
The Embedded I/O Company

TDRV004-S
Windows 2000/XP D

Reconfigurable F

Version 1.1.x

User Manu
Issue 1.1.2

June 2008

TEWS TECHNOLOGIES GmbH TEWS TEC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49 (0) 4101 4058 0
Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com

9190 Doub
Suite 127,
www.tews.
W-65
evice Driver
PGA

al

HNOLOGIES LLC
le Diamond Parkway,
Reno, NV 89521, USA
com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 2 of 54

TDRV004-SW-65

Windows 2000/XP Device Driver

Reconfigurable FPGA

Supported Modules:

TPMC630
TCP630

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2005-2008 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue July 11, 2005

1.0.1 Detailed description of TD004_RESOURCE added.
Manual filename changed in installation section.

March 31, 2006

1.1.0 Interrupt features added, filelist changed August 10, 2006

1.1.1 New Address TEWS LLC October 25, 2006

1.1.2 Files moved to subdirectory June 23, 2008

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 3 of 54

Table of Content
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Software Installation ...5
2.1.1 Windows 2000 / XP..5
2.1.2 Confirming Windows 2000 / XP Installation ...6

3 DEVICE DRIVER PROGRAMMING ... 7
3.1 Files and I/O Functions ..7

3.1.1 Opening a Device...7
3.1.2 Closing a Device ..9
3.1.3 Device I/O Control Functions ...10

3.1.3.1 IOCTL_TD004_XSVFPLAY ...12
3.1.3.2 IOCTL_TD004_XSVFPOS ...14
3.1.3.3 IOCTL_TD004_XSVFLASTCMD ...15
3.1.3.4 IOCTL_TD004_RECONFIG ...16
3.1.3.5 IOCTL_TD004_SETWAITSTATES ..17
3.1.3.6 IOCTL_TD004_SETCLOCK...19
3.1.3.7 IOCTL_TD004_SPIWRITE...22
3.1.3.8 IOCTL_TD004_SPIREAD ..25
3.1.3.9 IOCTL_TD004_PLXWRITE..27
3.1.3.10 IOCTL_TD004_PLXREAD ...29
3.1.3.11 IOCTL_TD004_READ_UCHAR ...31
3.1.3.12 IOCTL_TD004_READ_USHORT...34
3.1.3.13 IOCTL_TD004_READ_ULONG ...37
3.1.3.14 IOCTL_TD004_WRITE_UCHAR..40
3.1.3.15 IOCTL_TD004_WRITE_USHORT ...43
3.1.3.16 IOCTL_TD004_WRITE_ULONG..46
3.1.3.17 IOCTL_TD004_CONFIGURE_INT...49
3.1.3.18 IOCTL_TD004_WAIT_FOR_INT1..51
3.1.3.19 IOCTL_TD004_WAIT_FOR_INT2..53

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 4 of 54

1 Introduction
The TDRV004-SW-65 Windows WDM (Windows Driver Model) device driver is a kernel mode driver which
allows the operation of the TDRV004 product family on an Intel or Intel-compatible x86 Windows 2000 or
Windows XP operating system.

The standard file and device (I/O) functions (CreateFile, CloseHandle and DeviceIoControl) provide the
basic interface for opening and closing a resource handle and for performing device I/O control operations.

The TDRV004-SW-65 device driver supports the following features:

 Program and reconfigure onboard FPGA
 Program onboard clock generator using the Serial Programming Interface (SPI)
 Read/write FPGA registers (32bit / 16bit / 8bit)
 Read/write EEPROM blocks located in clock device using the Serial Programming Interface (SPI)
 Read/write specific PLX9030 registers

The TDRV004-SW-65 device driver supports the modules listed below:

TPMC630 User Programmable FPGA (PMC)

TCP630 User Programmable FPGA (cPCI)

To get more information about the features and use of the supported devices it is recommended to read
the manuals listed below.

TPMC630 / TCP630 User manual

TPMC630 / TCP630 Engineering Manual

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 5 of 54

2 Installation
Following files are located in directory TDRV004-SW-65 on the distribution media:

tdrv004.sys Windows WDM driver binary
tdrv004.inf Windows WDM installation script
tdrv004.h Header file with IOCTL codes and structure definitions
TDRV004-SW-65-1.1.2.pdf This document
\example\tdrv004exa.c Example application
\example\fpgaexa.zip Example FPGA design (XSVF file) as a ZIP archive
Release.txt Information about the Device Driver Release
ChangeLog.txt Release history

2.1 Software Installation

2.1.1 Windows 2000 / XP

This section describes how to install the TDRV004-SW-65 Device Driver on a Windows 2000 / XP
operating system.

After installing the hardware and boot-up your system, Windows 2000 / XP setup will show a "New
hardware found" dialog box.

1. The "Upgrade Device Driver Wizard" dialog box will appear on your screen.
Click "Next" button to continue.

2. In the following dialog box, choose "Search for a suitable driver for my device".
Click "Next" button to continue.

3. In Drive A, insert the TDRV001 driver disk; select "Disk Drive" in the dialog box.
Click "Next" button to continue.

4. Now the driver wizard should find a suitable device driver on the diskette.
Click "Next" button to continue.

5. Complete the upgrade device driver and click "Finish" to take all the changes effect.

6. Repeat the steps above for each found module of the TDRV004 product family.

7. Copy needed files (tdrv004.h, TDRV004-SW-65.pdf) to desired target directory.

After successful installation a device is created for each found module (TDRV004_1, TDRV004_2 ...).

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 6 of 54

2.1.2 Confirming Windows 2000 / XP Installation

To confirm that the driver has been properly loaded in Windows 2000 / XP, perform the following
steps:

1. From Windows 2000 / XP, open the "Control Panel" from "My Computer".

2. Click the "System" icon and choose the "Hardware" tab, and then click the "Device
Manager" button.

3. Click the "+" in front of "Other Devices".
The driver "TEWS TECHNOLOGIES TDRV004 Reconfigurable FPGA" should appear for
each installed device.

