TEWS &

The Embedded I/O Company TECHNOLOGIES

TDRVO004-SW-65

Windows 2000/XP Device Driver
Reconfigurable FPGA

Version 1.1.x

User Manual

Issue 1.1.2
June 2008
TEWS TECHNOLOGIES GmbH TEWS TECHNOLOGIES LLC
Am Bahnhof 7 Phone: +49 (0) 4101 4058 0 9190 Double Diamond Parkway, Phone: +1 (775) 850 5830

25469 Halstenbek, Germany Fax: +49 (0) 4101 4058 19 Suite 127, Reno, NV 89521, USA Fax: +1 (775) 201 0347
www.tews.com e-mail: info@tews.com www.tews.com e-mail: usasales@tews.com

TDRV004-SW-65

This document contains

TEWS &<

TECHNOLOGIES

information, which is

Windows 2000/XP Device Driver proprietary to TEWS TECHNOLOGIES GmbH. Any

Reconfigurable FPGA

reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and

Supported Modules: complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
TPMC630 in this document at any time without notice.
TCP630

Issue Description

1.0.0 First Issue

1.0.1 Detailed description of TD004_RESOURCE added.
Manual filename changed in installation section.

1.1.0 Interrupt features added, filelist changed

1.1.1 New Address TEWS LLC

1.1.2 Files moved to subdirectory

TDRV004-SW-65 — Windows 2000/XP Device Driver

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

©2005-2008 by TEWS TECHNOLOGIES GmbH

Date
July 11, 2005
March 31, 2006

August 10, 2006
October 25, 2006
June 23, 2008

Page 2 of 54

TEWS &<

TECHNOLOGIES

Table of Content

INTRODUCTION . .t et e et et e et et et e e st et et e e e e eaenns 4
N SR A AN 1 L0] TP 5
A RS Y i AT VE= SR L 153 =YL= oo o 5
2 0 RO VA AT o [0 1YY 00 [1 A 5
2.1.2 Confirming Windows 2000 / XP InStallationceeveeiiiiiiiiiiieee s e e seiiieee e e e 6
DEVICE DRIVER PROGRAMMING ... 7
I 1 ToT =T o Lo I V@ BN U T 13 o = 7
R 00 A @ o7 1o = B 0 L= o = P 7
3.1.2 ClOSING @ DEVICE ...ttt ettt e e e e e e e bbbt e e e e e e e e e bbb b e e e e e e e e e anbbraeeaaans 9
3.1.3 DeVvice I/O CoNtrol FUNCLONSuiiiii ettt et e e et e e e e e st e e s e st e e eaaaaeans 10
3.1.3.1 IOCTL_TDO0O4 XSVFPLAY ..ottt ettt a e e et re e e e 12
3.1.3.2 IOCTL_TDO0O4 XSVFPOScoo oottt ettt a e e et re e e as 14
3.1.3.3 IOCTL_TDO004 XSVFLASTCMDuttiiiiiieiiieiieeee ettt ae e 15
3.1.3.4 IOCTL_TD0O04 RECONFIGccoiiittiiieee ettt 16
3.1.3.5 IOCTL_TDO004 SETWAITSTATESoottiie ettt e e etee e e e e s s sae e e e e e e e e snnanneeeee s 17
3.1.3.6 IOCTL_TDO04 SETCLOCKcciiiiiutiieiieee et ittt ee e e e s sitteaeee e e e s s s snsrnneeeaeesessnnnnneeeeees 19
3.1.3.7 IOCTL_TDOOA _SPIWRITEciitiiiiiitieieeee e e eectteee e e e e s st e e e e e s e s snnanaeeeae e e e s snnnnneeeeees 22
3.1.3.8 IOCTL_TDOOA _SPIREADottiieiiiiiitieeteee e s ettt e e e e e e s sstae e e e e e s s s snanaeeaeeeesssnnanaeeeees 25
3.1.3.9 IOCTL_TDOO4A PLXWRITEiiiiiiiiittiieeiee e e e eettiee e e e e e s s sistaaeee e e e s s s snnnnaeeeaeessesnnnnaeeeees 27
3.1.3.10 IOCTL_TDO0O4 PLXREADcciiiiitteeieee ettt ettt et aae e e e e e e ae e e as 29
3.1.3.11 IOCTL_TD004 READ UCHARottiiiiiieii ittt 31
3.1.3.12 IOCTL_TD004 READ USHORTuttiiiiiiiiiiittiiie ettt ae e 34
3.1.3.13 IOCTL_TD004 READ ULONGtttiiiiiiiiiiiiiiieee ettt ae e 37
3.1.3.14 IOCTL_TDO004 WRITE_UCHAR......oteiiiii ettt 40
3.1.3.15 IOCTL_TD004 WRITE_USHORT ...ooeiiiiiiiiiiieeeee ettt 43
3.1.3.16 IOCTL_TD004 WRITE_ULONG......ctttiieeiiiiiiiieieeeesssitieieeeee e e s s snaneeeeee e s e s snnnnaeeeees 46
3.1.3.17 IOCTL_TDO004 CONFIGURE INT....cottiiiiiiiitiieerieeeessiiiiieee e e e s s s snreneee e e e s e s snnanneeeees 49
3.1.3.18 IOCTL_TDO004 WAIT _FOR _INTL...oitiiiiiiiiiiiiieieee e e e e scieieee e e e e s s snene e e e e e e e s snnnnneeeee s 51
3.1.3.19 IOCTL_TDO004 WAIT _FOR _INT2...uttiiiieeeiiiiiiieeiee e e e s estiiieeee e e e s s sneaneee e e e e e s snnanneeeees 53

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 3 of 54

TEWS &<

TECHNOLOGIES

1 Introduction

The TDRV004-SW-65 Windows WDM (Windows Driver Model) device driver is a kernel mode driver which
allows the operation of the TDRV004 product family on an Intel or Intel-compatible x86 Windows 2000 or
Windows XP operating system.

The standard file and device (I/0O) functions (CreateFile, CloseHandle and DeviceloControl) provide the
basic interface for opening and closing a resource handle and for performing device 1/0O control operations.

The TDRV004-SW-65 device driver supports the following features:

Program and reconfigure onboard FPGA

Program onboard clock generator using the Serial Programming Interface (SPI)

Read/write FPGA registers (32bit / 16bit / 8bit)

Read/write EEPROM blocks located in clock device using the Serial Programming Interface (SPI)
Read/write specific PLX9030 registers

VVVVY

The TDRV004-SW-65 device driver supports the modules listed below:

TPMC630 User Programmable FPGA (PMC)
TCP630 User Programmable FPGA (cPCI)

To get more information about the features and use of the supported devices it is recommended to read
the manuals listed below.

TPMC630 / TCP630 User manual
TPMC630 / TCP630 Engineering Manual

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 4 of 54

TEWS &<

TECHNOLOGIES

2 Installation

Following files are located in directory TDRV004-SW-65 on the distribution media:

tdrv004.sys Windows WDM driver binary

tdrv004.inf Windows WDM installation script

tdrv004.h Header file with IOCTL codes and structure definitions
TDRV004-SW-65-1.1.2.pdf This document

\example\tdrvOO4exa.c Example application

\example\fpgaexa.zip Example FPGA design (XSVF file) as a ZIP archive
Release.txt Information about the Device Driver Release
ChangelLog.txt Release history

2.1 Software Installation

2.1.1 Windows 2000/ XP

This section describes how to install the TDRV004-SW-65 Device Driver on a Windows 2000 / XP
operating system.

