
The Embedded I/O Company

TDRV004-S
LynxOS Device

Reconfigurable F

Version 1.1.x

User Manu
Issue 1.1.0

April 2008

TEWS TECHNOLOGIES GmbH TEWS TEC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49 (0) 4101 4058 0
Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com

9190 Doub
Suite 127,
www.tews.
W-72
Driver
PGA

al

HNOLOGIES LLC
le Diamond Parkway,
Reno, NV 89521, USA
com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

TDRV004-SW-72 - LynxOS Device Driver Page 2 of 50

TDRV004-SW-72

LynxOS Device Driver

Reconfigurable FPGA

Supported Modules:
TPMC630
TCP630

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2006-2008 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue January 25, 2006

1.1.0 General revision, file list changed, interrupt feature added April 22, 2008

TDRV004-SW-72 - LynxOS Device Driver Page 3 of 50

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Device Driver Installation ...6
2.1.1 Static Installation ..6

2.1.1.1 Build the driver object ...6
2.1.1.2 Create Device Information Declaration ..6
2.1.1.3 Modify the Device and Driver Configuration File ..6
2.1.1.4 Rebuild the Kernel ..7

2.1.2 Dynamic Installation ...8
2.1.2.1 Build the driver object ...8
2.1.2.2 Create Device Information Declaration ..8
2.1.2.3 Uninstall dynamic loaded driver ...8

2.1.3 Device Information Definition File ..9
2.1.4 Configuration File: CONFIG.TBL ...10

3 TDRV004 DEVICE DRIVER PROGRAMMING... 11
3.1 open() ...11
3.2 close()...13
3.3 ioctl() ..14

3.3.1 TD004_C_XSVFPLAY ...16
3.3.2 TD004_C_XSVFPOS...18
3.3.3 TD004_C_XSVLASTCMD ...19
3.3.4 TD004_C_RECONFIG...20
3.3.5 TD004_C_SETWAITSTATES..21
3.3.6 TD004_C_SETCLOCK ..22
3.3.7 TD004_C_SPIWRITE ..25
3.3.8 TD004_C_SPIREAD..27
3.3.9 TD004_C_PLXWRITE ...29
3.3.10 TD004_C_PLXREAD...31
3.3.11 TD004_C_READ_UCHAR...33
3.3.12 TD004_C_READ_USHORT ..35
3.3.13 TD004_C_READ_ULONG...37
3.3.14 TD004_C_WRITE_UCHAR...39
3.3.15 TD004_C_WRITE_USHORT...41
3.3.16 TD004_C_WRITE_ULONG...43
3.3.17 TD004_C_CONFIGURE_INT..45
3.3.18 TD004_C_WAIT_FOR_INT1...46
3.3.19 TD004_C_WAIT_FOR_INT2...48

4 DEBUGGING AND DIAGNOSTIC.. 50

TDRV004-SW-72 - LynxOS Device Driver Page 4 of 50

1 Introduction
The TDRV004-SW-72 LynxOS device driver allows the operation of the TPMC630 product family on
LynxOS platforms with DRM based PCI interface.

This driver was successfully tested on a TEWS TECHNOLOGIES TVME8240 PowerPC board and on
an Intel x86 native system.

The standard file (I/O) functions (open, close, ioctl) provide the basic interface for opening and closing
a file descriptor and for performing device I/O and configuration operations.

The TDRV004 device driver includes the following functions:

 Program and reconfigure onboard FPGA
 Program onboard clock generator using the Serial Programming Interface (SPI)
 Read/write FPGA registers (32bit / 16bit / 8bit)
 Read/write EEPROM blocks located in clock device using the

Serial Programming Interface (SPI)
 Read/write specific PLX9030 registers
 Wait for interrupt events on LINT1 or LINT2

The TDRV004-SW-72 supports the modules listed below:

TPMC630 Reconfigurable FPGA with
64 TTL I/O / 32 Differential I/O Lines

PMC

TCP630 Reconfigurable FPGA with
64 TTL I/O / 32 Differential I/O Lines

CompactPCI

In this document all supported modules and devices will be called TDRV004. Specials for a
certain device will be advised.

To get more information about the features and use of TDRV004 devices it is recommended to read
the manuals listed below.

