_pci) first. All dependent
drivers will be started automatically by modprobe or the carrier class driver.

The following screen shot shows the installed drivers and their dependencies:

cat /proc/modules
tip903drv 8936 0 (autoclean) (unused)
carrier_tews_pci 5544 1 (autoclean)
carrier_class 10692 3 [tip903drv carrier_tews_pci]

If KMOD support isn’t available you have to build either a new kernel with KMOD installed or you have
to install the IPAC carrier kernel modules manually in the correct order.

Assuming a TIP903 is plugged on a TPCI200 carrier board, you have to install necessary driver in the
following order:

modprobe carrier_class

modprobe carrier_tews_pci

modprobe tip903drv

The carrier class driver must be always the first. The order of all other drivers doesn’t matter.

2.4 Remove device driver from the running kernel
Removing of IPAC port, carrier class and carrier port drivers must be done in the following order:

 IPAC port driver (e.g. tip816drv)

modprobe tip816drv -r

 Carrier port driver (e.g. carrier_tews_pci)

modprobe carrier_tews_pci -r

 Carrier class driver (carrier_class)

modprobe carrier_class -r

Be sure that the driver isn’t opened by any application program. If opened you will got the
response “tip816drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe <module> –r again.

CARRIER-SW-82 - Linux Device Driver Page 9 of 48

3 VMEbus IPAC Carrier
The VMEbus IPAC carrier driver supports VMEbus access either via the provided Tundra Universe®

device driver or via a modified SBS UniSDK driver for Intel x86 platforms.

3.1 Universe Device Driver
The Universe device driver provides a simple kernel interface for VMEbus access, used by the
VMEbus IPAC carrier driver. Additionally, a simple user interface is provided to map VMEbus address
regions into an user application for direct access. See also chapter 4 for further information.

3.2 UniSDK Patch
The symbiosis with the SBS UniSDK driver allows concurrent access to the VMEbus from UniSDK
based applications and IPAC carrier based drivers.

Due to the fact that the UniSDK driver is distributed as binary, the already installed driver must be
replaced by our modified UniSDK driver. The GZIP compressed tar archive unisdk-patch.tar.gz on the
distribution media contains driver patches for UniSDK V3.4 (RedHat Linux 7.1) and UniSDK V4.1
(SUSE 10.0). For installation extract the tar archive to a temporary folder and copy the driver files to
the appropriate target directory and restart the UniSDK driver or the entire system to make the
changes current.

3.2.1 UniSDK 3.4 - RedHat Linux 7.1
Search for the file vmedrv.o in the lib/modules directory path (usually /lib/modules/2.4.18-/misc) and
replace this file with ./UniSDK/3.4/vmedrv.o from the tar archive.

3.2.2 UniSDK 4.1 - SUSE 10.0
Search for the file sbs-unisdk.ko in the /lib/modules directory path (usually /lib/modules/2.6.13-15-
default/extra/) and replace this file with ./UniSDK/4.1/sbs-unisdk.ko from the tar archive.

CARRIER-SW-82 - Linux Device Driver Page 10 of 48

3.3 Configuration
After loading either the Universe driver or the new UniSDK VMEbus driver into the kernel, the VMEbus
IPAC carrier driver must be configured. Due to the fact that the VMEbus isn’t a Plug&Play bus,
VMEbus resources (memory, interrupts, etc.) must be configured manually. The header file resource.h
in the ”/ipac_carrier/vme” directory contains two tables for setting up required VMEbus memory
windows (image_desc[]) and for declaring used IPAC carrier slots (slot_desc[]). All table entries must
correspond to the real VMEbus carrier setup done by rotary switches or simple jumper configuration.

The default configuration in resource.h, setup two VMEbus windows (A16/D16 and A24/D16).

{ A16D16, 0x00000000, 0x00010000, VME_A16, VME_D16, 0, -1 },
{ A24D16, 0x00D00000, 0x00100000, VME_A24, VME_D16, 0, -1 },
The VMEbus window setup and the following IPAC slot setup are valid for the factory (default) setup of
the TEWS TECHNOLOGIES VMEbus carrier TVME200.

{ 0, 0x00006080, 0x80, A16D16, 0x00006000, 0x80, A16D16, 0x00D00000,
0x040000, A24D16, 64, 64, 1, 2 },
{ 1, 0x00006180, 0x80, A16D16, 0x00006100, 0x80, A16D16, 0x00D40000,
0x040000, A24D16, 68, 68, 3, 4 },
{ 2, 0x00006280, 0x80, A16D16, 0x00006200, 0x80, A16D16, 0x00D80000,
0x040000, A24D16, 72, 72, 5, 6 },
{ 3, 0x00006380, 0x80, A16D16, 0x00006300, 0x80, A16D16, 0x00DC0000,
0x040000, A24D16, 76, 76, 7, 0 },
If the default configuration isn’t suitable the existing entries can be modified as required. New entries
can be added at the end of the list. Please refer to the comments in resource.h for detailed description
of each parameter.

To make the new configuration current please rebuild the driver by entering make install. If the vme
driver is already installed remove the driver from the running kernel first (see also 2.4) and install the
new vme driver (see also 2.3).

CARRIER-SW-82 - Linux Device Driver Page 11 of 48

4 Universe Device Driver
The Universe Device Driver is a kernel mode driver which allows access to the Tundra Universe®
VMEbus controller chip. The driver provides a kernel mode interface used by the Carrier driver, and a
simple user application interface.