After installing the hardware and boot-up your system, Windows 2000 / XP setup will show a "New
hardware found" dialog box.

1. The"Upgrade Device Driver Wizard" dialog box will appear on your screen.
Click "Next" button to continue.

2. In the following dialog box, choose "Search for a suitable driver for my device".
Click "Next" button to continue.

3. In Drive A, insert the TDRVO0O01 driver disk; select "Disk Drive" in the dialog box.
Click "Next" button to continue.

4. Now the driver wizard should find a suitable device driver on the diskette.
Click "Next" button to continue.

5. Complete the upgrade device driver and click "Finish" to take all the changes effect.
6. Repeat the steps above for each found module of the TDRV004 product family.
7. Copy needed files (tdrv004.h, TDRV004-SW-65.pdf) to desired target directory.

After successful installation a device is created for each found module (TDRV004_1, TDRV004_2 ...).

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 5 of 54

TEWS &<

TECHNOLOGIES

2.1.2 Confirming Windows 2000 / XP Installation

To confirm that the driver has been properly loaded in Windows 2000 / XP, perform the following
steps:

1. From Windows 2000 / XP, open the "Control Panel" from "My Computer".

2. Click the "System" icon and choose the "Hardware" tab, and then click the "Device
Manager" button.

3. Click the "+" in front of "Other Devices".
The driver "TEWS TECHNOLOGIES TDRV004 Reconfigurable FPGA" should appear for

each installed device.

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 6 of 54

TEWS &<

TECHNOLOGIES

3 Device Driver Programming

The TDRV004-SW-65 Windows WDM device driver is a kernel mode device driver using Direct 1/O.

The standard file and device (I/O) functions (CreateFile, CloseHandle and DeviceloControl) provide
the basic interface for opening and closing a resource handle and for performing device 1/O control
operations.

All of these standard Win32 functions are described in detail in the Windows Platform SDK
Documentation (Windows base services / Hardware / Device Input and Output).

For details refer to the Win32 Programmers Reference of your used programming tools (C++, Visual
Basic etc.)

3.1 Files and I/O Functions

The following section doesn’t contain a full description of the Win32 functions for interaction with the
TDRVO004 device driver. Only the required parameters are described in detail.

3.1.1 Opening a Device

Before you can perform any 1/0 the TDRV004 device, it must be opened by invoking the CreateFile
function. CreateFile returns a handle that can be used to access the TDRV004 device.

HANDLE CreateFile(
LPCTSTR IpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES IpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile

PARAMETERS

IpFileName

Points to a null-terminated string, which specifies the name of the TDRVO004 to open. The
IpFileName string should be of the form W\TDRV004_x to open the device x. The ending x is a
one-based number. The first device found by the driver is W\TDRV004_1, the second device
\\TDRVO004_2 and so on.

dwDesiredAccess

Specifies the type of access to the TDRV004.
For the TDRVO0O04, this parameter must be set to read-write access (GENERIC READ |
GENERIC_WRITE)
dwShareMode
Set of bit flags that specify how the object can be shared. Set to 0.

IpSecurityAttributes
Pointer to a security structure. Set to NULL for TDRV004 devices.

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 7 of 54

TEWS &<

TECHNOLOGIES
dwCreationDistribution

Specifies which action to take on files that exist, and which action to take when files do not
exist. TDRV004 devices must be always opened OPEN_EXISTING.

dwFlagsAndAttributes

Specifies the file attributes and flags for the file. If overlapped I/O shall be used, this value may
be set to FILE_FLAG_OVERLAPPED.

hTemplateFile
This value must be NULL for TDRV004 devices.

RETURN VALUE

If the function succeeds, the return value is an open handle to the specified TDRV004 device. If the
function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call
GetLastError.

EXAMPLE

HANDL E hDevi ce;

hDevi ce = CreateFil ¢(
“\\\\ .\ TDRVO04_17,
GENERI C_READ | GENERI C_WRI TE,

01
NULL, /1l no security attrs
OPEN_EXI STI NG, /1 TDRVOO4 devi ce al ways open existing
FI LE_FLAG OVERLAPPED, /1 overlapped I/0O
NULL
)
i f (hDevice == I NVALI D_HANDLE VALUE) {
ErrorHandl er ("Coul d not open device"); // process error
}
SEE ALSO

CloseHandle(), Win32 documentation CreateFile()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 8 of 54

TEWS &<

TECHNOLOGIES

3.1.2 Closing a Device

The CloseHandle function closes an open TDRV004 handle.

BOOL CloseHandle(
HANDLE hDevice;
)i

PARAMETERS

hDevice
Identifies an open TDRV004 handle.

RETURN VALUE

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

EXAMPLE

HANDLE hDevi ce;

if(!'CloseHandl e(hDevice)) {
ErrorHandl er ("Could not close device"); // process error

SEE ALSO

CreateFile (), Win32 documentation CloseHandle ()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 9 of 54

TEWS &<

TECHNOLOGIES

3.1.3 Device I/O Control Functions

The DeviceloControl function sends a control code directly to a specified device driver, causing the

corresponding device to perform the specified operation.

BOOL DeviceloControl(

HANDLE hDevice,

DWORD dwloControlCode,
LPVOID IpInBuffer,
DWORD niInBufferSize,
LPVOID IpOutBuffer,
DWORD nOutBufferSize,

LPDWORD IpBytesReturned,
LPOVERLAPPED IpOverlapped

PARAMETERS

hDevice

Handle to the TDRV004 device that is to perform the operation.

dwloControlCode

Specifies the control code for the operation. This value identifies the specific operation to be

performed. The following values are defined in tdrv004.h:

Value

IOCTL_TDO004_XSVFPLAY
IOCTL_TDO004_XSVFPOS
IOCTL_TD004_XSVFLASTCMD
IOCTL_TDO004_RECONFIG
IOCTL_TDO004_SETWAITSTATES
IOCTL_TDO004_SETCLOCK
IOCTL_TDO004_SPIWRITE
IOCTL_TD004_SPIREAD
IOCTL_TD004_PLXWRITEWORD
IOCTL_TD004_PLXREADWORD
IOCTL_TD004_READ_UCHAR
IOCTL_TD004_READ_USHORT
IOCTL_TD004_READ_ULONG
IOCTL_TD004 _WRITE_UCHAR
IOCTL_TD004 WRITE_USHORT
IOCTL_TD004 _WRITE_ULONG

TDRV004-SW-65 — Windows 2000/XP Device Driver

Meaning

Play an XSVF file for programming
Retrieve current play-position in XSVF file
Get the last executed XSVF command

Trigger FPGA reconfiguration process

Specify number of waitstates for programming

Set clock generator parameters

Write values to clock generator

Read values from clock generator
Write 16bit value to PLX9030 EEPROM

Read 16bit value from PLX9030 EEPROM

Read unsigned char values from FPGA
Read unsigned short values from FPGA
Read unsigned long values from FPGA
Write unsigned char values to FPGA
Write unsigned short values to FPGA
Write unsigned long values to FPGA

Page 10 of 54

TEWS &<

TECHNOLOGIES

IOCTL_TD004_CONFIGURE_INT Configure local interrupt source polarity
IOCTL_TD004_ WAIT_FOR_INT1 Wait for incoming Local Interrupt Source 1
IOCTL_TD004_ WAIT_FOR_INT2 Wait for incoming Local Interrupt Source 2

See behind for more detailed information on each control code.