TPMC630 (or compatible) User manual

TPMC630 (or compatible) Engineering Manual

PLX PCI9030 User Manual

TDRV004-SW-72 - LynxOS Device Driver Page 5 of 50

2 Installation
Following files are located in the directory TDRV004-SW-72 on the distribution media:

TDRV004-SW-72-1.1.0.pdf This manual in PDF format
TDRV004-SW-72-SRC.tar Device Driver and Example sources
fpgaexa.tar.gz FPGA example XSVF
ChangeLog.txt Release history
Release.txt Information about the Device Driver Release

The TAR archive TDRV004-SW-72-SRC.tar contains the following files and directories:

tdrv004.c Driver source code
tdrv004.h Definitions and data structures for driver and application
tdrv004def.h Definitions and data structures for the driver
pf_micro.c XSVF player functions (Platform Flash)
pf_micro.h header file for XSVF player functions
pf_lenval.c special functions for XSVF player
pf_lenval.h header file for XSVF functions
pf_ports.c hardware layer for XSVF player
pf_ports.h header file for XSVF hardware layer
tdrv004_info.c Device information definition
tdrv004_info.h Device information definition header
tdrv004.cfg Driver configuration file include
tdrv004.import Linker import file
Makefile Device driver make file
example/tdrv004exa.c Example application source

In order to perform a driver installation first extract the TAR file to a temporary directory, then copy the
following files to their target directories:

1. Create a new directory in the system drivers directory path /sys/drivers.xxx, where xxx represents
the BSP that supports the target hardware.

For example: /sys/drivers.pp_drm/tdrv004 or /sys/drivers.cpci_x86/tdrv004

2. Copy the following files to this directory:
- tdrv004.c
- tdrv004def.h
- pf_micro.c, pf_micro.h
- pf_lenval.c, pf_lenval.h
- pf_ports.c, pf_ports.h
- tdrv004.import
- Makefile

3. Copy tdrv004.h to /usr/include/

4. Copy tdrv004_info.c to /sys/devices.xxx/ or /sys/devices if /sys/devices.xxx does not exist (xxx
represents the BSP).

5. Copy tdrv004_info.h to /sys/dheaders/

6. Copy tdrv004.cfg to /sys/cfg.xxx/, where xxx represents the BSP for the target platform. For
example: /sys/cfg.ppc or /sys/cfg.x86

TDRV004-SW-72 - LynxOS Device Driver Page 6 of 50

2.1 Device Driver Installation
The two methods of driver installation are as follows:

 Static Installation
 Dynamic Installation (only native LynxOS systems)

2.1.1 Static Installation

With this method, the driver object code is linked with the kernel routines and is installed during
system start-up.

2.1.1.1 Build the driver object

1. Change to the directory /sys/drivers.xxx/tdrv004, where xxx represents the BSP that supports the
target hardware.

2. To update the library /sys/lib/libdrivers.a enter:

make install

2.1.1.2 Create Device Information Declaration

1. Change to the directory /sys/devices.xxx/ or /sys/devices if /sys/devices.xxx does not exist (xxx
represents the BSP).

2. Add the following dependencies to the Makefile

DEVICE_FILES_all = ... tdrv004_info.x

And at the end of the Makefile

tdrv004_info.o:$(DHEADERS)/tdrv004_info.h

3. To update the library /sys/lib/libdevices.a enter:

make install

2.1.1.3 Modify the Device and Driver Configuration File

In order to insert the driver object code into the kernel image, an appropriate entry in file CONFIG.TBL
must be created.

1. Change to the directory /sys/lynx.os/ respective /sys/bsp.xxx, where xxx represents the BSP that
supports the target hardware.

2. Create an entry at the end of the file CONFIG.TBL

Insert the following entry at the end of this file.

I:tdrv004.cfg

TDRV004-SW-72 - LynxOS Device Driver Page 7 of 50

2.1.1.4 Rebuild the Kernel

1. Change to the directory /sys/lynx.os/ (/sys/bsp.xxx)

2. Enter the following command to rebuild the kernel:

make install

3. Reboot the newly created operating system by the following command (not necessary for KDIs):

reboot –aN

The N flag instructs init to run mknod and create all the nodes mentioned in the new nodetab.