4.1 Installation

4.1.1 Build and install the device driver
 Login as root

 Change to the target sub-directory universe

 To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

 To update the device driver’s module dependencies, enter:

depmod -aq

4.1.2 Uninstall the device driver
 Login as root

 Change to the target sub-directory universe

 To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

4.1.3 Install device driver into the running kernel
 To load the device driver into the running kernel, login as root and execute the following

commands:

modprobe universedrv

 After the first build or if you are using dynamic major device allocation it is necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a dynamic device file system (devfs or sysfs with udev) then you have to
skip running the makenode script. Instead of creating device nodes from the script the driver
itself takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for the found Universe controller. This device
can be accessed with device node /dev/universe.

CARRIER-SW-82 - Linux Device Driver Page 12 of 48

4.1.4 Remove device driver from the running kernel
 To remove the device driver from the running kernel login as root and execute the following

command:

modprobe -r universedrv

If your kernel has enabled a dynamic device file system like devfs or sysfs (udev), the /dev/universe
node will be automatically removed from your file system after this.

Be sure that the driver is not opened by any application program. If opened you will get the
response ``universedrv: Device or resource busy`` and the driver will still remain in the system
until you close all opened files and execute modprobe -r again.

CARRIER-SW-82 - Linux Device Driver Page 13 of 48

4.2 User Interface Device Input/Output functions
This chapter describes the user interface to the device driver I/O system.

4.2.1 open()

NAME

open() - open a file descriptor

SYNOPSIS

#include <fcntl.h>

int open
(

const char *filename,
int flags

)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise
OR of the appropriate parameters (using the | operator in C).

See also the GNU C Library documentation for more information about the open function and open
flags.

EXAMPLE

int fd;

fd = open(“/dev/universe”, O_RDWR);

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

CARRIER-SW-82 - Linux Device Driver Page 14 of 48

ERRORS

ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

CARRIER-SW-82 - Linux Device Driver Page 15 of 48

4.2.2 close()

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close
(

int filedes
)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) != 0)
/* handle close error conditions */

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

CARRIER-SW-82 - Linux Device Driver Page 16 of 48

4.2.3 ioctl()

NAME

ioctl() – device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl
(

int filedes,
int request
[, void *argp]

)

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in universe.h :

Symbol Meaning

UNIVERSE_IOCTL_ALLOCATE_REGION Allocate a VME region

UNIVERSE_IOCTL_FREE_REGION Free a previously allocated VME region

See behind for more detailed information on each control code.

To use these Universe specific control codes the header file universe.h must be included in the
application.

RETURNS

On success, zero is returned. In the case of an error, a value of –1 is returned. The global variable
errno contains the detailed error code.

CARRIER-SW-82 - Linux Device Driver Page 17 of 48

ERRORS

EINVAL Invalid argument. This error code is returned if the requested ioctl function is
unknown. Please check the argument request

EFAULT Parameter data can not be copied to the drivers context

Other function dependent error codes will be described for each ioctl code separately. Note, the
Universe driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

CARRIER-SW-82 - Linux Device Driver Page 18 of 48

4.2.3.1 UNIVERSE_IOCTL_ALLOCATE_REGION

NAME

UNIVERSE_IOCTL_ALLOCATE_REGION – Allocate a VMEbus region

DESCRIPTION

This I/O control function allocates a VMEbus region, which can be mapped into the user application
afterwards using mmap(). One filehandle can hold exactly one VMEbus region. If there is already a
VME window configured which matches the specified requirements, the Universe VME Window will be
reused. If this filehandle is already assigned to a VMEbus region, this former region will be freed
automatically, i.e. if this region remains unused, it will be unmapped. To open multiple VMEbus
regions, use multiple filehandles.

The function specific control parameter argp is a pointer to a UNIVERSE_VME_WINDOW structure.

typedef struct
{

unsigned long addr;
unsigned long size;
unsigned long offs;
int space;
int width;
int windownr;

} UNIVERSE_VME_WINDOW;

addr

This parameter describes the physical VMEbus address.

size

This parameter describes the size in bytes for this VMEbus area.

offs

This parameter returns the memory offset which was calculated by the driver, due to the
required VMEbus alignment. This offset must be added to the virtual address returned by
mmap() later on.

space

This parameter specifies the VMEbus address space. Valid values are:

Value Description

UNIVERSE_A16 VMEbus A16 address space

UNIVERSE_A24 VMEbus A24 address space

UNIVERSE_A32 VMEbus A32 address space

CARRIER-SW-82 - Linux Device Driver Page 19 of 48

width

This parameter specifies the data width of the VMEbus address space. Valid values are:

Value Description

UNIVERSE_D8 VMEbus D8 address space

UNIVERSE_D16 VMEbus D16 address space

UNIVERSE_D24 VMEbus D24 address space

UNIVERSE_D32 VMEbus D32 address space

UNIVERSE_D64 VMEbus D64 address space

EXAMPLE

#include “universe.h”

int fd;
UNIVERSE_VME_WINDOW VmeWindow;
int retval;

/*---
Configure and allocate an A16/D16 VMEbus Region
---*/

VmeWindow.addr = 0x6000;
VmeWindow.size = 0x1000;
VmeWindow.offs = 0x6000;
VmeWindow.space = UNIVERSE_A16;
VmeWindow.width = UNIVERSE_D16;

retval = ioctl(fd, UNIVERSE_IOCTL_ALLOCATE_REGION, (int)&VmeWindow);
if (retval >= 0)
{

/* function succeeded */
}
else
{

/* handle the error */
}

ERROR CODES

Error code Description

EINVAL Invalid parameter specified. At least one parameter inside
the structure is invalid.

ENOMEM Not enough resources to allocate the area.