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 7 of 54

3 Device Driver Programming
The TDRV004-SW-65 Windows WDM device driver is a kernel mode device driver using Direct I/O.

The standard file and device (I/O) functions (CreateFile, CloseHandle and DeviceIoControl) provide
the basic interface for opening and closing a resource handle and for performing device I/O control
operations.

All of these standard Win32 functions are described in detail in the Windows Platform SDK
Documentation (Windows base services / Hardware / Device Input and Output).

For details refer to the Win32 Programmers Reference of your used programming tools (C++, Visual
Basic etc.)

3.1 Files and I/O Functions
The following section doesn’t contain a full description of the Win32 functions for interaction with the
TDRV004 device driver. Only the required parameters are described in detail.

3.1.1 Opening a Device

Before you can perform any I/O the TDRV004 device, it must be opened by invoking the CreateFile
function. CreateFile returns a handle that can be used to access the TDRV004 device.

HANDLE CreateFile(
LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile

);

PARAMETERS

lpFileName

Points to a null-terminated string, which specifies the name of the TDRV004 to open. The
lpFileName string should be of the form \\.\TDRV004_x to open the device x. The ending x is a
one-based number. The first device found by the driver is \\.\TDRV004_1, the second device
\\.\TDRV004_2 and so on.

dwDesiredAccess

Specifies the type of access to the TDRV004.
For the TDRV004, this parameter must be set to read-write access (GENERIC_READ |
GENERIC_WRITE)

dwShareMode

Set of bit flags that specify how the object can be shared. Set to 0.

lpSecurityAttributes

Pointer to a security structure. Set to NULL for TDRV004 devices.

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 8 of 54

dwCreationDistribution

Specifies which action to take on files that exist, and which action to take when files do not
exist. TDRV004 devices must be always opened OPEN_EXISTING.

dwFlagsAndAttributes

Specifies the file attributes and flags for the file. If overlapped I/O shall be used, this value may
be set to FILE_FLAG_OVERLAPPED.

hTemplateFile

This value must be NULL for TDRV004 devices.

RETURN VALUE

If the function succeeds, the return value is an open handle to the specified TDRV004 device. If the
function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call
GetLastError.

EXAMPLE

HANDLE hDevice;

hDevice = CreateFile(
“\\\\.\\TDRV004_1”,
GENERIC_READ | GENERIC_WRITE,
0,
NULL, // no security attrs
OPEN_EXISTING, // TDRV004 device always open existing
FILE_FLAG_OVERLAPPED, // overlapped I/O
NULL

);

if (hDevice == INVALID_HANDLE_VALUE) {
ErrorHandler("Could not open device"); // process error

}

SEE ALSO

CloseHandle(), Win32 documentation CreateFile()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 9 of 54

3.1.2 Closing a Device

The CloseHandle function closes an open TDRV004 handle.

BOOL CloseHandle(
HANDLE hDevice;

);

PARAMETERS

hDevice

Identifies an open TDRV004 handle.

RETURN VALUE

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

EXAMPLE

HANDLE hDevice;

if(!CloseHandle(hDevice)) {
ErrorHandler("Could not close device"); // process error

}

SEE ALSO

CreateFile (), Win32 documentation CloseHandle ()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 10 of 54

3.1.3 Device I/O Control Functions

The DeviceIoControl function sends a control code directly to a specified device driver, causing the
corresponding device to perform the specified operation.

BOOL DeviceIoControl(
HANDLE hDevice,
DWORD dwIoControlCode,
LPVOID lpInBuffer,
DWORD nInBufferSize,
LPVOID lpOutBuffer,
DWORD nOutBufferSize,
LPDWORD lpBytesReturned,
LPOVERLAPPED lpOverlapped

);

PARAMETERS

hDevice

Handle to the TDRV004 device that is to perform the operation.

dwIoControlCode

Specifies the control code for the operation. This value identifies the specific operation to be
performed. The following values are defined in tdrv004.h:

Value Meaning

IOCTL_TD004_XSVFPLAY Play an XSVF file for programming

IOCTL_TD004_XSVFPOS Retrieve current play-position in XSVF file

IOCTL_TD004_XSVFLASTCMD Get the last executed XSVF command

IOCTL_TD004_RECONFIG Trigger FPGA reconfiguration process

IOCTL_TD004_SETWAITSTATES Specify number of waitstates for programming

IOCTL_TD004_SETCLOCK Set clock generator parameters

IOCTL_TD004_SPIWRITE Write values to clock generator

IOCTL_TD004_SPIREAD Read values from clock generator

IOCTL_TD004_PLXWRITEWORD Write 16bit value to PLX9030 EEPROM

IOCTL_TD004_PLXREADWORD Read 16bit value from PLX9030 EEPROM

IOCTL_TD004_READ_UCHAR Read unsigned char values from FPGA

IOCTL_TD004_READ_USHORT Read unsigned short values from FPGA

IOCTL_TD004_READ_ULONG Read unsigned long values from FPGA

IOCTL_TD004_WRITE_UCHAR Write unsigned char values to FPGA

IOCTL_TD004_WRITE_USHORT Write unsigned short values to FPGA

IOCTL_TD004_WRITE_ULONG Write unsigned long values to FPGA

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 11 of 54

IOCTL_TD004_CONFIGURE_INT Configure local interrupt source polarity

IOCTL_TD004_WAIT_FOR_INT1 Wait for incoming Local Interrupt Source 1

IOCTL_TD004_WAIT_FOR_INT2 Wait for incoming Local Interrupt Source 2

See behind for more detailed information on each control code.

lpInBuffer

Pointer to a buffer that contains the data required to perform the operation.

nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer.

lpOutBuffer

Pointer to a buffer that receives the operation’s output data.

nOutBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer.

lpBytesReturned

Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed to
by lpOutBuffer. A valid pointer is required.

lpOverlapped

Pointer to an Overlapped structure.

To use these TDRV004 specific control codes, the header file tdrv004.h must be included.

RETURN VALUE

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Note that the TDRV004 device driver always returns standard Win32 error codes on failure.
Please refer to the Windows Platform SDK Documentation for a detailed description of the
returned error codes.