4. After reboot you should find the following new devices (depends on the device configuration):
/dev/td004a, /dev/td004b, …

TDRV004-SW-72 - LynxOS Device Driver Page 8 of 50

2.1.2 Dynamic Installation

This method allows you to install the driver after the operating system is booted. The driver object
code is attached to the end of the kernel image and the operating system dynamically adds this driver
to its internal structures. The driver can also be removed dynamically.

2.1.2.1 Build the driver object

1. Change to the directory /sys/drivers.xxx/tdrv004, where xxx represents the BSP that supports the
target hardware.

2. To make the dynamic link-able driver enter :

make dldd

2.1.2.2 Create Device Information Declaration

1. Change to the directory /sys/drivers.xxx/tdrv004, where xxx represents the BSP that supports the
target hardware.

2. To create a device definition file for the major device (this works only on native system)

make t004info

3. To install the driver enter:

drinstall –c tdrv004.obj

If successful, drinstall returns a unique <driver-ID>

4. To install the major device enter:

devinstall –c –d <driver-ID> t004info

The <driver-ID> is returned by the drinstall command

5. To create a node for the device enter:

mknod /dev/td004a c <major_no> 0

The <major_no> is returned by the devinstall command.

If all steps are successfully completed, the TDRV004 is ready to use.

2.1.2.3 Uninstall dynamic loaded driver

To uninstall the TDRV004 device enter the following commands:

devinstall –u –c <device-ID>
drinstall –u <driver-ID>

TDRV004-SW-72 - LynxOS Device Driver Page 9 of 50

2.1.3 Device Information Definition File

The device information definition contains information necessary to install the TDRV004 major device.

The implementation of the device information definition is done through a C structure, which is defined
in the header file tdrv004_info.h.

This structure contains the following parameter:

PCIBusNumber Contains the PCI bus number at which the TDRV004 compatible device is
connected. Valid bus numbers are in range from 0 to 255.

PCIDeviceNumber Contains the device number (slot) at which the TDRV004 compatible device
is connected. Valid device numbers are in range from 0 to 31.

If both PCIBusNumber and PCIDeviceNumber are –1 then the driver will auto scan for the
TPMC630 compatible device. The first device found in the scan order will be allocated by the
driver for this major device.

Already allocated devices can’t be allocated twice. This is important to know if there are more
than one TDRV004 major devices.

A device information definition is unique for every TDRV004 major device. The file tdrv004_info.c on
the distribution disk contains two device information declarations, td004a_info for the first major
device and td004b_info for the second major device.

If the driver should support more than two major devices it is necessary to copy and paste an existing
declaration and rename it with a unique name, for example td004c_info, td004d_info and so on.

It is also necessary to modify the device and driver configuration file, respectively the
configuration include file tdrv004.cfg.

The following device declaration information uses the auto find method to detect a TDRV004
compatible device on the PCI bus.

TD004_INFO td004a_info = {

-1, /* Auto find the device on any PCI bus */
-1,

};

TDRV004-SW-72 - LynxOS Device Driver Page 10 of 50

2.1.4 Configuration File: CONFIG.TBL

The device and driver configuration file CONFIG.TBL contains entries for device drivers and its major
and minor device declarations. Each time the system is rebuild, the config utility read this file and
produces a new set of driver and device configuration tables and a corresponding nodetab.

To install the TDRV004 driver and devices into the LynxOS system, the configuration include file
tdrv004.cfg must be included in the CONFIG.TBL (see also chapter 2.1.1.3).

The file tdrv004.cfg on the distribution disk contains the driver entry (C:tdrv004:\....) and a major
device entry (D:TDRV004 1:t004a_info::).

If the driver should support more than one major device, the following entries for major devices must
be enabled by removing the comment character (#). By copy and paste an existing major and minor
entries and renaming the new entries, it is possible to add any number of additional TDRV004
devices.

This example shows a driver entry with one major device and one minor device:

Format:
C:driver-name:open:close:read:write:select:control:install:uninstall
D:device-name:info-block-name:raw-partner-name
N:node-name:minor-dev

C:tdrv004:\
:td004open:td004close:::\
::td004ioctl:td004install:td004uninstall

D:TDRV004 1:td004a_info::
N:td004a:0
#D:TDRV004 2:td004b_info::
#N:td004b:0

The configuration above creates the following node in the /dev directory.