CARRIER-SW-82 - Linux Device Driver Page 20 of 48

4.2.3.2 UNIVERSE_IOCTL_FREE_REGION

NAME

UNIVERSE_IOCTL_FREE_REGION – Free a previously allocated VMEbus region

DESCRIPTION

This I/O control function frees a previously allocated VMEbus region. If this VMEbus region remains
unused, it will be unmapped from the system. The function specific control parameter is not required
and can be omitted.

EXAMPLE

#include “universe.h”

int fd;
int retval;

/*---
Free a previously allocated VMEbus Region
---*/

retval = ioctl(fd, UNIVERSE_IOCTL_FREE_REGION);
if (retval >= 0)
{

/* function succeeded */
}
else
{

/* handle the error */
}

ERROR CODES

Error code Description

EINVAL There is no VMEbus region assigned to this specific
filehandle.

CARRIER-SW-82 - Linux Device Driver Page 21 of 48

4.3 Possible problems
If the Universe controller chip is located on a higher PCI bus than 0, there might be some problems
regarding resource allocation. The VMEbus areas are accessed over the PCI bus, and must be
mapped to specific PCI memory areas dynamically during runtime. PCI memory resources which are
unused during system startup are often assigned to PCI bus 0. This may result in problems, if the
Universe controller is located on e.g. PCI bus 1.

Each PCI-to-PCI bridge has assigned a default amount of PCI memory, which may not be enough to
map the required VMEbus resources into the PCI area.

This is a general problem, which cannot be solved by the CARRIER-SW-82 device driver. This
problem is specific to the PCI setup of the system, which is mostly done by the system BIOS, or the
BSP. Please contact the corresponding vendor for further help. A possible solution to this problem is
to setup the affected PCI bridges differently, and claim enough memory by default.

CARRIER-SW-82 - Linux Device Driver Page 22 of 48

5 Customer IPAC Carrier Support
If your IPAC carrier isn’t supported by the carrier port drivers on the distribution media and your carrier
board is a PCI bus carrier please contact TEWS TECHNOLOGIES.

Usually we will implement the carrier port driver without any charge within a few days.

If your carrier board doesn’t require any initialization or special interrupt or error handling you can
create IPAC slot entries in the default carrier port driver. The default carrier port driver will be loaded
automatically by the carrier class driver.

To add IPAC slots you must change to the sub-directory /default in the installation directory. Open the
source file carrier_default.c in an appropriate editor and add a new entry in the array slot_info[] after
the comment /* Please add slot entries here! */.

The creation of a new slot entry is very easy. Please copy and paste an entry from the example and
change address and interrupt parameter as necessary. Be sure using always physical addresses! All
fields are described in detail in the structure definition above.

You must create a slot entry for each slot. If you have a carrier board with four slots you have to create
four slot entries.

After modification you have to build and install the default driver like any other carrier port driver (see
also 2.1).

CARRIER-SW-82 - Linux Device Driver Page 23 of 48

6 Generic IPAC Driver
The Generic IPAC Device Driver is a generic driver for IPAC module access. It can be used as a basis
to develop custom device drivers for specific IPAC modules. It demonstrates the hardware access
using the Carrier Driver Interface, ioctl() access functions, as well as the usage of interrupts. Please
refer to the corresponding driver source files for further information.

6.1 Installation

6.1.1 Build and install the device driver
 Login as root

 Change to the target sub-directory generic_ipac

 To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

 To update the device driver’s module dependencies, enter:

depmod -aq

6.1.2 Uninstall the device driver
 Login as root

 Change to the target sub-directory universe

 To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

6.1.3 Install device driver into the running kernel
 To load the device driver into the running kernel, login as root and execute the following

commands:

modprobe gen_ipacdrv

 After the first build or if you are using dynamic major device allocation it is necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a dynamic device file system (devfs or sysfs with udev) then you have to
skip running the makenode script. Instead of creating device nodes from the script the driver
itself takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each found supported IPAC module. The
first device can be accessed with device node /dev/gen_ipac_0, the second with /dev/gen_ipac_1 and
so on.

CARRIER-SW-82 - Linux Device Driver Page 24 of 48

6.1.4 Remove device driver from the running kernel
 To remove the device driver from the running kernel login as root and execute the following

command:

modprobe -r gen_ipacdrv

If your kernel has enabled a dynamic device file system like devfs or sysfs (udev), the device nodes
will be automatically removed from your file system after this.

Be sure that the driver is not opened by any application program. If opened you will get the
response ``gen_ipacdrv: Device or resource busy`` and the driver will still remain in the system
until you close all opened files and execute modprobe -r again.

CARRIER-SW-82 - Linux Device Driver Page 25 of 48

6.2 User Interface Device Input/Output functions
This chapter describes the user interface to the device driver I/O system.

6.2.1 open()

NAME

open() - open a file descriptor

SYNOPSIS

#include <fcntl.h>

int open
(

const char *filename,
int flags

)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise
OR of the appropriate parameters (using the | operator in C).

See also the GNU C Library documentation for more information about the open function and open
flags.