IpInBuffer
Pointer to a buffer that contains the data required to perform the operation.

ninBufferSize
Specifies the size, in bytes, of the buffer pointed to by IpInBuffer.

IpOutBuffer
Pointer to a buffer that receives the operation’s output data.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by IpOutBuffer.

IpBytesReturned
Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed to
by IpOutBuffer. A valid pointer is required.

IpOverlapped
Pointer to an Overlapped structure.

To use these TDRV004 specific control codes, the header file tdrv004.h must be included.

RETURN VALUE

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Note that the TDRV004 device driver always returns standard Win32 error codes on failure.
Please refer to the Windows Platform SDK Documentation for a detailed description of the
returned error codes.

SEE ALSO

Win32 documentation DeviceloControl ()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 11 of 54

TEWS &<

TECHNOLOGIES

3.1.3.1 IOCTL_TDO004_XSVFPLAY

This TDRV004 control function programs the FPGA with a supplied XSVF file. A pointer to the caller’s
data buffer, where the content of the XSVF file is stored, is passed by the parameter IpIinBuffer to the
driver. This control function may be called in Overlapped operation mode. During programming, the
progress can be monitored using IOCTL_TDO004_ XSVFPOS (see below). In non-overlapped mode,
this function will block until XSVF programming is finished. For information on building an XSVF file,
please refer to the Engineering Documentation of the TDRV004 product family.

The device driver is not able to verify the XSVF file, so please make sure that the supplied
XSVF is of a valid file format.

PROGRAMMING HINTS

Depending on the XSVF file, there might be a waiting period of approx. 15 seconds at the beginning of
programming. The programming of the delivered FPGA example design XSVF file should not take
much longer than 1 minute.

If the programming fails, try to increase the wused waitstates with control function
IOCTL_TDO004_SETWAITSTATES (refer to the corresponding section in this manual). Additionally, the
CLKZ1 should not be lower than 10MHz for programming.

EXAMPLE

#i ncl ude “tdrv004. h”

HANDL E hDevi ce;
BOOLEAN success;
ULONG NunmByt es;

unsi gned char *pXsvf Cont ent ;
unsi gned | ong XsvfFil eSize;
/*

** Play an XSVF file to programthe FPGA.
** The filecontent nust be available in a local buffer,
** the size of the file nmust be stored in XsvfFileSize.
*/
success = Devicel oControl (
hDevi ce, /1 TDRVO04 handl e
| OCTL_TD004_XSVFPLAY, /'l control code
pXsvf Cont ent ,
XsvfFil eSi ze,
NULL,
0,
&NunByt es, /1 number of bytes transferred
NULL

)

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 12 of 54

TEWS &<

TECHNOLOGIES

i f(!'success) {
/1 Process DeviceloControl () error

ERROR CODES

ERROR_BUSY The device is already busy with XSVF.

ERROR_INVALID_PARAMETER An error occurred during XSVF operation.
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 13 of 54

3.1.3.2 |IOCTL_TD004 XSVFPOS

TEWS &<

TECHNOLOGIES

This TDRV004 control function returns the current byte in the XSVF file during programming with
IOCTL_TDO004_XSVFPLAY. A pointer to an int value is passed by the parameter IpOutBuffer to the

driver. This control function can be used to monitor the programming progress.

EXAMPLE

#i ncl ude “tdrv004. h”

HANDLE hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
i nt Xsvf Pos;
/*
** Get XSVF position to nonitor progress
*/
success = Devicel oControl (
hDevi ce, /1 TDRVO0O4 handl e
| OCTL_TD004_XSVFPCS, /1 control
NULL,
0,
&Xsvf Pos,
si zeof (int),
&NunByt es, /1 number of bytes transferred
NULL

)

i f(!'success) {

/1 Process DeviceloControl () error

ERROR CODES

ERROR_INVALID_USER_BUFFER

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver

The size of the supplied output buffer is too small.
All other returned error codes are system error conditions.

Page 14 of 54

3.1.3.3 I0CTL_TDO004_XSVFLASTCMD

TEWS &<

TECHNOLOGIES

This TDRV004 control function returns the number of the last executed XSVF command. This value
can be used to find errors inside the supplied XSVF file. This value refers to the line inside the ASCII
SVF file. A pointer to an int value is passed by the parameter IpOutBuffer to the driver.

EXAMPLE

#i ncl ude “tdrv004. h”

HANDLE hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
i nt Xsvf Last Cnd;
/*
** Get XSVF position to nonitor progress
*/
success = Devicel oControl (
hDevi ce, /1 TDRVO0O4 handl e
| OCTL_TD004_XSVFLASTCMD, /1 control
NULL,
0,
&Xsvf Last Cnd,
si zeof (int),
&NunByt es, /1 number of bytes transferred
NULL

)

i f(!'success) {

/1 Process DeviceloControl () error

ERROR CODES

ERROR_INVALID_USER_BUFFER

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver

The size of the supplied output buffer is too small.
All other returned error codes are system error conditions.

Page 15 of 54

TEWS &<

TECHNOLOGIES

3.1.3.4 |10CTL_TDO0O04_RECONFIG

This TDRV004 control function starts the reconfiguration process of the FPGA. This control function
must be called after the FPGA is programmed using IOCTL_TD004_XSVFPLAY.No parameter is used
for this function.

EXAMPLE

#i ncl ude “tdrv004. h”

HANDL E hDevi ce;

BOOLEAN success;

ULONG NunmByt es;

/*

** | ssue Reconfiguration conmand

*/

success = Devicel oControl (
hDevi ce, /1 TDRVO0O4 handl e
| OCTL_TD004_ RECONFI G, /1 control code
NULL,
0,
NULL,
0,
&NunByt es, /1 nunmber of bytes transferred
NULL

)

i f(!success) {
/1 Process DeviceloControl () error

ERROR CODES

ERROR_BUSY The device is already busy with XSVF or Reconfig.

ERROR_NOT_READY The DONE signal of the FPGA refused to change
state, the reconfiguration might be invalid.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 16 of 54

TEWS &<

TECHNOLOGIES

3.1.3.5 |IOCTL_TDO0O4_SETWAITSTATES

This TDRV004 control function configures the driver to use a number of waitstates during XSVF and
SPI programming. This might be necessary, if the local clock (CLK1) of the onboard clock generator is
configured to rather slow. The local programming interface is clocked with this frequency, which might
result in errors during programming for low CLK1 frequencies and a small amount of waitstates.

A pointer to waitstates (int value) is passed to the driver by the parameter IpInBuffer.

EXAMPLE

#i ncl ude “tdrv004. h”

HANDL E hDevi ce;

BOOLEAN success;

ULONG NunmByt es;

i nt Wi t St at es;

/*

** Setup 5 waitstates for CLK1L < 20MHz
*/

Wit States = 5;

success = Devicel oControl (
hDevi ce, /| TDRVO04 handl e
| OCTL_TD004_SETWAI TSTATES, // control code
&Wi t St at es,
si zeof (i nt),
NULL,
0,
&NunByt es, /1 number of bytes transferred
NULL

)

i f(!'success) {
/1 Process DeviceloControl () error

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 17 of 54

TEWS &<

TECHNOLOGIES

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.