SEE ALSO

Win32 documentation DeviceIoControl ()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 12 of 54

3.1.3.1 IOCTL_TD004_XSVFPLAY

This TDRV004 control function programs the FPGA with a supplied XSVF file. A pointer to the caller’s
data buffer, where the content of the XSVF file is stored, is passed by the parameter lpInBuffer to the
driver. This control function may be called in Overlapped operation mode. During programming, the
progress can be monitored using IOCTL_TD004_XSVFPOS (see below). In non-overlapped mode,
this function will block until XSVF programming is finished. For information on building an XSVF file,
please refer to the Engineering Documentation of the TDRV004 product family.

The device driver is not able to verify the XSVF file, so please make sure that the supplied
XSVF is of a valid file format.

PROGRAMMING HINTS

Depending on the XSVF file, there might be a waiting period of approx. 15 seconds at the beginning of
programming. The programming of the delivered FPGA example design XSVF file should not take
much longer than 1 minute.

If the programming fails, try to increase the used waitstates with control function
IOCTL_TD004_SETWAITSTATES (refer to the corresponding section in this manual). Additionally, the
CLK1 should not be lower than 10MHz for programming.

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
unsigned char *pXsvfContent;
unsigned long XsvfFileSize;

/*
** Play an XSVF file to program the FPGA.
** The filecontent must be available in a local buffer,
** the size of the file must be stored in XsvfFileSize.
*/
success = DeviceIoControl (

hDevice, // TDRV004 handle
IOCTL_TD004_XSVFPLAY, // control code
pXsvfContent,
XsvfFileSize,
NULL,
0,
&NumBytes, // number of bytes transferred
NULL

);

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 13 of 54

if(!success) {
// Process DeviceIoControl() error

}

ERROR CODES

ERROR_BUSY The device is already busy with XSVF.

ERROR_INVALID_PARAMETER An error occurred during XSVF operation.
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 14 of 54

3.1.3.2 IOCTL_TD004_XSVFPOS

This TDRV004 control function returns the current byte in the XSVF file during programming with
IOCTL_TD004_XSVFPLAY. A pointer to an int value is passed by the parameter lpOutBuffer to the
driver. This control function can be used to monitor the programming progress.

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
int XsvfPos;

/*
** Get XSVF position to monitor progress
*/
success = DeviceIoControl (

hDevice, // TDRV004 handle
IOCTL_TD004_XSVFPOS, // control code
NULL,
0,
&XsvfPos,
sizeof(int),
&NumBytes, // number of bytes transferred
NULL

);
if(!success) {

// Process DeviceIoControl() error
}

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied output buffer is too small.
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 15 of 54

3.1.3.3 IOCTL_TD004_XSVFLASTCMD

This TDRV004 control function returns the number of the last executed XSVF command. This value
can be used to find errors inside the supplied XSVF file. This value refers to the line inside the ASCII
SVF file. A pointer to an int value is passed by the parameter lpOutBuffer to the driver.

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
int XsvfLastCmd;

/*
** Get XSVF position to monitor progress
*/
success = DeviceIoControl (

hDevice, // TDRV004 handle
IOCTL_TD004_XSVFLASTCMD, // control code
NULL,
0,
&XsvfLastCmd,
sizeof(int),
&NumBytes, // number of bytes transferred
NULL

);
if(!success) {

// Process DeviceIoControl() error
}

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied output buffer is too small.
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 16 of 54

3.1.3.4 IOCTL_TD004_RECONFIG

This TDRV004 control function starts the reconfiguration process of the FPGA. This control function
must be called after the FPGA is programmed using IOCTL_TD004_XSVFPLAY.No parameter is used
for this function.

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;

/*
** Issue Reconfiguration command
*/
success = DeviceIoControl (

hDevice, // TDRV004 handle
IOCTL_TD004_RECONFIG, // control code
NULL,
0,
NULL,
0,
&NumBytes, // number of bytes transferred
NULL

);
if(!success) {

// Process DeviceIoControl() error
}

ERROR CODES

ERROR_BUSY The device is already busy with XSVF or Reconfig.

ERROR_NOT_READY The DONE signal of the FPGA refused to change
state, the reconfiguration might be invalid.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 17 of 54

3.1.3.5 IOCTL_TD004_SETWAITSTATES

This TDRV004 control function configures the driver to use a number of waitstates during XSVF and
SPI programming. This might be necessary, if the local clock (CLK1) of the onboard clock generator is
configured to rather slow. The local programming interface is clocked with this frequency, which might
result in errors during programming for low CLK1 frequencies and a small amount of waitstates.

A pointer to waitstates (int value) is passed to the driver by the parameter lpInBuffer.

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
int WaitStates;

/*
** Setup 5 waitstates for CLK1 < 20MHz
*/
WaitStates = 5;
success = DeviceIoControl (

hDevice, // TDRV004 handle
IOCTL_TD004_SETWAITSTATES, // control code
&WaitStates,
sizeof(int),
NULL,
0,
&NumBytes, // number of bytes transferred
NULL

);
if(!success) {

// Process DeviceIoControl() error
}

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 18 of 54

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.

ERROR_INVALID_PARAMETER The specified waitstates are invalid (<0).
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 19 of 54

3.1.3.6 IOCTL_TD004_SETCLOCK

This TDRV004 control function configures the onboard clock generator. A pointer to the caller’s data
buffer (TD004_CLOCK_PARAM) is passed by the parameter lpInBuffer to the driver. The necessary
values can be calculated using the tool Cypress CycberClocks.