EXAMPLE

int fd;

fd = open(“/dev/gen_ipac_0”, O_RDWR);

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

CARRIER-SW-82 - Linux Device Driver Page 26 of 48

ERRORS

ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

CARRIER-SW-82 - Linux Device Driver Page 27 of 48

6.2.2 close()

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close
(

int filedes
)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) != 0)
/* handle close error conditions */

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

CARRIER-SW-82 - Linux Device Driver Page 28 of 48

6.2.3 ioctl()

NAME

ioctl() – device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl
(

int filedes,
int request
[, void *argp]

)

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in gen_ipac.h :

Symbol Meaning

GEN_IPAC_IOCTL_READ_UCHAR Read byte (8bit) values from the IPAC module

GEN_IPAC_IOCTL_READ_USHORT Read word (16bit) values from the IPAC module

GEN_IPAC_IOCTL_READ_ULONG Read dword (32bit) values from the IPAC module

GEN_IPAC_IOCTL_WRITE_UCHAR Write byte (8bit) values to the IPAC module

GEN_IPAC_IOCTL_WRITE_USHORT Write word (16bit) values to the IPAC module

GEN_IPAC_IOCTL_WRITE_ULONG Write dword (32bit) values to the IPAC module

GEN_IPAC_IOCTL_MOD_INFO Return IPAC module information

GEN_IPAC_IOCTL_RESET_SLOT Perform IPAC reset (if supported by carrier board)

See behind for more detailed information on each control code.

To use these Universe specific control codes the header file gen_ipac.h must be included in
the application.

CARRIER-SW-82 - Linux Device Driver Page 29 of 48

RETURNS

On success, zero is returned. In the case of an error, a value of –1 is returned. The global variable
errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the requested ioctl function is
unknown. Please check the argument request

EFAULT Parameter data can not be copied to the drivers context

Other function dependent error codes will be described for each ioctl code separately. Note, the
Universe driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

CARRIER-SW-82 - Linux Device Driver Page 30 of 48

6.2.3.1 GEN_IPAC_IOCTL_READ_UCHAR

NAME

GEN_IPAC_IOCTL_READ_UCHAR – Read byte (8bit) values from the IPAC module

DESCRIPTION

This I/O control function reads a number of byte (8bit) values from a specified IPAC area by using 8bit
accesses. The Carrier Driver interface is used for hardware access.

The function specific control parameter argp is a pointer to a TGEN_IPAC_RWBUFFER structure.

typedef struct
{

int NumItems;
unsigned char ipac_space;
unsigned long offset;
union {

unsigned char ucBuf[1];
unsigned short usBuf[1];
unsigned long ulBuf[1];

} u;
} TGEN_IPAC_RWBUFFER;

NumItems

This parameter describes the number of items to read.

ipac_space

This parameter describes the IPAC space type. Possible values are:

Value Description

TGEN_IPAC_IO_SPACE IPAC I/O Space

TGEN_IPAC_ID_SPACE IPAC ID Space

TGEN_IPAC_MEM_SPACE IPAC MEM Space

offset

This parameter specifies the starting offset to read from. This value is a byte offset relative to
the beginning of the specified IPAC space.

u

This union contains the dynamically expandable data section. Use the union member ucBuf to
treat the data as byte values.

CARRIER-SW-82 - Linux Device Driver Page 31 of 48

EXAMPLE

#include “gen_ipac.h”

int fd;
int retval, i;
TGEN_IPAC_RWBUFFER *pRWbuf;

/*---
Read 10 Bytes from IPAC ID space (IDPROM)
---*/

pRWbuf = (TGEN_IPAC_RWBUFFER*)malloc(sizeof(TGEN_IPAC_RWBUFFER) +
10*sizeof(unsigned char));

pRWbuf->NumItems = 10;
pRWbuf->ipac_space = TGEN_IPAC_ID_SPACE;
pRWbuf->offset = 0;

retval = ioctl(fd, GEN_IPAC_IOCTL_READ_UCHAR, (int)pRWbuf);
if (retval >= 0)
{

/* function succeeded */
for (i=0; i<10; i++)
{

printf(“%02X “, pRWbuf->u.ucBuf[i]);
}

}
else
{

/* handle the error */
}
free(pRWbuf);

ERROR CODES

Error code Description

EFAULT Error copying data between kernel and user space. Check
parameter pointer.

EINVAL Invalid parameter specified. At least one parameter inside
the structure is invalid.

ENOMEM Not enough resources to allocate internal memory.

CARRIER-SW-82 - Linux Device Driver Page 32 of 48

6.2.3.2 GEN_IPAC_IOCTL_READ_USHORT

NAME

GEN_IPAC_IOCTL_READ_USHORT – Read word (16bit) values from the IPAC module

DESCRIPTION

This I/O control function reads a number of word (16bit) values from a specified IPAC area by using
16bit accesses. The Carrier Driver interface is used for hardware access.

The function specific control parameter argp is a pointer to a TGEN_IPAC_RWBUFFER structure.

typedef struct
{

int NumItems;
unsigned char ipac_space;
unsigned long offset;
union {

unsigned char ucBuf[1];
unsigned short usBuf[1];
unsigned long ulBuf[1];

} u;
} TGEN_IPAC_RWBUFFER;

NumItems

This parameter describes the number of items to read.

ipac_space

This parameter describes the IPAC space type. Possible values are:

Value Description

TGEN_IPAC_IO_SPACE IPAC I/O Space

TGEN_IPAC_ID_SPACE IPAC ID Space

TGEN_IPAC_MEM_SPACE IPAC MEM Space

offset

This parameter specifies the starting offset to read from. This value is a byte offset relative to
the beginning of the specified IPAC space.

u

This union contains the dynamically expandable data section. Use the union member usBuf to
treat the data as word values.

CARRIER-SW-82 - Linux Device Driver Page 33 of 48

EXAMPLE

#include “gen_ipac.h”

int fd;
int retval, i;
TGEN_IPAC_RWBUFFER *pRWbuf;

/*---
Read 10 Words from IPAC IO space
---*/

pRWbuf = (TGEN_IPAC_RWBUFFER*)malloc(sizeof(TGEN_IPAC_RWBUFFER) +
10*sizeof(unsigned short));

pRWbuf->NumItems = 10;
pRWbuf->ipac_space = TGEN_IPAC_IO_SPACE;
pRWbuf->offset = 0;

retval = ioctl(fd, GEN_IPAC_IOCTL_READ_USHORT, (int)pRWbuf);
if (retval >= 0)
{

/* function succeeded */
for (i=0; i<10; i++)
{

printf(“%04X “, pRWbuf->u.usBuf[i]);
}

}
else
{

/* handle the error */
}
free(pRWbuf);

ERROR CODES

Error code Description

EFAULT Error copying data between kernel and user space. Check
parameter pointer.