/dev/td004a

TDRV004-SW-72 - LynxOS Device Driver Page 11 of 50

3 TDRV004 Device Driver Programming
LynxOS system calls are all available directly to any C program. They are implemented as ordinary
function calls to "glue" routines in the system library, which trap to the OS code.

Note that many system calls use data structures, which should be obtained in a program from
appropriate header files. Necessary header files are listed with the system call synopsis.

3.1 open()

NAME

open() - open a file

SYNOPSIS

#include <sys/file.h>
#include <sys/types.h>
#include <fcntl.h>

int open (char *path, int oflags[, mode_t mode])

DESCRIPTION

Opens a file (TDRV004 device) named in path for reading and writing. The value of oflags indicates
the intended use of the file. In case of a TDRV004 devices oflags must be set to O_RDWR to open
the file for both reading and writing.

The mode argument is required only when a file is created. Because a TDRV004 device already
exists this argument is ignored.

EXAMPLE

int fd

/* open the device named "/dev/td004a" for I/O */
fd = open ("/dev/td004a", O_RDWR);
if (!fd)
{

/* handle error */
}

TDRV004-SW-72 - LynxOS Device Driver Page 12 of 50

RETURNS

open returns a file descriptor number if successful, or –1 on error.

SEE ALSO

LynxOS System Call - open()

TDRV004-SW-72 - LynxOS Device Driver Page 13 of 50

3.2 close()

NAME

close() – close a file

SYNOPSIS

int close(int fd)

DESCRIPTION

This function closes an opened device.

EXAMPLE

int result;

/*
** close the device
*/
result = close(fd);
if (result < 0)
{

/* handle error */
}

RETURNS

close returns 0 (OK) if successful, or –1 on error

SEE ALSO

LynxOS System Call - close()

TDRV004-SW-72 - LynxOS Device Driver Page 14 of 50

3.3 ioctl()

NAME

ioctl() – I/O device control

SYNOPSIS

#include <ioctl.h>
#include <tdrv004.h>

int ioctl (int fd, int request, char *arg)

DESCRIPTION

ioctl provides a way of sending special commands to a device driver. The call sends the value of
request and the pointer arg to the device associated with the descriptor fd.

The following ioctl codes are supported by the driver and are defined in tdrv004.h:

Symbol Meaning

TD004_C_XSVFPLAY Play an XSVF file for FPGA programming

TD004_C_XSVFPOS Retrieve current play-position in XSVF file

TD004_C_XSVFLASTCMD Get the last executed XSVF command

TD004_C_RECONFIG Trigger FPGA reconfiguration process

TD004_C_SETWAITSTATES Specify number of waitstates for programming

TD004_C_SETCLOCK Set clock generator parameters

TD004_C_SPIWRITE Write values to clock generator

TD004_C_SPIREAD Read values from clock generator

TD004_C_PLXWRITE Write 16bit value to PLX9030 EEPROM

TD004_C_PLXREAD Read 16bit value from PLX9030 EEPROM

TD004_C_READ_UCHAR Read unsigned char values from FPGA resource

TD004_C_READ_USHORT Read unsigned short values from FPGA resource

TD004_C_READ_ULONG Read unsigned long values from FPGA resource

TD004_C_WRITE_UCHAR Write unsigned char values to FPGA resource

TD004_C_WRITE_USHORT Write unsigned short values to FPGA resource

TD004_C_WRITE_ULONG Write unsigned long values to FPGA resource

TD004_C_CONFIGURE_INT Configure local interrupt source polarity

TD004_C_WAIT_FOR_INT1 Wait for incoming Local Interrupt Source 1

TD004_C_WAIT_FOR_INT2 Wait for incoming Local Interrupt Source 2

See behind for more detailed information on each control code.

TDRV004-SW-72 - LynxOS Device Driver Page 15 of 50

RETURNS

ioctl returns 0 if successful, or –1 on error.

On error, errno will contain a standard error code (see also LynxOS System Call – ioctl).