The TD004_CLOCK_PARAM structure has the following layout:

typedef struct {
unsigned char DeviceAddr;
unsigned char x09_ClkOE;
unsigned char x0C_DIV1SRCN;
unsigned char x10_InputCtrl;
unsigned char x40_CPumpPB;
unsigned char x41_CPumpPB;
unsigned char x42_POQcnt;
unsigned char x44_SwMatrix;
unsigned char x45_SwMatrix;
unsigned char x46_SwMatrix;
unsigned char x47_DIV2SRCN;

} TD004_CLOCK_PARAM;

DeviceAddr

Specifies the desired destination address. The CY27EE16 clock generator provides several
EEPROM banks as well as SRAM. If TD004_CLKADR_SRAM is specified, the values are
directly stored inside the volatile RAM area and take effect immediately. If
TD004_CLKADR_EEPROM is specified, the values are stored in the non-volatile area of the
clock generator, and the CY27EE16 loads it after the next power-up.

x09_ClkOE

Specifies which clock outputs shall be enabled.

x0C_DIV1SRCN

Specifies internal input source 1 and the corresponding frequency divider

x10_InputCtrl

Specifies value for the Input Pin Control register

x40_CPumpPB

Specifies value for Charge Pump and PB counter register

x41_CPumpPB

Specifies value for Charge Pump and PB counter register

x41_POQcnt

Specifies value for PO and Q counter register

x44_SwMatrix

Specifies value for Switching Matrix Register

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 20 of 54

x45_SwMatrix

Specifies value for Switching Matrix Register

x46_SwMatrix

Specifies value for Switching Matrix Register

x47_DIV2SRCN

Specifies internal input source 2 and the corresponding frequency divider

Please refer to the Cypress CY27EE16 user manual for detailed explanation of the above
register values.

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TD004_CLOCK_PARAM ClockParam;

/*
** Setup clock generator (SRAM):
** CLK1: 50.0MHz CLK2: 20.0MHz
** CLK3: 10.0MHz CLK4: 1.0MHz
** CLK5: 0.2MHz CLK6: -off-
*/
ClockParam.DeviceAddress = TD004_CLKADR_SRAM;
ClockParam.x09_ClkOE = 0x6f;
ClockParam.x0C_DIV1SRCN = 0x64;
ClockParam.x10_InputCtrl = 0x50;
ClockParam.x40_CPumpPB = 0xc0;
ClockParam.x41_CPumpPB = 0x03;
ClockParam.x42_POQcnt = 0x81;
ClockParam.x44_SwMatrix = 0x42;
ClockParam.x45_SwMatrix = 0x9f;
ClockParam.x46_SwMatrix = 0x3f;
ClockParam.x47_DIV2SRCN = 0xe4;
success = DeviceIoControl (

hDevice, // TDRV004 handle
IOCTL_TD004_SETCLOCK, // control code
&ClockParam, // input buffer
sizeof(TD004_CLOCK_PARAM),
NULL,
0,

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 21 of 54

&NumBytes, // number of bytes transferred
NULL

);

if(!success) {
// Process DeviceIoControl() error

}

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.

ERROR_BUSY The device is already busy with an SPI operation.

ERROR_NOT_READY A device error occurred during programming.

ERROR_INVALID_PARAMETER Tried to disable CLK1. This is not allowed.
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 22 of 54

3.1.3.7 IOCTL_TD004_SPIWRITE

This TDRV004 control function writes up to 256 unsigned char values to a specific sub-address of a
Serial Programming Interface (SPI) address. A pointer to the caller’s data buffer (TD004_SPI_BUF) is
passed by the parameter lpInBuffer to the driver. Due to restrictions of the Windows I/O-Manager, the
data section must be included inside this structure.

The TD004_SPI_BUF structure has the following layout:

typedef struct {
unsigned char SpiAddr;
unsigned char SubAddr;
unsigned long len;
unsigned char pData[1]; /* dynamically expandable */

} TD004_SPI_BUF;

SpiAddr

Specifies the Serial Programming Interface (SPI) address of the desired target. See file
tdrv004.h for definitions.

SubAddr

Specifies the sub-address (starting offset).

len

This value specifies the amount of data items to write. A maximum of 256 is allowed.

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data. The data must be stored inside the structure, no pointer allowed.

Do not use this control function to setup the clockgenerator. Please use control function
IOCTL_TD004_SETCLOCK instead.

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 23 of 54

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
unsigned long BufferSize;
TD004_SPI_BUF *pSpiBuf;

/*
** write 5 bytes to EEPROM block 1, offset 0x00
** allocate enough memory to hold the data structure + write data
*/
BufferSize = (sizeof(TD004_SPI_BUF) + 5*sizeof(unsigned char));
pSpiBuf = (TD004_SPI_BUF*)malloc(BufferSize);
pSpiBuf->SpiAddr = TD004_CLKADDR_EEBLOCK1;
pSpiBuf->SubAddr = 0x00;
pSpiBuf->len = 5;
pSpiBuf->pData[0] = 0x01;
pSpiBuf->pData[0] = 0x02;
pSpiBuf->pData[0] = 0x03;
pSpiBuf->pData[0] = 0x04;
pSpiBuf->pData[0] = 0x05;

success = DeviceIoControl (
hDevice, // TDRV004 handle
IOCTL_TD004_SPIWRITE, // control code
pSpiBuf, // input buffer
BufferSize,
NULL,
0,
&NumBytes, // number of bytes transferred
NULL

);
if(!success) {

// Process DeviceIoControl() error
}

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 24 of 54

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.

ERROR_BUSY The device is already busy with an SPI operation.

ERROR_NOT_READY A device error occurred during programming.

ERROR_INVALID_PARAMETER The specified SubAddr+len exceeds 256, or len is
invalid.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 25 of 54

3.1.3.8 IOCTL_TD004_SPIREAD

This TDRV004 control function reads up to 256 unsigned char values from a specific sub-address of a
Serial Programming Interface (SPI) address. A pointer to the caller’s data buffer (TD004_SPI_BUF) is
passed by the parameter lpInBuffer to the driver. Due to restrictions of the Windows I/O-Manager, the
data section must be included inside this structure.

The TD004_SPI_BUF structure has the following layout:

typedef struct {
unsigned char SpiAddr;
unsigned char SubAddr;
unsigned long len;
unsigned char pData[1]; /* dynamically expandable */

} TD004_SPI_BUF;

SpiAddr

Specifies the Serial Programming Interface (SPI) address of the desired target. See file
tdrv004.h for definitions.

SubAddr

Specifies the sub-address (starting offset).

len

This value specifies the amount of data items to read. A maximum of 256 is allowed.

pData

The values are copied to this buffer. It must be large enough to hold the specified amount of
data. The data space must be located inside the structure, no pointer allowed.