EINVAL Invalid parameter specified. At least one parameter inside
the structure is invalid.

ENOMEM Not enough resources to allocate internal memory.

CARRIER-SW-82 - Linux Device Driver Page 34 of 48

6.2.3.3 GEN_IPAC_IOCTL_READ_ULONG

NAME

GEN_IPAC_IOCTL_READ_ULONG – Read dword (32bit) values from the IPAC module

DESCRIPTION

This I/O control function reads a number of dword (32bit) values from a specified IPAC area by using
32bit accesses. The Carrier Driver interface is used for hardware access.

The function specific control parameter argp is a pointer to a TGEN_IPAC_RWBUFFER structure.

typedef struct
{

int NumItems;
unsigned char ipac_space;
unsigned long offset;
union {

unsigned char ucBuf[1];
unsigned short usBuf[1];
unsigned long ulBuf[1];

} u;
} TGEN_IPAC_RWBUFFER;

NumItems

This parameter describes the number of items to read.

ipac_space

This parameter describes the IPAC space type. Possible values are:

Value Description

TGEN_IPAC_IO_SPACE IPAC I/O Space

TGEN_IPAC_ID_SPACE IPAC ID Space

TGEN_IPAC_MEM_SPACE IPAC MEM Space

offset

This parameter specifies the starting offset to read from. This value is a byte offset relative to
the beginning of the specified IPAC space.

u

This union contains the dynamically expandable data section. Use the union member ulBuf to
treat the data as dword values.

CARRIER-SW-82 - Linux Device Driver Page 35 of 48

EXAMPLE

#include “gen_ipac.h”

int fd;
int retval, i;
TGEN_IPAC_RWBUFFER *pRWbuf;

/*---
Read 10 DWords from IPAC MEM space
---*/

pRWbuf = (TGEN_IPAC_RWBUFFER*)malloc(sizeof(TGEN_IPAC_RWBUFFER) +
10*sizeof(unsigned long));

pRWbuf->NumItems = 10;
pRWbuf->ipac_space = TGEN_IPAC_MEM_SPACE;
pRWbuf->offset = 0;

retval = ioctl(fd, GEN_IPAC_IOCTL_READ_ULONG, (int)pRWbuf);
if (retval >= 0)
{

/* function succeeded */
for (i=0; i<10; i++)
{

printf(“%08lX “, pRWbuf->u.ulBuf[i]);
}

}
else
{

/* handle the error */
}
free(pRWbuf);

ERROR CODES

Error code Description

EFAULT Error copying data between kernel and user space. Check
parameter pointer.

EINVAL Invalid parameter specified. At least one parameter inside
the structure is invalid.

ENOMEM Not enough resources to allocate internal memory.

CARRIER-SW-82 - Linux Device Driver Page 36 of 48

6.2.3.4 GEN_IPAC_IOCTL_WRITE_UCHAR

NAME

GEN_IPAC_IOCTL_WRITE_UCHAR – Write byte (8bit) values to the IPAC module

DESCRIPTION

This I/O control function writes a number of byte (8bit) values to a specified IPAC area by using 8bit
accesses. The Carrier Driver interface is used for hardware access.

The function specific control parameter argp is a pointer to a TGEN_IPAC_RWBUFFER structure.

typedef struct
{

int NumItems;
unsigned char ipac_space;
unsigned long offset;
union {

unsigned char ucBuf[1];
unsigned short usBuf[1];
unsigned long ulBuf[1];

} u;
} TGEN_IPAC_RWBUFFER;

NumItems

This parameter describes the number of items to write.

ipac_space

This parameter describes the IPAC space type. Possible values are:

Value Description

TGEN_IPAC_IO_SPACE IPAC I/O Space

TGEN_IPAC_ID_SPACE IPAC ID Space

TGEN_IPAC_MEM_SPACE IPAC MEM Space

offset

This parameter specifies the starting offset to write to. This value is a byte offset relative to the
beginning of the specified IPAC space.

u

This union contains the dynamically expandable data section. Use the union member ucBuf to
treat the data as byte values.

CARRIER-SW-82 - Linux Device Driver Page 37 of 48

EXAMPLE

#include “gen_ipac.h”

int fd;
int retval, i;
TGEN_IPAC_RWBUFFER *pRWbuf;

/*---
Write 2 Bytes to IPAC IO space, starting at offset 2
---*/

pRWbuf = (TGEN_IPAC_RWBUFFER*)malloc(sizeof(TGEN_IPAC_RWBUFFER) +
2*sizeof(unsigned char));

pRWbuf->NumItems = 2;
pRWbuf->ipac_space = TGEN_IPAC_IO_SPACE;
pRWbuf->offset = 2;
pRWbuf->u.ucBuf[0] = 0x42;
pRWbuf->u.ucBuf[1] = 0x43;

retval = ioctl(fd, GEN_IPAC_IOCTL_WRITE_UCHAR, (int)pRWbuf);
if (retval >= 0)
{

/* function succeeded */
}
else
{

/* handle the error */
}
free(pRWbuf);

ERROR CODES

Error code Description

EFAULT Error copying data between kernel and user space. Check
parameter pointer.