ERROR_INVALID_PARAMETER The specified waitstates are invalid (<0).
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 18 of 54

3.1.3.6 IOCTL_TDO004_SETCLOCK

TEWS &<

TECHNOLOGIES

This TDRV004 control function configures the onboard clock generator. A pointer to the caller’'s data
buffer (TD004_CLOCK_PARAM) is passed by the parameter IpInBuffer to the driver. The necessary

values can be calculated using the tool Cypress CycberClocks.
The TD004_CLOCK_PARAM structure has the following layout:

typedef struct {
unsigned char DeviceAddr;
unsigned char x09_CIkOE;
unsigned char x0C_DIV1SRCN;
unsigned char x10_InputCitrl;
unsigned char x40 _CPumpPB;
unsigned char x41_CPumpPB;
unsigned char x42_POQcnt;
unsigned char x44_SwMatrix;
unsigned char x45_SwMatrix;
unsigned char x46_SwMatrix;
unsigned char x47_DIV2SRCN;

} TD004_CLOCK_PARAM;

DeviceAddr

Specifies the desired destination address. The CY27EE16 clock generator provides several
EEPROM banks as well as SRAM. If TDO04 CLKADR_SRAM is specified, the values are
directly stored inside the volatle RAM area and take effect immediately. If
TD004 _CLKADR_EEPROM is specified, the values are stored in the non-volatile area of the

clock generator, and the CY27EE16 loads it after the next power-up.

x09_CIkOE
Specifies which clock outputs shall be enabled.

X0C_DIV1SRCN
Specifies internal input source 1 and the corresponding frequency divider

x10_InputCitrl
Specifies value for the Input Pin Control register

x40_CPumpPB
Specifies value for Charge Pump and PB counter register

x41 CPumpPB
Specifies value for Charge Pump and PB counter register

x41 POQcnt
Specifies value for PO and Q counter register

x44 SwMatrix
Specifies value for Switching Matrix Register

TDRV004-SW-65 — Windows 2000/XP Device Driver

Page 19 of 54

TEWS &<

TECHNOLOGIES

x45_SwMatrix
Specifies value for Switching Matrix Register

x46_SwMatrix
Specifies value for Switching Matrix Register

x47_DIV2SRCN
Specifies internal input source 2 and the corresponding frequency divider

Please refer to the Cypress CY27EE16 user manual for detailed explanation of the above
register values.

EXAMPLE

#i ncl ude “tdrv004. h”

HANDLE hDevi ce;
BOOLEAN success;
ULONG NunmByt es;

TD004_CLOCK _PARAM Cl ockPar am

/*
** Setup clock generator (SRAM:

*x CLK1l: 50.0MHz CLK2: 20.0MHz

*x CLK3: 10.0MHz CLK4: 1.0MHz

*x CLK5: 0.2MHz CLK6: -off-

*/

Cl ockPar am Devi ceAddr ess = TD004_CLKADR_SRAM

Cl ockParam x09_C kOE = 0x6f;

d ockParam x0C_DI VISRCN = 0x64;

Cl ockParam x10_I nput Ctrl = 0x50;

Cl ockPar am x40 _CPunpPB = 0xcO;

Cl ockPar am x41_CPunpPB = 0x03;

C ockParam x42_POQcnt = 0x81;

Cl ockPar am x44_Swivat ri x = 0x42;

Cl ockPar am x45_Swivat ri x = 0Ox9f;

Ol ockParam x46_Swivatri x = Ox3f;

Cl ockPar am x47_Dl V2SRCN = Oxe4;

success = DeviceloControl (
hDevi ce, /1 TDRVO0O4 handl e
| OCTL_TD004_ SETCLQCK, /1 control code
&Cl ockPar am [l input buffer
si zeof (TDO04_CLOCK_PARAM ,
NULL,
0,

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 20 of 54

TEWS &<

TECHNOLOGIES

&NunByt es, /1 nunmber of bytes transferred
NULL

)

i f(!'success) {
/1 Process DeviceloControl () error

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.

ERROR_BUSY The device is already busy with an SPI operation.
ERROR_NOT_READY A device error occurred during programming.
ERROR_INVALID_PARAMETER Tried to disable CLK1. This is not allowed.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 21 of 54

TEWS &<

TECHNOLOGIES

3.1.3.7 10CTL_TDO04_SPIWRITE

This TDRV004 control function writes up to 256 unsigned char values to a specific sub-address of a
Serial Programming Interface (SPI) address. A pointer to the caller’'s data buffer (TD004_SPI_BUF) is
passed by the parameter IpInBuffer to the driver. Due to restrictions of the Windows I/O-Manager, the
data section must be included inside this structure.

The TD004_SPI_BUF structure has the following layout:

typedef struct {

unsigned char SpiAddr;

unsigned char SubAddr;

unsigned long len;

unsigned char pData[1]; /* dynamically expandable */
} TDO04_SPI_BUF;

SpiAddr

Specifies the Serial Programming Interface (SPI) address of the desired target. See file
tdrv004.h for definitions.

SubAddr
Specifies the sub-address (starting offset).

len
This value specifies the amount of data items to write. A maximum of 256 is allowed.

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data. The data must be stored inside the structure, no pointer allowed.

Do not use this control function to setup the clockgenerator. Please use control function
IOCTL_TDO004 SETCLOCK instead.

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 22 of 54

TEWS &<

TECHNOLOGIES

EXAMPLE

#i ncl ude “tdrv004. h”

HANDL E hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
unsi gned | ong Buf ferSi ze;
TD004_SPI _BUF *pSpi Buf;
/*

** wite 5 bytes to EEPROM bl ock 1, of fset 0x00

** allocate enough nenory to hold the data structure + wite data
*/

Buf ferSize = (sizeof (TDO0O4_SPI BUF) + 5*si zeof (unsigned char));
pSpi Buf = (TD0O04_SPI _BUF*)mal | oc(BufferSize);

pSpi Buf - >Spi Addr = TD004_CLKADDR_ EEBLOCK1;

pSpi Buf - >SubAddr = 0x00;

pSpi Buf - >| en = b5;

pSpi Buf - >pDat a[0] = 0x01;
pSpi Buf - >pDat a[0] = 0x02;
pSpi Buf - >pDat a[0] = 0x03;
pSpi Buf - >pDat a[0] = 0x04;
pSpi Buf - >pDat a[0] = 0xO05;

success = Devicel oControl (

hDevi ce, /1 TDRVO0O4 handl e

| OCTL_TD004_SPI WRI TE, /'l control code

pSpi Buf, [l input buffer

Buf ferSi ze,

NULL,

0,

&NunByt es, /1 number of bytes transferred
NULL

)i
i f(!'success) {
/1 Process DeviceloControl () error

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 23 of 54

TEWS &<

TECHNOLOGIES

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.

ERROR_BUSY The device is already busy with an SPI operation.

ERROR_NOT_READY A device error occurred during programming.