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
unsigned long BufferSize;
TD004_SPI_BUF *pSpiBuf;

/*
** read 5 bytes from EEPROM block 1, offset 0x00
** allocate enough memory to hold the data structure + read data
*/
BufferSize = (sizeof(TD004_SPI_BUF) + 5*sizeof(unsigned char));
pSpiBuf = (TD004_SPI_BUF*)malloc(BufferSize);
pSpiBuf->SpiAddr = TD004_CLKADDR_EEBLOCK1;
pSpiBuf->SubAddr = 0x00;

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 26 of 54

pSpiBuf->len = 5;

success = DeviceIoControl (
hDevice, // TDRV004 handle
IOCTL_TD004_SPIREAD, // control code
pSpiBuf, // input buffer
BufferSize,
NULL,
0,
&NumBytes, // number of bytes transferred
NULL

);
if(!success) {

// Process DeviceIoControl() error
}

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.

ERROR_BUSY The device is already busy with an SPI operation.

ERROR_NOT_READY A device error occurred during programming.

ERROR_INVALID_PARAMETER The specified SubAddr+len exceeds 256, or len is
invalid.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 27 of 54

3.1.3.9 IOCTL_TD004_PLXWRITE

This TDRV004 control function writes an unsigned short value to a specific PLX9030 memory offset. A
pointer to the caller’s data buffer (TD004_PLX_BUF) is passed by the parameter lpInBuffer to the
driver.

The TD004_PLX_BUF structure has the following layout:

typedef struct {
unsigned long Offset;
unsigned short Value;

} TD004_PLX_BUF;

Offset

Specifies the offset into the PLX9030 EEPROM, where the supplied data word should be
written. The offset must be specified as even byte-address.
Following offsets are available:

Offset Access

00h – 0Ch R

0Eh R / W

10h – 26h R

28h – 36h R / W

38h – 3Ah R

3Ch – 4Ah R / W

4Ch – 4Eh R

50h – 5Eh R / W

60h – 62h R

64h – 7Eh R / W

80h – 86h R

88h - FEh R / W
Refer to the PLX9030 User Manual for detailed information on these registers.

Value

This value specifies a 16bit word that should be written to the specified offset.

Note that the PLX9030 reloads the new configuration from the EEPROM after a PCI reset, i.e.
the system must be rebooted to make PLX9030 dependent changes take effect.

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 28 of 54

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TD004_PLX_BUF PlxBuf;

/*
** Change the Subsystem Vendor ID to TEWS TECHNOLOGIES (0x1498)
*/
PlxBuf.Offset = 0x0E;
PlxBuf.Value = 0x1498

success = DeviceIoControl (
hDevice, // TDRV004 handle
IOCTL_TD004_PLXWRITE, // control code
&PlxBuf, // input buffer
sizeof(TD004_PLX_BUF),
NULL,
0,
&NumBytes, // number of bytes transferred
NULL

);
if(!success) {

// Process DeviceIoControl() error
}

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.

ERROR_BUSY The device is busy with XSVF or Reconfig.

ERROR_INVALID_PARAMETER The specified Offset is not valid, or read-only.
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 29 of 54

3.1.3.10 IOCTL_TD004_PLXREAD

This TDRV004 control function reads an unsigned short value from a specific PLX9030 memory offset.
A pointer to the caller’s data buffer (TD004_PLX_BUF) is passed by the parameter lpOutBuffer to the
driver.

The TD004_PLX_BUF structure has the following layout:

typedef struct {
unsigned long Offset;
unsigned short Value;

} TD004_PLX_BUF;

Offset

Specifies the offset into the PLX9030 EEPROM, from where the supplied data word should be
retrieved. The offset must be specified as even byte-address.
Following offsets are available:

Offset Access

00h – 0Ch R

0Eh R / W

10h – 26h R

28h – 36h R / W

38h – 3Ah R

3Ch – 4Ah R / W

4Ch – 4Eh R

50h – 5Eh R / W

60h – 62h R

64h – 7Eh R / W

80h – 86h R

88h - FEh R / W
Refer to the PLX9030 User Manual for detailed information on these registers.

Value

This value holds the retrieved 16bit word.

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 30 of 54

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TD004_PLX_BUF PlxBuf;

/*
** Read Subsystem ID
*/
PlxBuf.Offset = 0x0C;

success = DeviceIoControl (
hDevice, // TDRV004 handle
IOCTL_TD004_PLXREAD, // control code
&PlxBuf, // input buffer
sizeof(TD004_PLX_BUF),
NULL,
0,
&NumBytes, // number of bytes transferred
NULL

);
if(success) {

printf(“SubsystemVendorID = 0x%04X\n”, PlxBuf.Value);
} else {

// Process DeviceIoControl() error
}

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.

ERROR_BUSY The device is busy with XSVF or Reconfig.

ERROR_INVALID_PARAMETER The specified Offset is not valid.
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 31 of 54

3.1.3.11 IOCTL_TD004_READ_UCHAR

This TDRV004 control function reads a number of unsigned char values from a Memory or I/O area by
using BYTE accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed by the
parameter lpOutBuffer to the driver. This data buffer can be enlarged to the desired needs. Due to
restrictions of the Windows I/O-Manager, the data section must be included inside this structure.

The TD004_MEMIO_BUF structure has the following layout:

typedef struct {
TD004_RESOURCE Resource;
unsigned long Offset;
unsigned long Size;
unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TD004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TD004_RES_MEM_2, the second PCI-I/O space found is
named TD004_RES_IO_2 and so on.
The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

The PLX9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the PCI-Memory or PCI-I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

pData

The received values are copied into this buffer. It must be large enough to hold the specified
amount of data.