EINVAL Invalid parameter specified. At least one parameter inside
the structure is invalid.

ENOMEM Not enough resources to allocate internal memory.

CARRIER-SW-82 - Linux Device Driver Page 38 of 48

6.2.3.5 GEN_IPAC_IOCTL_WRITE_USHORT

NAME

GEN_IPAC_IOCTL_WRITE_USHORT – Write word (16bit) values to the IPAC module

DESCRIPTION

This I/O control function writes a number of word (16bit) values to a specified IPAC area by using 16bit
accesses. The Carrier Driver interface is used for hardware access.

The function specific control parameter argp is a pointer to a TGEN_IPAC_RWBUFFER structure.

typedef struct
{

int NumItems;
unsigned char ipac_space;
unsigned long offset;
union {

unsigned char ucBuf[1];
unsigned short usBuf[1];
unsigned long ulBuf[1];

} u;
} TGEN_IPAC_RWBUFFER;

NumItems

This parameter describes the number of items to write.

ipac_space

This parameter describes the IPAC space type. Possible values are:

Value Description

TGEN_IPAC_IO_SPACE IPAC I/O Space

TGEN_IPAC_ID_SPACE IPAC ID Space

TGEN_IPAC_MEM_SPACE IPAC MEM Space

offset

This parameter specifies the starting offset to write to. This value is a byte offset relative to the
beginning of the specified IPAC space.

u

This union contains the dynamically expandable data section. Use the union member usBuf to
treat the data as word values.

CARRIER-SW-82 - Linux Device Driver Page 39 of 48

EXAMPLE

#include “gen_ipac.h”

int fd;
int retval, i;
TGEN_IPAC_RWBUFFER *pRWbuf;

/*---
Write 2 Words to IPAC IO space, starting at offset 0
---*/

pRWbuf = (TGEN_IPAC_RWBUFFER*)malloc(sizeof(TGEN_IPAC_RWBUFFER) +
2*sizeof(unsigned short));

pRWbuf->NumItems = 2;
pRWbuf->ipac_space = TGEN_IPAC_IO_SPACE;
pRWbuf->offset = 0;
pRWbuf->u.usBuf[0] = 0x4243;
pRWbuf->u.usBuf[1] = 0x4445;

retval = ioctl(fd, GEN_IPAC_IOCTL_WRITE_USHORT, (int)pRWbuf);
if (retval >= 0)
{

/* function succeeded */
}
else
{

/* handle the error */
}
free(pRWbuf);

ERROR CODES

Error code Description

EFAULT Error copying data between kernel and user space. Check
parameter pointer.

EINVAL Invalid parameter specified. At least one parameter inside
the structure is invalid.

ENOMEM Not enough resources to allocate internal memory.

CARRIER-SW-82 - Linux Device Driver Page 40 of 48

6.2.3.6 GEN_IPAC_IOCTL_WRITE_ULONG

NAME

GEN_IPAC_IOCTL_WRITE_ULONG – Write dword (32bit) values to the IPAC module

DESCRIPTION

This I/O control function writes a number of dword (32bit) values to a specified IPAC area by using
16bit accesses. The Carrier Driver interface is used for hardware access.

The function specific control parameter argp is a pointer to a TGEN_IPAC_RWBUFFER structure.

typedef struct
{

int NumItems;
unsigned char ipac_space;
unsigned long offset;
union {

unsigned char ucBuf[1];
unsigned short usBuf[1];
unsigned long ulBuf[1];

} u;
} TGEN_IPAC_RWBUFFER;

NumItems

This parameter describes the number of items to write.

ipac_space

This parameter describes the IPAC space type. Possible values are:

Value Description

TGEN_IPAC_IO_SPACE IPAC I/O Space

TGEN_IPAC_ID_SPACE IPAC ID Space

TGEN_IPAC_MEM_SPACE IPAC MEM Space

offset

This parameter specifies the starting offset to write to. This value is a byte offset relative to the
beginning of the specified IPAC space.

u

This union contains the dynamically expandable data section. Use the union member ulBuf to
treat the data as dword values.

CARRIER-SW-82 - Linux Device Driver Page 41 of 48

EXAMPLE

#include “gen_ipac.h”

int fd;
int retval, i;
TGEN_IPAC_RWBUFFER *pRWbuf;

/*---
Write 2 DWords to IPAC IO space, starting at offset 0
---*/

pRWbuf = (TGEN_IPAC_RWBUFFER*)malloc(sizeof(TGEN_IPAC_RWBUFFER) +
2*sizeof(unsigned long));

pRWbuf->NumItems = 2;
pRWbuf->ipac_space = TGEN_IPAC_IO_SPACE;
pRWbuf->offset = 0;
pRWbuf->u.ulBuf[0] = 0x42434445;
pRWbuf->u.ulBuf[1] = 0x01020304;

retval = ioctl(fd, GEN_IPAC_IOCTL_WRITE_ULONG, (int)pRWbuf);
if (retval >= 0)
{

/* function succeeded */
}
else
{

/* handle the error */
}
free(pRWbuf);

ERROR CODES

Error code Description

EFAULT Error copying data between kernel and user space. Check
parameter pointer.

EINVAL Invalid parameter specified. At least one parameter inside
the structure is invalid.

ENOMEM Not enough resources to allocate internal memory.

CARRIER-SW-82 - Linux Device Driver Page 42 of 48

6.2.3.7 GEN_IPAC_IOCTL_MOD_INFO

NAME

GEN_IPAC_IOCTL_MOD_INFO – Return IPAC module information

DESCRIPTION

This I/O control function returns specific information about the IPAC module.