ERROR_INVALID_PARAMETER The specified SubAddr+len exceeds 256, or len is
invalid.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 24 of 54

TEWS &<

TECHNOLOGIES

3.1.3.8 |0OCTL_TDO004_SPIREAD

This TDRV004 control function reads up to 256 unsigned char values from a specific sub-address of a
Serial Programming Interface (SPI) address. A pointer to the caller’'s data buffer (TD004_SPI_BUF) is
passed by the parameter IpInBuffer to the driver. Due to restrictions of the Windows I/O-Manager, the
data section must be included inside this structure.

The TD004_SPI_BUF structure has the following layout:

typedef struct {

unsigned char SpiAddr;

unsigned char SubAddr;

unsigned long len;

unsigned char pData[1]; /* dynamically expandable */
} TDO04_SPI_BUF;

SpiAddr

Specifies the Serial Programming Interface (SPI) address of the desired target. See file
tdrv004.h for definitions.

SubAddr
Specifies the sub-address (starting offset).

len
This value specifies the amount of data items to read. A maximum of 256 is allowed.

pData

The values are copied to this buffer. It must be large enough to hold the specified amount of
data. The data space must be located inside the structure, no pointer allowed.

EXAMPLE

#i ncl ude “tdrv004. h”

HANDL E hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
unsi gned | ong Buf ferSi ze;
TD004_SPI _BUF *pSpi Buf;
/*

** read 5 bytes from EEPROM bl ock 1, offset 0x00

** allocate enough nenory to hold the data structure + read data
*/

Buf ferSize = (sizeof (TDO0O4_SPI BUF) + 5*si zeof (unsi gned char));
pSpi Buf = (TD0O04_SPI _BUF*)mal | oc(BufferSize);

pSpi Buf - >Spi Addr = TD004_CLKADDR_EEBLOCK1;

pSpi Buf - >SubAddr = 0x00;

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 25 of 54

TEWS &<

TECHNOLOGIES

5;

pSpi Buf - >l en

success = DeviceloControl (

hDevi ce, /| TDRVO0O4 handl e

| OCTL_TD004_SPI READ, /1l control code

pSpi Buf , [l input buffer

Buf fer Si ze,

NULL,

0,

&NunByt es, /1 nunmber of bytes transferred
NULL

)
i f(!success) {
/1l Process DeviceloControl () error

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.

ERROR_BUSY The device is already busy with an SPI operation.

ERROR_NOT_READY A device error occurred during programming.

ERROR_INVALID PARAMETER The specified SubAddr+len exceeds 256, or len is
invalid.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 26 of 54

TEWS &<

TECHNOLOGIES

3.1.3.9 I0CTL_TDO004_PLXWRITE

This TDRV004 control function writes an unsigned short value to a specific PLX9030 memory offset. A
pointer to the caller's data buffer (TD004_PLX_BUF) is passed by the parameter IpinBuffer to the
driver.

The TD004_PLX_BUF structure has the following layout:

typedef struct {
unsigned long Offset;
unsigned short Value;
} TD004_PLX_BUF;

Offset

Specifies the offset into the PLX9030 EEPROM, where the supplied data word should be
written. The offset must be specified as even byte-address.
Following offsets are available:

Offset Access
00h — 0Ch R
OEh R/W
10h — 26h R
28h — 36h R/W
38h — 3Ah R
3Ch - 4Ah R/W
4Ch — 4Eh R
50h — 5Eh R/W
60h — 62h R
64h — 7Eh R/W
80h — 86h R
88h - FEh R/W

Refer to the PLX9030 User Manual for detailed information on these registers.

Value
This value specifies a 16bit word that should be written to the specified offset.

Note that the PLX9030 reloads the new configuration from the EEPROM after a PCI reset, i.e.
the system must be rebooted to make PLX9030 dependent changes take effect.

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 27 of 54

TEWS &<

TECHNOLOGIES

EXAMPLE

#i ncl ude “tdrv004. h”

HANDL E hDevi ce;

BOOLEAN success;

ULONG NunmByt es;

TDO04_PLX BUF Pl xBuf ;

/*

** Change the Subsystem Vendor ID to TEWS TECHNOLOG ES (0x1498)
* [

Pl xBuf . O f set = OxOE;

Pl xBuf . Val ue = 0x1498

success = Devicel oControl (

hDevi ce, /1 TDRVO0O4 handl e

| OCTL_TD004_PLXWRI TE, /'l control code

&Pl xBuf , [l input buffer

si zeof (TD0O04_PLX BUF),

NULL,

0,

&NunByt es, /1 number of bytes transferred
NULL

)i
i f(!'success) {
/1 Process DeviceloControl () error

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.
ERROR_BUSY The device is busy with XSVF or Reconfig.

ERROR_INVALID_PARAMETER The specified Offset is not valid, or read-only.
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 28 of 54

TEWS &<

TECHNOLOGIES

3.1.3.10 I0CTL_TDO004_PLXREAD

This TDRV004 control function reads an unsigned short value from a specific PLX9030 memory offset.
A pointer to the caller’'s data buffer (TD004_PLX_ BUF) is passed by the parameter IpOutBuffer to the
driver.

The TD004_PLX_BUF structure has the following layout:

typedef struct {
unsigned long Offset;
unsigned short Value;
} TD004_PLX_BUF;

Offset

Specifies the offset into the PLX9030 EEPROM, from where the supplied data word should be
retrieved. The offset must be specified as even byte-address.
Following offsets are available:

Offset Access
00h — 0Ch R
OEh R/W
10h — 26h R
28h — 36h R/W
38h — 3Ah R
3Ch - 4Ah R/W
4Ch — 4Eh R
50h — 5Eh R/W
60h — 62h R
64h — 7Eh R/W
80h — 86h R
88h - FEh R/W

Refer to the PLX9030 User Manual for detailed information on these registers.

Value
This value holds the retrieved 16bit word.

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 29 of 54

TEWS &<

TECHNOLOGIES

EXAMPLE

#i ncl ude “tdrv004. h”

HANDLE hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
TDO04_PLX BUF Pl xBuf ;
/*

** Read Subsystem ID

*/

Pl xBuf . O f set = 0x0C;

success = Devicel oControl (

hDevi ce, /1 TDRVO04 handl e

| OCTL_TD004_PLXREAD, /'l control code

&Pl xBuf , [l input buffer

si zeof (TD0O04_PLX BUF),

NULL,

0,

&NunByt es, /1 number of bytes transferred
NULL

)
i f(success) {

printf(“SubsystenmVendorl D = 0x¥®4X\n”, Pl xBuf. Value);
} else {

/'l Process DeviceloControl () error

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.
ERROR_BUSY The device is busy with XSVF or Reconfig.

ERROR_INVALID_PARAMETER The specified Offset is not valid.
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 30 of 54

TEWS &<

TECHNOLOGIES

3.1.3.11 IOCTL_TD004 READ UCHAR

This TDRV004 control function reads a number of unsigned char values from a Memory or 1/O area by
using BYTE accesses. A pointer to the caller's data buffer (TD0O04_MEMIO_BUF) is passed by the
parameter IpOutBuffer to the driver. This data buffer can be enlarged to the desired needs. Due to
restrictions of the Windows 1/0-Manager, the data section must be included inside this structure.

The TD004_MEMIO_BUF structure has the following layout:

typedef struct {

TD004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */
} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TD004 RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TD004_RES MEM_2, the second PCI-I/O space found is
named TD004 RES 10_2 and so on.