PCI Base
Address
Register

PCI Address-Type TD004_RESOURCE

0 IO (reserved) TD004_RES_IO_1
1 MEM (reserved) TD004_RES_MEM_1
2 MEM (used by VHDL Example) TD004_RES_MEM_2
3 IO (not implemented by default) TD004_RES_IO_2
4 IO (not implemented by default) TD004_RES_IO_3
5 MEM (not implemented by default) TD004_RES_MEM_3

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 32 of 54

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
unsigned long BufferSize;
TD004_MEMIO_BUF *pMemIoBuf;
unsigned char *pValues;

/*
** read 50 bytes from MemorySpace 2, offset 0x00
** allocate enough memory to hold the data structure + read data
*/
BufferSize = (sizeof(TD004_MEMIO_BUF) + 50*sizeof(unsigned char));
pMemIoBuf = (TD004_MEMIO_BUF*)malloc(BufferSize);

success = DeviceIoControl (
hDevice, // TDRV004 handle
IOCTL_TD004_READ_UCHAR, // control code
NULL,
0,
pMemIoBuf, // buffer which receives the data
BufferSize,
&NumBytes, // number of bytes transferred
NULL

);
if(success) {

// Process data
pValues = (unsigned char*)pMemIoBuf->pData;

} else {
// Process DeviceIoControl() error

}

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 33 of 54

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.

ERROR_ACCESS_DENIED The specified Resource is not available for access.

ERROR_INVALID_PARAMETER The specified Offset+Size exceeds the available
memory or I/O space.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 34 of 54

3.1.3.12 IOCTL_TD004_READ_USHORT

This TDRV004 control function reads a number of unsigned short values from a Memory or I/O area
by using WORD accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed by the
parameter lpOutBuffer to the driver. This data buffer can be enlarged to the desired needs. Due to
restrictions of the Windows I/O-Manager, the data section must be included inside this structure.

The TD004_MEMIO_BUF structure has the following layout:

typedef struct {
TD004_RESOURCE Resource;
unsigned long Offset;
unsigned long Size;
unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TD004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TD004_RES_MEM_2, the second PCI-I/O space found is
named TD004_RES_IO_2 and so on.
The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

The PLX9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

pData

The received values are copied into this buffer. It must be large enough to hold the specified
amount of data. The data pointer is typecasted into an unsigned short pointer.

PCI Base
Address
Register

PCI Address-Type TD004_RESOURCE

0 IO (reserved) TD004_RES_IO_1
1 MEM (reserved) TD004_RES_MEM_1
2 MEM (used by VHDL Example) TD004_RES_MEM_2
3 IO (not implemented by default) TD004_RES_IO_2
4 IO (not implemented by default) TD004_RES_IO_3
5 MEM (not implemented by default) TD004_RES_MEM_3

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 35 of 54

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
unsigned long BufferSize;
TD004_MEMIO_BUF *pMemIoBuf;
unsigned short *pValues;

/*
** read 50 16bit words from MemorySpace 2, offset 0x00
** allocate enough memory to hold the data structure + read data
*/
BufferSize = (sizeof(TD004_MEMIO_BUF) + 50*sizeof(unsigned short));
pMemIoBuf = (TD004_MEMIO_BUF*)malloc(BufferSize);

success = DeviceIoControl (
hDevice, // TDRV004 handle
IOCTL_TD004_READ_USHORT, // control code
NULL,
0,
pMemIoBuf, // buffer which receives the data
BufferSize,
&NumBytes, // number of bytes transferred
NULL

);
if(success) {

// Process data
pValues = (unsigned short*)pMemIoBuf->pData;

} else {
// Process DeviceIoControl() error

}

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 36 of 54

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.

ERROR_ACCESS_DENIED The specified Resource is not available for access.

ERROR_INVALID_PARAMETER The specified Offset+Size exceeds the available
memory or I/O space.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 37 of 54

3.1.3.13 IOCTL_TD004_READ_ULONG

This TDRV004 control function reads a number of unsigned long values from a Memory or I/O area by
using DWORD accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed by the
parameter lpOutBuffer to the driver. This data buffer can be enlarged to the desired needs. Due to
restrictions of the Windows I/O-Manager, the data section must be included inside this structure.

The TD004_MEMIO_BUF structure has the following layout:

typedef struct {
TD004_RESOURCE Resource;
unsigned long Offset;
unsigned long Size;
unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TD004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TD004_RES_MEM_2, the second PCI-I/O space found is
named TD004_RES_IO_2 and so on.
The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

The PLX9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

pData

The received values are copied into this buffer. It must be large enough to hold the specified
amount of data. The data pointer is typecasted into an unsigned long pointer.

PCI Base
Address
Register

PCI Address-Type TD004_RESOURCE

0 IO (reserved) TD004_RES_IO_1
1 MEM (reserved) TD004_RES_MEM_1
2 MEM (used by VHDL Example) TD004_RES_MEM_2
3 IO (not implemented by default) TD004_RES_IO_2
4 IO (not implemented by default) TD004_RES_IO_3
5 MEM (not implemented by default) TD004_RES_MEM_3

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 38 of 54

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
unsigned long BufferSize;
TD004_MEMIO_BUF *pMemIoBuf;
unsigned long *pValues;

/*
** read 50 32bit dwords from MemorySpace 2, offset 0x00
** allocate enough memory to hold the data structure + read data
*/
BufferSize = (sizeof(TD004_MEMIO_BUF) + 50*sizeof(unsigned short));
pMemIoBuf = (TD004_MEMIO_BUF*)malloc(BufferSize);

success = DeviceIoControl (
hDevice, // TDRV004 handle
IOCTL_TD004_READ_ULONG, // control code
NULL,
0,
pMemIoBuf, // buffer which receives the data
BufferSize,
&NumBytes, // number of bytes transferred
NULL

);
if(success) {

// Process data
pValues = (unsigned long*)pMemIoBuf->pData;

} else {
// Process DeviceIoControl() error

}

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 39 of 54

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.

ERROR_ACCESS_DENIED The specified Resource is not available for access.

ERROR_INVALID_PARAMETER The specified Offset+Size exceeds the available
memory or I/O space.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 40 of 54

3.1.3.14 IOCTL_TD004_WRITE_UCHAR

This TDRV004 control function writes a number of unsigned char values to a Memory or I/O area by
using BYTE accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed by the
parameter lpInBuffer to the driver. This data buffer can be enlarged to the desired needs. Due to
restrictions of the Windows I/O-Manager, the data section must be included inside this structure.