SEE ALSO

LynxOS System Call - ioctl().

TDRV004-SW-72 - LynxOS Device Driver Page 16 of 50

3.3.1 TD004_C_XSVFPLAY

NAME

TD004_C_XSVFPLAY – Play an XSVF file for FPGA programming

DESCRIPTION

This TDRV004 control function programs the FPGA with a supplied XSVF file. The parameter arg
passes a pointer to a TD004_XSVF_BUF buffer to the device driver, where the content of the XSVF
file is stored. For information on building an XSVF file, please refer to the Engineering Documentation
of the TDRV004 product family.

The device driver is not able to verify the XSVF file, so please make sure that the supplied
XSVF is of a valid file format.

typedef struct {
unsigned long size;
unsigned char pData[1]; /* dynamically expandable */

} TD004_XSVF_BUF;

size

Specifies the total size of the supplied XSVF data

pData

This dynamically expandable array holds the XSVF data. The data must be included inside the
TD004_XSVF_BUF structure.

Programming Hints

Depending on the XSVF file, there might be a waiting period of approx. 15 seconds at the beginning of
programming. The programming of the delivered FPGA example design XSVF file should not take
much longer than 1 minute, depending on the system load.

If the programming fails, try to increase the used wait states with control function
TD004_C_SETWAITSTATES (refer to chapter 3.3.5 in this manual). Additionally, the CLK1 should not
be lower than 10MHz for programming.

TDRV004-SW-72 - LynxOS Device Driver Page 17 of 50

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
int bufsize;
TD004_XSVF_BUF *pXsvfBuf;

/*
** allocate enough memory (about 3MB) to hold XSVF content
*/
bufsize = sizeof(TD004_XSVF_BUF) + 3000000*sizeof(unsigned char);
pXsvfBuf = (TD004_XSVF_BUF*)malloc(bufsize);

/*
** read XSVF content from file and store it inside pXsvfBuf->pData[]
*/

/*
** start FPGA programming
*/
result = ioctl(fd, TD004_C_XSVFPLAY, (char*)pXsvfBuf);

if (result != OK) {
/* handle ioctl error */

}
free(pXsvfBuf);

ERRORS

EINVAL There was an error during XSVF processing.

EINTR The function was cancelled.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

ENOMEM Error getting enough internal memory for XSVF data.
Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 18 of 50

3.3.2 TD004_C_XSVFPOS

NAME

TD004_C_XSVFPOS – Retrieve current play-position in XSVF file

DESCRIPTION

This TDRV004 control function returns the number of the current processed byte in the XSVF file
during programming with TD004_IOCS_XSVFPLAY. This control function can be used to monitor the
programming progress.

The parameter arg passes a pointer to an unsigned long buffer to the device driver, where the XSVF
position is returned.

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
unsigned long XsvfPos;

/*
** retrieve current position in XSVF file
*/
result = ioctl(fd, TD004_C_XSVFPOS, (char*)&XsvfPos);

if (result != OK 0) {
/* handle ioctl error */

} else {
printf(“Current XSVF position: %d\n”, XsvfPos);

}

ERRORS

Returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 19 of 50

3.3.3 TD004_C_XSVLASTCMD

NAME

TD004_C_XSVFLASTCMD – Get the last executed XSVF command

DESCRIPTION

This TDRV004 control function returns the number of the last executed XSVF command. This value
can be used to find errors inside the supplied XSVF file. This value refers to the line inside the ASCII
SVF file.

The parameter arg passes a pointer to an unsigned long buffer to the device driver, where the number
of the last executed command is returned.

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
unsigned long XsvfLastCmd;

/*
** retrieve number of last executed command
*/
result = ioctl(fd, TD004_C_XSVFLASTCMD, (char*)&XsvfLastCmd);

if (result != OK 0) {
/* handle ioctl error */

} else {
printf(“Last XSVF command: %d\n”, XsvfLastCmd);

}

ERRORS

Returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 20 of 50

3.3.4 TD004_C_RECONFIG

NAME

TD004_C_RECONFIG – Trigger FPGA reconfiguration process

DESCRIPTION

This TDRV004 control function the reconfiguration process of the FPGA. This control function must be
called after the FPGA is programmed using TD004_C_XSVFPLAY. The function returns after the
reconfiguration is done, or an error occurred. No additional parameter is used for this function.