The function specific control parameter argp is a pointer to a TGEN_IPAC_INFO structure.

typedef struct
{

int ManufacturerID;
int ModelNumber;
int SlotIndex;

} TGEN_IPAC_INFO;

ManufacturerID

This parameter describes the Manufacturer ID of the IPAC module (0xB3 for
TEWS TECHNOLOGIES).

ModelNumber

This parameter describes the Model Number of the IPAC module (0x36 for TEWS’ TIP675)

SlotIndex

This parameter returns a zero-based slot index, where 0=A, 1=B etc.

CARRIER-SW-82 - Linux Device Driver Page 43 of 48

EXAMPLE

#include “gen_ipac.h”

int fd;
int retval;
TGEN_IPAC_INFO ModuleInfo;

/*---
Read IPAC Module Information
---*/

retval = ioctl(fd, GEN_IPAC_IOCTL_MOD_INFO, (int)&ModuleInfo);
if (retval >= 0)
{

/* function succeeded */
printf(“Manufacturer: %02X\n”, ModuleInfo.ManufacturerID);
printf(“Model Number: %02X\n”, ModuleInfo.ModelNumber);
printf(“Slot Index : %02X\n”, ModuleInfo.SlotIndex);

}
else
{

/* handle the error */
}

ERROR CODES

Error code Description

EFAULT Error copying data between kernel and user space. Check
parameter pointer.

CARRIER-SW-82 - Linux Device Driver Page 44 of 48

6.2.3.8 GEN_IPAC_IOCTL_RESET_SLOT

NAME

GEN_IPAC_IOCTL_RESET_SLOT – Perform IPAC reset (if supported)

DESCRIPTION

This I/O control function performs a reset of the specific IPAC slot, if this feature is supported by the
used carrier board.

The function specific control parameter argp is not used and can be omitted.

EXAMPLE

#include “gen_ipac.h”

int fd;
int retval;

/*---
Reset IPAC slot
---*/

retval = ioctl(fd, GEN_IPAC_IOCTL_RESET_SLOT);
if (retval >= 0)
{

/* function succeeded */
}
else
{

/* handle the error */
}

ERROR CODES

Error code Description

EPERM Function is not supported by the used carrier board.

CARRIER-SW-82 - Linux Device Driver Page 45 of 48

7 Appendix

7.1 Supported IPAC Carrier Boards
The following TEWS TECHNOLOGIES and SBS IPAC carrier boards are supported:

Driver Carrier Board Descrition

TPCI100 PCI carrier for 2 IndustryPack modules

TPCI200 PCI carrier for 4 IndustryPack modules

TCP201 Compact PCI carrier for 4 IndustryPack modules

TCP211 Compact PCI carrier for 2 IndustryPack modules

TCP212 Compact PCI carrier for 2 IndustryPack modules

TCP213 Compact PCI carrier for 2 IndustryPack modules

TCP220 Compact PCI carrier for 4 IndustryPack modules

TAMC100 AMC Carrier for 1 IndustryPack® module

TVME230 PCI Expansion Card for 4 IndustryPack Modules

carrier_tews_pci

TVME8240 Local IP slots of the TVME8240 CPU board

PCI40 PCI carrier for 4 IndustryPack modules

cPCI100 Compact PCI carrier for 2 IndustryPack modulescarrier_sbs_pci

cPCI200 Compact PCI carrier for 4 IndustryPack modules

TVME200 VMEbus carrier for 4 IndustryPack modules

TVME201 VMEbus carrier for 4 IndustryPack modules

TVME210 VMEbus carrier for 2 IndustryPack modules

TVME211 VMEbus carrier for 2 IndustryPack modules

carrier_vme
(Universe Driver
or SBS UniSDK)

TVME220 VMEbus carrier for 4 IndustryPack modules

7.2 Enumeration of IPAC slots
If more than one IPAC module is installed, maybe on different carrier boards, it is sometimes
necessary to know which device node belongs to a certain slot on a carrier board.

The search and allocation order of the carrier class driver is always deterministic and never accidental.
Usually the PCI bus will be searched from lower buses to higher buses and from lower devices to
higher devices.

On carrier boards the slots will be enumerated from lower slots to higher slots.

If different carrier boards are installed in the system the order depends on the start order of the carrier
port drivers. If the carrier port driver will be automatically started by the carrier class driver the start
order depends on order of entries in the list carrier_PnP_list in the header file ./class/pnpinf.h. If
manually started, the order depends of course on the manually start order.

CARRIER-SW-82 - Linux Device Driver Page 46 of 48

7.3 Exclude specific PCI Devices
To exclude some specific PCI devices, the exact location on the PCI bus can be specified in the
structure rejectedPciDevices in the header file ipac_carrier.h. If a device is found matching the
specified values, it is rejected by the carrier port driver.

typedef struct PciDeviceStruct
{

unsigned char busNo;
unsigned char devNo;
unsigned char funcNo;

} PciDeviceStruct;

busNo

This parameter specifies the PCI bus number, where the specific PCI device is mounted.

devNo

This parameter specifies the device number of the specific PCI device on the bus.

funcNo

This parameter specifies the function number of the specific PCI device.

To retrieve the necessary parameters, execute lspci or take a look into the file /proc/pci and search
for the desired device that should not be used by the carrier port driver.

lspci
00:0f.0 Bridge: TEWS Datentechnik GmBH: Unknown device 3064
00:11.0 Bridge: TEWS Datentechnik GmBH: Unknown device 30c8

Example

/*
** This will exclude the following PCI devices located on bus 0:
** device 0x0f and device 0x11.
*/
#define MAX_REJECT_PCI_DEVICES 2
static PciDeviceStruct rejectedPciDevices[MAX_REJECT_PCI_DEVICES] = {

{0x00, 0x0f, 0x00},
{0x00, 0x11, 0x00} };

CARRIER-SW-82 - Linux Device Driver Page 47 of 48

7.4 Diagnostic
If your installed IPAC port driver (e.g. tip903drv) doesn’t find any devices although the IPAC is
properly plugged on a carrier slot, it’s interesting to know what’s going on in the system.