The TD004_MEMIO_BUF structure has the following layout:

typedef struct {
TD004_RESOURCE Resource;
unsigned long Offset;
unsigned long Size;
unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TD004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TD004_RES_MEM_2, the second PCI-I/O space found is
named TD004_RES_IO_2 and so on.
The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

The PLX9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to write.

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data.

PCI Base
Address
Register

PCI Address-Type TD004_RESOURCE

0 IO (reserved) TD004_RES_IO_1
1 MEM (reserved) TD004_RES_MEM_1
2 MEM (used by VHDL Example) TD004_RES_MEM_2
3 IO (not implemented by default) TD004_RES_IO_2
4 IO (not implemented by default) TD004_RES_IO_3
5 MEM (not implemented by default) TD004_RES_MEM_3

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 41 of 54

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
unsigned long BufferSize;
TD004_MEMIO_BUF *pMemIoBuf;
unsigned char *pValues;

/*
** write 10 byte to MemorySpace 2, offset 0x00
** allocate enough memory to hold the data structure + write data
*/
BufferSize = (sizeof(TD004_MEMIO_BUF) + 10*sizeof(unsigned char));
pMemIoBuf = (TD004_MEMIO_BUF*)malloc(BufferSize);
pValues = (unsigned char*)pMemIoBuf->pData;
pValues[0] = 0x01;
pValues[1] = 0x02;
...

success = DeviceIoControl (
hDevice, // TDRV004 handle
IOCTL_TD004_WRITE_UCHAR, // control code
pMemIoBuf, // pointer to data buffer
BufferSize,
NULL,
0,
&NumBytes,
NULL

);
if(!success) {

// Process DeviceIoControl() error
}

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 42 of 54

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.

ERROR_ACCESS_DENIED The specified Resource is not available for access.

ERROR_INVALID_PARAMETER The specified Offset+Size exceeds the available
memory or I/O space.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 43 of 54

3.1.3.15 IOCTL_TD004_WRITE_USHORT

This TDRV004 control function writes a number of unsigned short values to a Memory or I/O area by
using WORD accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed by the
parameter lpInBuffer to the driver. This data buffer can be enlarged to the desired needs. Due to
restrictions of the Windows I/O-Manager, the data section must be included inside this structure.

The TD004_MEMIO_BUF structure has the following layout:

typedef struct {
TD004_RESOURCE Resource;
unsigned long Offset;
unsigned long Size;
unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TD004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TD004_RES_MEM_2, the second PCI-I/O space found is
named TD004_RES_IO_2 and so on.
The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

The PLX9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data. The data pointer is typecasted into an unsigned short pointer.

PCI Base
Address
Register

PCI Address-Type TD004_RESOURCE

0 IO (reserved) TD004_RES_IO_1
1 MEM (reserved) TD004_RES_MEM_1
2 MEM (used by VHDL Example) TD004_RES_MEM_2
3 IO (not implemented by default) TD004_RES_IO_2
4 IO (not implemented by default) TD004_RES_IO_3
5 MEM (not implemented by default) TD004_RES_MEM_3

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 44 of 54

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
unsigned long BufferSize;
TD004_MEMIO_BUF *pMemIoBuf;
unsigned short *pValues;

/*
** write 10 16bit words to MemorySpace 2, offset 0x00
** allocate enough memory to hold the data structure + write data
*/
BufferSize = (sizeof(TD004_MEMIO_BUF) + 10*sizeof(unsigned short));
pMemIoBuf = (TD004_MEMIO_BUF*)malloc(BufferSize);
pValues = (unsigned char*)pMemIoBuf->pData;
pValues[0] = 0x0001;
pValues[1] = 0x0002;
...

success = DeviceIoControl (
hDevice, // TDRV004 handle
IOCTL_TD004_WRITE_USHORT, // control code
pMemIoBuf, // pointer to data buffer
BufferSize,
NULL,
0,
&NumBytes,
NULL

);
if(!success) {

// Process DeviceIoControl() error
}

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 45 of 54

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.

ERROR_ACCESS_DENIED The specified Resource is not available for access.

ERROR_INVALID_PARAMETER The specified Offset+Size exceeds the available
memory or I/O space.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 46 of 54

3.1.3.16 IOCTL_TD004_WRITE_ULONG

This TDRV004 control function writes a number of unsigned long values to a Memory or I/O area by
using DWORD accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed by the
parameter lpInBuffer to the driver. This data buffer can be enlarged to the desired needs. Due to
restrictions of the Windows I/O-Manager, the data section must be included inside this structure.

The TD004_MEMIO_BUF structure has the following layout:

typedef struct {
TD004_RESOURCE Resource;
unsigned long Offset;
unsigned long Size;
unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TD004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TD004_RES_MEM_2, the second PCI-I/O space found is
named TD004_RES_IO_2 and so on.
The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

The PLX9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data. The data pointer is typecasted into an unsigned long pointer.

PCI Base
Address
Register

PCI Address-Type TD004_RESOURCE

0 IO (reserved) TD004_RES_IO_1
1 MEM (reserved) TD004_RES_MEM_1
2 MEM (used by VHDL Example) TD004_RES_MEM_2
3 IO (not implemented by default) TD004_RES_IO_2
4 IO (not implemented by default) TD004_RES_IO_3
5 MEM (not implemented by default) TD004_RES_MEM_3

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 47 of 54

Example

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
unsigned long BufferSize;
TD004_MEMIO_BUF *pMemIoBuf;
unsigned long *pValues;

/*
** write 10 32bit dwords to MemorySpace 2, offset 0x00
** allocate enough memory to hold the data structure + write data
*/
BufferSize = (sizeof(TD004_MEMIO_BUF) + 10*sizeof(unsigned long));
pMemIoBuf = (TD004_MEMIO_BUF*)malloc(BufferSize);
pValues = (unsigned char*)pMemIoBuf->pData;
pValues[0] = 0x00000001;
pValues[1] = 0x00000002;
...

success = DeviceIoControl (
hDevice, // TDRV004 handle
IOCTL_TD004_WRITE_ULONG, // control code
pMemIoBuf, // pointer to data buffer
BufferSize,
NULL,
0,
&NumBytes,
NULL

);
if(!success) {

// Process DeviceIoControl() error
}

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 48 of 54

ERROR CODES

ERROR_INVALID_USER_BUFFER The size of the supplied input buffer is too small.