EXAMPLE

#include “tdrv004.h”

int fd;
int result;

/*
** retrieve number of last executed command
*/
result = ioctl(fd, TD004_C_RECONFIG, 0);

if (result != OK 0) {
/* handle ioctl error */

}

ERRORS

EIO An error occurred during reconfiguration. This may be caused by
an invalid FPGA content located inside the XSVF file.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.
Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 21 of 50

3.3.5 TD004_C_SETWAITSTATES

NAME

TD004_C_SETWAITSTATES – Specify number of waitstates for programming

DESCRIPTION

This TDRV004 control function configures the driver to use a number of waitstates during XSVF and
SPI programming. This might be necessary, if the local clock (CLK1) of the onboard clock generator is
configured to rather slow. The local programming interface is clocked with this frequency, which might
result in errors during programming for low CLK1 frequencies and a small amount of waitstates.

The parameter arg passes a pointer to an unsigned long value to the device driver.

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
unsigned long WaitStates;

/*
** configure driver to use 3 waitstates
*/
WaitStates = 3;
result = ioctl(fd, TD004_C_SETWAITSTATES, (char*)&WaitStates);

if (result != OK) {
/* handle ioctl error */

}

ERRORS

EINVAL The number of waitstates is larger than 1000.
Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 22 of 50

3.3.6 TD004_C_SETCLOCK

NAME

TD004_C_SETWAITSTATES – Specify Set clock generator parameters

DESCRIPTION

This TDRV004 control function configures the onboard clock generator. A pointer to the caller’s data
buffer (TD004_CLOCK_PARAM) is passed by the parameter arg to the driver. The necessary values
must be calculated using the software tool Cypress CycberClocks.

typedef struct {
unsigned char DeviceAddr;
unsigned char x09_ClkOE;
unsigned char x0C_DIV1SRCN;
unsigned char x10_InputCtrl;
unsigned char x40_CPumpPB;
unsigned char x41_CPumpPB;
unsigned char x42_POQcnt;
unsigned char x44_SwMatrix;
unsigned char x45_SwMatrix;
unsigned char x46_SwMatrix;
unsigned char x47_DIV2SRCN;

} TD004_CLOCK_PARAM;

DeviceAddr

Specifies the desired destination address. The CY27EE16 clock generator provides several
EEPROM banks as well as SRAM. If TD004_CLKADR_SRAM is specified, the values are
directly stored inside the volatile RAM area and take effect immediately. If
TD004_CLKADR_EEPROM is specified, the values are stored in the non-volatile area of the
clock generator, and the CY27EE16 loads it after the next power-up.

x09_ClkOE

Specifies which clock outputs shall be enabled.

x0C_DIV1SRCN

Specifies internal input source 1 and the corresponding frequency divider

x10_InputCtrl

Specifies value for the Input Pin Control register

x40_CPumpPB

Specifies value for Charge Pump and PB counter register

x41_CPumpPB

Specifies value for Charge Pump and PB counter register

TDRV004-SW-72 - LynxOS Device Driver Page 23 of 50

x42_POQcnt

Specifies value for PO and Q counter register

x44_SwMatrix

Specifies value for Switching Matrix Register

x45_SwMatrix

Specifies value for Switching Matrix Register

x46_SwMatrix

Specifies value for Switching Matrix Register

x47_DIV2SRCN

Specifies internal input source 2 and the corresponding frequency divider

Please refer to the Cypress CY27EE16 user manual for detailed explanation of the above
register values.