The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address PCI Address-Type TD004 RESOURCE
Register
0 10 (reserved) TD004 RES 10 1
1 MEM (reserved) TD004 RES MEM 1
2 MEM (used by VHDL Example) TD004 RES MEM 2
3 10 (not implemented by default) TD004 RES 10 2
4 10 (not implemented by default) TD004 RES 10 3
5 MEM (not implemented by default) TD004 RES MEM 3

The PLX9030 default configuration utilizes only BARO to BAR2.

Offset
Specifies the offset into the PCI-Memory or PCI-1/O space specified by Resource.

Size
This value specifies the amount of data items to read.

pData

The received values are copied into this buffer. It must be large enough to hold the specified
amount of data.

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 31 of 54

TEWS &<

TECHNOLOGIES

EXAMPLE

#i ncl ude “tdrv004. h”

HANDLE hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
unsi gned | ong Buf ferSi ze;
TD004_MEM O _BUF *pMem oBuf ;
unsi gned char *pVal ues;
/*

** read 50 bytes from MenorySpace 2, offset 0x00

** allocate enough nenory to hold the data structure + read data

*/

Buf ferSi ze = (sizeof (TDO0O4_MEM O BUF) + 50*si zeof (unsi gned char));
pMen oBuf = (TD0O04_MEM O BUF*) mal | oc(BufferSize);

success = Devicel oControl (

hDevi ce, /| TDRVO0O4 handl e

| OCTL_TD004_READ UCHAR, /'l control code

NULL,

0,

pMeni oBuf, /1 buffer which receives the data
Buf fer Si ze,

&NunByt es, /1 number of bytes transferred
NULL

)
i f(success) {

/'l Process data

pVal ues = (unsigned char*)pMenl oBuf - >pDat a;
} else {

/1 Process DeviceloControl () error

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 32 of 54

TEWS &<

TECHNOLOGIES

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.
ERROR_ACCESS_DENIED The specified Resource is not available for access.

ERROR_INVALID PARAMETER The specified Offset+Size exceeds the available
memory or 1/O space.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 33 of 54

TEWS &<

TECHNOLOGIES

3.1.3.12 IOCTL_TD004_READ_USHORT

This TDRV004 control function reads a number of unsigned short values from a Memory or I/O area
by using WORD accesses. A pointer to the caller’'s data buffer (TD004_MEMIO_BUF) is passed by the
parameter IpOutBuffer to the driver. This data buffer can be enlarged to the desired needs. Due to
restrictions of the Windows 1/0-Manager, the data section must be included inside this structure.

The TD004_MEMIO_BUF structure has the following layout:

typedef struct {

TD004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */
} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TD004 RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TD004_RES MEM_2, the second PCI-I/O space found is
named TD004 RES 10_2 and so on.

The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address PCI Address-Type TD004 RESOURCE
Register
0 10 (reserved) TD004 RES 10 1
1 MEM (reserved) TD004 RES MEM 1
2 MEM (used by VHDL Example) TD004 RES MEM 2
3 10 (not implemented by default) TD004 RES 10 2
4 10 (not implemented by default) TD004 RES 10 3
5 MEM (not implemented by default) TD004 RES MEM 3

The PLX9030 default configuration utilizes only BARO to BAR2.
Offset

Specifies the offset into the memory or I/O space specified by Resource.
Size
This value specifies the amount of data items to read.

pData

The received values are copied into this buffer. It must be large enough to hold the specified
amount of data. The data pointer is typecasted into an unsigned short pointer.

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 34 of 54

TEWS &<

TECHNOLOGIES

EXAMPLE

#i ncl ude “tdrv004. h”

HANDLE hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
unsi gned | ong Buf ferSi ze;
TD004_MEM O _BUF *pMem oBuf ;
unsi gned short *pVal ues;
/*

** read 50 16bit words from MenorySpace 2, offset 0x00

** allocate enough nenory to hold the data structure + read data

*/

Buf ferSize = (sizeof (TD0O0O4_MEM O BUF) + 50*si zeof (unsi gned short));
pMen oBuf = (TD004_MEM O BUF*) mal | oc(BufferSize);

success = Devicel oControl (

hDevi ce, /| TDRVO0O4 handl e

| OCTL_TD004_READ USHORT, /'l control code

NULL,

0,

pMeni oBuf, /1 buffer which receives the data
Buf fer Si ze,

&NunByt es, /1 number of bytes transferred
NULL

)
i f(success) {

/'l Process data

pVal ues = (unsigned short*)pMem oBuf - >pDat a;
} else {

/1 Process DeviceloControl () error

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 35 of 54

TEWS &<

TECHNOLOGIES

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.
ERROR_ACCESS_DENIED The specified Resource is not available for access.

ERROR_INVALID PARAMETER The specified Offset+Size exceeds the available
memory or 1/O space.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 36 of 54

TEWS &<

TECHNOLOGIES

3.1.3.13 I0CTL_TDO004_READ_ULONG

This TDRV004 control function reads a number of unsigned long values from a Memory or I/O area by
using DWORD accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed by the
parameter IpOutBuffer to the driver. This data buffer can be enlarged to the desired needs. Due to
restrictions of the Windows 1/0-Manager, the data section must be included inside this structure.

The TD004_MEMIO_BUF structure has the following layout:

typedef struct {

TD004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */
} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TD004 RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TD004_RES MEM_2, the second PCI-I/O space found is
named TD004 RES 10_2 and so on.

The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address PCI Address-Type TD004 RESOURCE
Register
0 10 (reserved) TD004 RES 10 1
1 MEM (reserved) TD004 RES MEM 1
2 MEM (used by VHDL Example) TD004 RES MEM 2
3 10 (not implemented by default) TD004 RES 10 2
4 10 (not implemented by default) TD004 RES 10 3
5 MEM (not implemented by default) TD004 RES MEM 3

The PLX9030 default configuration utilizes only BARO to BAR2.
Offset

Specifies the offset into the memory or I/O space specified by Resource.
Size
This value specifies the amount of data items to read.

pData

The received values are copied into this buffer. It must be large enough to hold the specified
amount of data. The data pointer is typecasted into an unsigned long pointer.

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 37 of 54

TEWS &<

TECHNOLOGIES

EXAMPLE

#i ncl ude “tdrv004. h”

HANDLE hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
unsi gned | ong Buf ferSi ze;
TD004_MEM O _BUF *pMem oBuf ;
unsi gned | ong *pVal ues;
/*

** read 50 32bit dwords from MenorySpace 2, offset 0x00

** allocate enough nenory to hold the data structure + read data

*/

Buf ferSize = (sizeof (TD0O0O4_MEM O BUF) + 50*si zeof (unsi gned short));
pMen oBuf = (TD004_MEM O BUF*) mal | oc(BufferSize);

success = Devicel oControl (

hDevi ce, /| TDRVO0O4 handl e

| OCTL_TD004_READ ULONG, /'l control code

NULL,

0,

pMeni oBuf, /1 buffer which receives the data
Buf fer Si ze,

&NunByt es, /1 number of bytes transferred
NULL

)
i f(success) {

/'l Process data

pVal ues = (unsigned | ong*)pMenl oBuf - >pDat a;
} else {

/1 Process DeviceloControl () error

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 38 of 54

TEWS &<

TECHNOLOGIES

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.
ERROR_ACCESS_DENIED The specified Resource is not available for access.