7.4.1 /proc file system entry
The TEWS TECHNOLOGIES IPAC carrier driver exports detailed information of registered IP slots, of
plugged IP modules and their configuration, of registered IP port drivers and low-level carrier drivers
via the /proc file system. All these information can be retrieved by a simple cat to the /proc file system
entry /proc/tews-ip-carrier. Most of the displayed information is of interest only to the device driver
developer and should be added to a support request in case of trouble with the carrier driver
respective IP port driver.

cat /proc/tews-ip-carrier

TEWS TECHNOLOGIES - IPAC Carrier Class Driver version 1.3.x (Release-Date)

Registered IP slots:

[TEWS TECHNOLOGIES - (Compact)PCI IPAC Carrier - Slot 0]
Plugged Module Vendor=0xB3, Modul=0x1C
Installed Driver TIP903 - 3 Channel Extended CAN Bus IP -
Slot Setup INT0_EN | LEVEL_SENS | CLK_8MHZ | MEM_16BIT |

Memory Size = 0x400
Interrupt Vector System=5, Module=5
Interrupt Level INT0=0, INT1=0
ID Space Addr Physical=0xec821080, Virtual=0x26db5080
IO Space Addr Physical=0xec821000, Virtual=0x00000000
MEM8 Space Addr Physical=0xec000000, Virtual=0x00000000
MEM16 Space Addr Physical=0xeb000000, Virtual=0x26dca000

[TEWS TECHNOLOGIES - (Compact)PCI IPAC Carrier - Slot 1]
Plugged Module Vendor=0xB3, Modul=0x1D
Installed Driver TIP866 - 8 Channel Serial IP
Slot Setup INT0_EN | INT1_EN | LEVEL_SENS | CLK_8MHZ |

Memory Size = 0x0
Interrupt Vector System=5, Module=5
Interrupt Level INT0=0, INT1=0
ID Space Addr Physical=0xec821180, Virtual=0x26dcc180
IO Space Addr Physical=0xec821100, Virtual=0x26dff100
MEM8 Space Addr Physical=0xec400000, Virtual=0x00000000
MEM16 Space Addr Physical=0xeb800000, Virtual=0x00000000

Registered Carrier Drivers:
TEWS TECHNOLOGIES - (Compact)PCI IPAC Carrier V1.3.x

CARRIER-SW-82 - Linux Device Driver Page 48 of 48

7.4.2 Debug Statements (printk())
Usually all TEWS TECHNOLOGIES device drivers announce significant events or errors via the kernel
message system (printk()).

You can retrieve this messages from the /proc file system using the following command

cat /proc/kmsg

TEWS TECHNOLOGIES - IPAC Carrier Class Driver version 1.3.x (<Release-Date>)

TEWS TECHNOLOGIES - Default Carrier version 1.3.x (<Release-Date>)

TEWS TECHNOLOGIES - (Compact)PCI IPAC Carrier version 1.3.x (<Release-Date>)

TIP903 - 3 Channel Extended CAN Bus IP - version 1.2.0 (2006-04-05)<6>

TIP903 : Probe new TIP903 mounted on <TEWS TECHNOLOGIES - (Compact)PCI IPAC Carrier> at slot
A

If the standard and error messages doesn’t help to locate the problem you can enable more detailed
debug output in each driver by removing the comments around the DEBUGxxx definitions.

If you can’t solve the problem by yourself, please contact TEWS TECHNOLOGIES with a detailed
description of the error condition, your system configuration and the debug outputs.

	Introduction
	Installation
	Build and install carrier drivers
	Uninstall the device driver
	Install the device driver in the running kernel
	Remove device driver from the running kernel

	VMEbus IPAC Carrier
	Universe Device Driver
	UniSDK Patch
	UniSDK 3.4 - RedHat Linux 7.1
	UniSDK 4.1 - SUSE 10.0

	Configuration

	Universe Device Driver
	Installation
	Build and install the device driver
	Uninstall the device driver
	Install device driver into the running kernel
	Remove device driver from the running kernel

	User Interface Device Input/Output functions
	open()
	close()
	ioctl()
	UNIVERSE_IOCTL_ALLOCATE_REGION
	UNIVERSE_IOCTL_FREE_REGION

	Possible problems

	Customer IPAC Carrier Support
	Generic IPAC Driver
	Installation
	Build and install the device driver
	Uninstall the device driver
	Install device driver into the running kernel
	Remove device driver from the running kernel

	User Interface Device Input/Output functions
	open()
	close()
	ioctl()
	GEN_IPAC_IOCTL_READ_UCHAR
	GEN_IPAC_IOCTL_READ_USHORT
	GEN_IPAC_IOCTL_READ_ULONG
	GEN_IPAC_IOCTL_WRITE_UCHAR
	GEN_IPAC_IOCTL_WRITE_USHORT
	GEN_IPAC_IOCTL_WRITE_ULONG
	GEN_IPAC_IOCTL_MOD_INFO
	GEN_IPAC_IOCTL_RESET_SLOT

	Appendix
	Supported IPAC Carrier Boards
	Enumeration of IPAC slots
	Exclude specific PCI Devices
	Diagnostic
	/proc file system entry
	Debug Statements (printk())