ERROR_ACCESS_DENIED The specified Resource is not available for access.

ERROR_INVALID_PARAMETER The specified Offset+Size exceeds the available
memory or I/O space.

All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 49 of 54

3.1.3.17 IOCTL_TD004_CONFIGURE_INT

This TDRV004 control function configures the polarity of the PLX PCI9030 interrupt sources.

A pointer to an unsigned long value containing the new interrupt configuration is passed to the driver
by the parameter lpInBuffer. This value is an OR’ed value using the following definitions (only one
value valid for each interrupt source):

value description

TD004_LINT1_POLHIGH Local Interrupt Source 1 HIGH active

TD004_LINT1_POLLOW Local Interrupt Source 1 LOW active

TD004_LINT2_POLHIGH Local Interrupt Source 2 HIGH active

TD004_LINT2_POLLOW Local Interrupt Source 2 LOW active

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
unsigned long IntConfig;

/*
** Setup LINT1 to LOW polarity, and LINT2 to HIGH polarity
*/
IntConfig = TD004_LINT1_POLLOW | TD004_LINT2_POLHIGH;
success = DeviceIoControl (

hDevice, // TDRV004 handle
IOCTL_TD004_CONFIGURE_INT, // control code
&IntConfig,
sizeof(unsigned long),
NULL,
0,
&NumBytes, // number of bytes transferred
NULL

);
if(!success) {

// Process DeviceIoControl() error
}

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 50 of 54

ERROR CODES

ERROR_INVALID_PARAMETER The specified parameter is invalid.
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 51 of 54

3.1.3.18 IOCTL_TD004_WAIT_FOR_INT1

This TDRV004 control function enables the corresponding interrupt source, and waits for Local
Interrupt Source 1 (LINT1) to arrive. After the interrupt has arrived, this specific local interrupt source is
disabled.

A pointer to an int value containing the timeout in seconds is passed to the driver by the parameter
lpInBuffer. To wait indefinitely, specify -1 as timeout parameter.

The delay between an incoming interrupt and the return of the described function is system-
dependent, and is most likely several microseconds.

For high interrupt load, a customized device driver should be used which serves the module-
specific functionality directly on interrupt level.

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
int Timeout;

/*
** Wait at least 5 seconds for incoming interrupt
*/
Timeout = 5;
success = DeviceIoControl (

hDevice, // TDRV004 handle
IOCTL_TD004_WAIT_FOR_INT1, // control code
&Timeout,
sizeof(int),
NULL,
0,
&NumBytes, // number of bytes transferred
NULL

);
if(success) {

// acknowledge interrupt source in FPGA logic
// to clear the PLX PCI9030 Local Interrupt Source

} else {
// Process DeviceIoControl() error

}

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 52 of 54

ERROR CODES

ERROR_BUSY The device is already busy waiting for this interrupt.

ERROR_SEM_TIMEOUT The interrupt has not arrived during the specified timeout.
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 53 of 54

3.1.3.19 IOCTL_TD004_WAIT_FOR_INT2

This TDRV004 control function enables the corresponding interrupt source, and waits for Local
Interrupt Source 2 (LINT2) to arrive. After the interrupt has arrived, this specific local interrupt source is
disabled.

A pointer to an int value containing the timeout in seconds is passed to the driver by the parameter
lpInBuffer. To wait indefinitely, specify -1 as timeout parameter.

The delay between an incoming interrupt and the return of the described function is system-
dependent, and is most likely several microseconds.

For high interrupt load, a customized device driver should be used which serves the module-
specific functionality directly on interrupt level.

EXAMPLE

#include “tdrv004.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
int Timeout;

/*
** Wait at least 5 seconds for incoming interrupt
*/
Timeout = 5;
success = DeviceIoControl (

hDevice, // TDRV004 handle
IOCTL_TD004_WAIT_FOR_INT2, // control code
&Timeout,
sizeof(int),
NULL,
0,
&NumBytes, // number of bytes transferred
NULL

);
if(success) {

// acknowledge interrupt source in FPGA logic
// to clear the PLX PCI9030 Local Interrupt Source

} else {
// Process DeviceIoControl() error

}

TDRV004-SW-65 – Windows 2000/XP Device Driver Page 54 of 54

ERROR CODES

ERROR_BUSY The device is already busy waiting for this interrupt.

ERROR_SEM_TIMEOUT The interrupt has not arrived during the specified timeout.
All other returned error codes are system error conditions.

SEE ALSO

Win32 documentation DeviceIoControl()

	Introduction
	Installation
	Software Installation
	Windows 2000 / XP
	Confirming Windows 2000 / XP Installation

	Device Driver Programming
	Files and I/O Functions
	Opening a Device
	Closing a Device
	Device I/O Control Functions
	IOCTL_TD004_XSVFPLAY
	IOCTL_TD004_XSVFPOS
	IOCTL_TD004_XSVFLASTCMD
	IOCTL_TD004_RECONFIG
	IOCTL_TD004_SETWAITSTATES
	IOCTL_TD004_SETCLOCK
	IOCTL_TD004_SPIWRITE
	IOCTL_TD004_SPIREAD
	IOCTL_TD004_PLXWRITE
	IOCTL_TD004_PLXREAD
	IOCTL_TD004_READ_UCHAR
	IOCTL_TD004_READ_USHORT
	IOCTL_TD004_READ_ULONG
	IOCTL_TD004_WRITE_UCHAR
	IOCTL_TD004_WRITE_USHORT
	IOCTL_TD004_WRITE_ULONG
	IOCTL_TD004_CONFIGURE_INT
	IOCTL_TD004_WAIT_FOR_INT1
	IOCTL_TD004_WAIT_FOR_INT2