ERROR_INVALID PARAMETER The specified Offset+Size exceeds the available
memory or 1/O space.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 39 of 54

TEWS &<

TECHNOLOGIES

3.1.3.14 |OCTL_TD004 WRITE_UCHAR

This TDRV004 control function writes a number of unsigned char values to a Memory or I/O area by
using BYTE accesses. A pointer to the caller's data buffer (TD0O04_MEMIO_BUF) is passed by the
parameter IpInBuffer to the driver. This data buffer can be enlarged to the desired needs. Due to
restrictions of the Windows 1/0-Manager, the data section must be included inside this structure.

The TD004_MEMIO_BUF structure has the following layout:

typedef struct {

TD004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */
} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TD004 RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TD004_RES MEM_2, the second PCI-I/O space found is
named TD004 RES 10_2 and so on.

The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address PCI Address-Type TD004 RESOURCE
Register
0 10 (reserved) TD004 RES 10 1
1 MEM (reserved) TD004 RES MEM 1
2 MEM (used by VHDL Example) TD004 RES MEM 2
3 10 (not implemented by default) TD004 RES 10 2
4 10 (not implemented by default) TD004 RES 10 3
5 MEM (not implemented by default) TD004 RES MEM 3

The PLX9030 default configuration utilizes only BARO to BAR2.
Offset

Specifies the offset into the memory or I/O space specified by Resource.
Size
This value specifies the amount of data items to write.

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data.

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 40 of 54

TEWS &<

TECHNOLOGIES

EXAMPLE

#i ncl ude “tdrv004. h”

HANDLE hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
unsi gned | ong Buf ferSi ze;
TD004_MEM O _BUF *pMem oBuf ;
unsi gned char *pVal ues;
/*

** wite 10 byte to MenorySpace 2, offset 0x00

** allocate enough nenory to hold the data structure + wite data
*/

Buf ferSize = (sizeof (TDO0O4_MEM O BUF) + 10*si zeof (unsi gned char));
pMen oBuf = (TD0O04_MEM O BUF*) mal | oc(BufferSize);

pVal ues = (unsigned char*)pMenl oBuf - >pDat a;

pVal ues|[0] 0x01;

pVal ues| 1] 0x02;

success = Devicel oControl (
hDevi ce, // TDRVO04 handl e
| OCTL_TD004 WRI TE_ UCHAR, /1 control code
pMemnl oBuf, /1 pointer to data buffer
Buf fer Si ze,
NULL,
0,
&NunByt es,
NULL

)

i f(!'success) {
/'l Process DeviceloControl () error

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 41 of 54

TEWS &<

TECHNOLOGIES

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.
ERROR_ACCESS_DENIED The specified Resource is not available for access.

ERROR_INVALID PARAMETER The specified Offset+Size exceeds the available
memory or 1/O space.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 42 of 54

TEWS &<

TECHNOLOGIES

3.1.3.15 IOCTL_TD004 WRITE_USHORT

This TDRV004 control function writes a number of unsigned short values to a Memory or 1/O area by
using WORD accesses. A pointer to the caller's data buffer (TD004_MEMIO_BUF) is passed by the
parameter IpInBuffer to the driver. This data buffer can be enlarged to the desired needs. Due to
restrictions of the Windows 1/0-Manager, the data section must be included inside this structure.

The TD004_MEMIO_BUF structure has the following layout:

typedef struct {

TD004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */
} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TD004 RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TD004_RES MEM_2, the second PCI-I/O space found is
named TD004 RES 10_2 and so on.

The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address PCI Address-Type TD004 RESOURCE
Register
0 10 (reserved) TD004 RES 10 1
1 MEM (reserved) TD004 RES MEM 1
2 MEM (used by VHDL Example) TD004 RES MEM 2
3 10 (not implemented by default) TD004 RES 10 2
4 10 (not implemented by default) TD004 RES 10 3
5 MEM (not implemented by default) TD004 RES MEM 3

The PLX9030 default configuration utilizes only BARO to BAR2.
Offset

Specifies the offset into the memory or I/O space specified by Resource.
Size
This value specifies the amount of data items to read.

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data. The data pointer is typecasted into an unsigned short pointer.

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 43 of 54

TEWS &<

TECHNOLOGIES

EXAMPLE

#i ncl ude “tdrv004. h”

HANDLE hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
unsi gned | ong Buf ferSi ze;
TD004_MEM O _BUF *pMem oBuf ;
unsi gned short *pVal ues;
/*

** wite 10 16bit words to MenorySpace 2, offset 0x00

** allocate enough nenory to hold the data structure + wite data

*/

Buf ferSize = (sizeof (TDO0O4_MEM O BUF) + 10*si zeof (unsi gned short));
pMen oBuf = (TD0O04_MEM O BUF*) mal | oc(BufferSize);

pVal ues = (unsigned char*)pMenl oBuf - >pDat a;

pVal ues|[0] 0x0001;

pVal ues| 1] 0x0002;

success = Devicel oControl (
hDevi ce, // TDRVO04 handl e
| OCTL_TD004 WRI TE_USHORT, /1 control code
pMemnl oBuf, /1 pointer to data buffer
Buf fer Si ze,
NULL,
0,
&NunByt es,
NULL

)

i f(!'success) {
/'l Process DeviceloControl () error

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 44 of 54

TEWS &<

TECHNOLOGIES

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.
ERROR_ACCESS_DENIED The specified Resource is not available for access.

ERROR_INVALID PARAMETER The specified Offset+Size exceeds the available
memory or 1/O space.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 45 of 54

TEWS &<

TECHNOLOGIES

3.1.3.16 IOCTL_TD004 WRITE_ULONG

This TDRV004 control function writes a number of unsigned long values to a Memory or 1/O area by
using DWORD accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed by the
parameter IpInBuffer to the driver. This data buffer can be enlarged to the desired needs. Due to
restrictions of the Windows 1/0-Manager, the data section must be included inside this structure.

The TD004_MEMIO_BUF structure has the following layout:

typedef struct {

TD004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */
} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TD004 RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TD004_RES MEM_2, the second PCI-I/O space found is
named TD004 RES 10_2 and so on.

The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address PCI Address-Type TD004 RESOURCE
Register
0 10 (reserved) TD004 RES 10 1
1 MEM (reserved) TD004 RES MEM 1
2 MEM (used by VHDL Example) TD004 RES MEM 2
3 10 (not implemented by default) TD004 RES 10 2
4 10 (not implemented by default) TD004 RES 10 3
5 MEM (not implemented by default) TD004 RES MEM 3

The PLX9030 default configuration utilizes only BARO to BAR2.
Offset

Specifies the offset into the memory or I/O space specified by Resource.
Size
This value specifies the amount of data items to read.

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data. The data pointer is typecasted into an unsigned long pointer.

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 46 of 54

TEWS &<

TECHNOLOGIES

Example

#i ncl ude “tdrv004. h”

HANDLE hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
unsi gned | ong Buf ferSi ze;
TD004_MEM O _BUF *pMem oBuf ;
unsi gned | ong *pVal ues;
/*

** wite 10 32bit dwords to MenorySpace 2, offset 0x00

** allocate enough nenory to hold the data structure + wite data
*/

Buf ferSize = (sizeof (TDO0O4_MEM O BUF) + 10*si zeof (unsi gned | ong));
pMen oBuf = (TD0O04_MEM O BUF*) mal | oc(BufferSize);

pVal ues = (unsigned char*)pMenl oBuf - >pDat a;

pVal ues|[0] 0x00000001;

pVal ues| 1] 0x00000002;

success = Devicel oControl (
hDevi ce, // TDRVO04 handl e
| OCTL_TD004 WRI TE_ULONG, /1 control code
pMemnl oBuf, /1 pointer to data buffer
Buf fer Si ze,
NULL,
0,
&NunByt es,
NULL

)

i f(!'success) {
/'l Process DeviceloControl () error

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 47 of 54

TEWS &<

TECHNOLOGIES

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.
ERROR_ACCESS_DENIED The specified Resource is not available for access.

ERROR_INVALID PARAMETER The specified Offset+Size exceeds the available
memory or 1/O space.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 48 of 54

TEWS &<

TECHNOLOGIES

3.1.3.17 10CTL_TD004 CONFIGURE_INT
This TDRV004 control function configures the polarity of the PLX PCI9030 interrupt sources.

A pointer to an unsigned long value containing the new interrupt configuration is passed to the driver
by the parameter IpInBuffer. This value is an OR’ed value using the following definitions (only one
value valid for each interrupt source):

value description
TDO004 _LINT1 POLHIGH Local Interrupt Source 1 HIGH active
TD004 LINT1 POLLOW Local Interrupt Source 1 LOW active
TDO004 _LINT2_POLHIGH Local Interrupt Source 2 HIGH active
TD004 LINT2 _POLLOW Local Interrupt Source 2 LOW active

EXAMPLE

#i ncl ude “tdrv004. h”

HANDLE hDevi ce;
BOOLEAN success;
ULONG NunmByt es;
unsi gned | ong I nt Confi g;
/*

** Setup LINTL to LOWpolarity, and LINT2 to HHGH polarity
*/
IntConfig = TDOO4_LI NT1_POLLOW | TDOO4_LI NT2_POLHI GH;
success = Devicel oControl (
hDevi ce, /1 TDRVO0O4 handl e
| OCTL_TDO004_CONFI GURE | NT, /1l control code
&l nt Confi g,
si zeof (unsi gned | ong),
NULL,
0,
&NunByt es, /1 nunmber of bytes transferred
NULL
)
i f(!'success) {
/1 Process DeviceloControl () error

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 49 of 54

TEWS &<

TECHNOLOGIES

ERROR CODES

ERROR_INVALID_PARAMETER The specified parameter is invalid.
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 50 of 54

3.1.3.18 IOCTL_TD004 WAIT_FOR_INT1

TEWS &<

TECHNOLOGIES

This TDRV004 control function enables the corresponding interrupt source, and waits for Local
Interrupt Source 1 (LINT1) to arrive. After the interrupt has arrived, this specific local interrupt source is

disabled.

A pointer to an int value containing the timeout in seconds is passed to the driver by the parameter

IpInBuffer. To wait indefinitely, specify -1 as timeout parameter.

dependent, and is most likely several microseconds.

specific functionality directly on interrupt level.

The delay between an incoming interrupt and the return of the described function is system-

For high interrupt load, a customized device driver should be used which serves the module-

EXAMPLE

#i ncl ude “tdrv004. h”

HANDLE hDevi ce;

BOOLEAN success;

ULONG NunmByt es;

i nt Ti meout ;

/*

** Wit at |east 5 seconds for incomng interrupt
*/

Ti meout = 5;

success = Devicel oControl (
hDevi ce, /1 TDRVO0O4 handl e
| OCTL_TD0O04 WAI T_FOR | NT1, /1l control code
&Ti meout ,
si zeof (i nt),
NULL,
0,

&NunByt es, /1l nunmber of bytes transferred

NULL
)
i f(success) {

/1 acknow edge interrupt source in FPGA | ogic

/1l to clear the PLX PCI 9030 Local Interrupt Source
} else {

/1 Process DeviceloControl () error

TDRV004-SW-65 — Windows 2000/XP Device Driver

Page 51 of 54

TEWS &<

TECHNOLOGIES

ERROR CODES

ERROR_BUSY The device is already busy waiting for this interrupt.

ERROR_SEM_TIMEOUT The interrupt has not arrived during the specified timeout.
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 52 of 54

3.1.3.19 IOCTL_TD004 WAIT_FOR_INT2

TEWS &<

TECHNOLOGIES

This TDRVO004 control function enables the corresponding interrupt source, and waits for Local
Interrupt Source 2 (LINT?2) to arrive. After the interrupt has arrived, this specific local interrupt source is

disabled.

A pointer to an int value containing the timeout in seconds is passed to the driver by the parameter

IpInBuffer. To wait indefinitely, specify -1 as timeout parameter.

dependent, and is most likely several microseconds.

specific functionality directly on interrupt level.

The delay between an incoming interrupt and the return of the described function is system-

For high interrupt load, a customized device driver should be used which serves the module-

EXAMPLE

#i ncl ude “tdrv004. h”

HANDLE hDevi ce;

BOOLEAN success;

ULONG NunmByt es;

i nt Ti meout ;

/*

** Wit at |east 5 seconds for incomng interrupt
*/

Ti meout = 5;

success = Devicel oControl (
hDevi ce, /1 TDRVO0O4 handl e
| OCTL_TD004 WAI T_FOR | NT2, /1l control code
&Ti meout ,
si zeof (i nt),
NULL,
0,

&NunByt es, /1 nunmber of bytes transferred

NULL
)
i f(success) {

/1 acknow edge interrupt source in FPGA | ogic

/1l to clear the PLX PCI 9030 Local Interrupt Source
} else {

/1 Process DeviceloControl () error

TDRV004-SW-65 — Windows 2000/XP Device Driver

Page 53 of 54

TEWS &<

TECHNOLOGIES

ERROR CODES

ERROR_BUSY The device is already busy waiting for this interrupt.
ERROR_SEM_TIMEOUT The interrupt has not arrived during the specified timeout.
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceloControl()

TDRV004-SW-65 — Windows 2000/XP Device Driver Page 54 of 54

	Introduction
	Installation
	Software Installation
	Windows 2000 / XP
	Confirming Windows 2000 / XP Installation

	Device Driver Programming
	Files and I/O Functions
	Opening a Device
	Closing a Device
	Device I/O Control Functions
	IOCTL_TD004_XSVFPLAY
	IOCTL_TD004_XSVFPOS
	IOCTL_TD004_XSVFLASTCMD
	IOCTL_TD004_RECONFIG
	IOCTL_TD004_SETWAITSTATES
	IOCTL_TD004_SETCLOCK
	IOCTL_TD004_SPIWRITE
	IOCTL_TD004_SPIREAD
	IOCTL_TD004_PLXWRITE
	IOCTL_TD004_PLXREAD
	IOCTL_TD004_READ_UCHAR
	IOCTL_TD004_READ_USHORT
	IOCTL_TD004_READ_ULONG
	IOCTL_TD004_WRITE_UCHAR
	IOCTL_TD004_WRITE_USHORT
	IOCTL_TD004_WRITE_ULONG
	IOCTL_TD004_CONFIGURE_INT
	IOCTL_TD004_WAIT_FOR_INT1
	IOCTL_TD004_WAIT_FOR_INT2