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
TD004_CLOCK_PARAM ClockParam;

/*
** Setup clock generator (SRAM):
** CLK1: 50.0MHz CLK2: 20.0MHz
** CLK3: 10.0MHz CLK4: 1.0MHz
** CLK5: 0.2MHz CLK6: -off-
*/
ClockParam.DeviceAddress = TD004_CLKADR_SRAM;
ClockParam.x09_ClkOE = 0x6f;
ClockParam.x0C_DIV1SRCN = 0x64;
ClockParam.x10_InputCtrl = 0x50;
ClockParam.x40_CPumpPB = 0xc0;
ClockParam.x41_CPumpPB = 0x03;
ClockParam.x42_POQcnt = 0x81;
ClockParam.x44_SwMatrix = 0x42;
ClockParam.x45_SwMatrix = 0x9f;
ClockParam.x46_SwMatrix = 0x3f;
ClockParam.x47_DIV2SRCN = 0xe4;

…

TDRV004-SW-72 - LynxOS Device Driver Page 24 of 50

…

/*
** program clock settings
*/
result = ioctl(fd, TD004_C_SETCLOCK, (char*)&ClockParam);

if (result != OK) {
/* handle ioctl error */

}

ERRORS

EINVAL It was tried to disable CLK1. This is not allowed.

EIO An error occurred during SPI access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.
Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 25 of 50

3.3.7 TD004_C_SPIWRITE

NAME

TD004_C_SPIWRITE – Write values to clock generator

DESCRIPTION

This TDRV004 control function writes up to 256 unsigned char values to a specific sub-address of a
Serial Programming Interface (SPI) address. A pointer to the caller’s data buffer (TD004_SPI_BUF) is
passed by the parameter arg to the driver. The data section must be included inside this structure.

typedef struct {
unsigned char SpiAddr;
unsigned char SubAddr;
unsigned long len;
unsigned char pData[1]; /* dynamically expandable */

} TD004_SPI_BUF;

SpiAddr

Specifies the Serial Programming Interface (SPI) address of the desired target. See file
tdrv004.h for definitions.

SubAddr

Specifies the sub-address (starting offset).

len

This value specifies the amount of data items to write. A maximum of 256 is allowed.

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data. The data must be stored inside the structure, no pointer allowed.

Do not use this control function to setup the clock generator. Please use control function
TD004_C_SETCLOCK instead.

TDRV004-SW-72 - LynxOS Device Driver Page 26 of 50

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
int BufferSize;
TD004_SPI_BUF *pSpiBuf;

/*
** write 5 bytes to EEPROM block 1, offset 0x00
** allocate enough memory to hold the data structure + write data
*/
BufferSize = (sizeof(TD004_SPI_BUF) + 5*sizeof(unsigned char));
pSpiBuf = (TD004_SPI_BUF*)malloc(BufferSize);
pSpiBuf->SpiAddr = TD004_CLKADDR_EEBLOCK1;
pSpiBuf->SubAddr = 0x00;
pSpiBuf->len = 5;
pSpiBuf->pData[0] = 0x01;
pSpiBuf->pData[1] = 0x02;
pSpiBuf->pData[2] = 0x03;
pSpiBuf->pData[3] = 0x04;
pSpiBuf->pData[4] = 0x05;

result = ioctl(fd, TD004_C_SPIWRITE, (char*)pSpiBuf);

if (result != OK) {
/* handle ioctl error */

}
free(pSpiBuf);

ERRORS

EINVAL The specified SubAddr+len exceeds 256, or len is invalid

EIO An error occurred during SPI access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.
Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 27 of 50

3.3.8 TD004_C_SPIREAD

NAME

TD004_C_SPIREAD – Read values from clock generator

DESCRIPTION

This TDRV004 control function reads up to 256 unsigned char values from a specific sub-address of a
Serial Programming Interface (SPI) address. A pointer to the caller’s data buffer (TD004_SPI_BUF) is
passed by the parameter arg to the driver. The data section must be included inside this structure.

typedef struct {
unsigned char SpiAddr;
unsigned char SubAddr;
unsigned long len;
unsigned char pData[1]; /* dynamically expandable */

} TD004_SPI_BUF;

SpiAddr

Specifies the Serial Programming Interface (SPI) address of the desired target. See file
tdrv004.h for definitions.

SubAddr

Specifies the sub-address (starting offset).

len

This value specifies the amount of data items to read. A maximum of 256 is allowed.

pData

The values are copied to this buffer. It must be large enough to hold the specified amount of
data. The data space must be located inside the structure, no pointer allowed.

TDRV004-SW-72 - LynxOS Device Driver Page 28 of 50

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
int BufferSize;
TD004_SPI_BUF *pSpiBuf;

/*
** read 5 bytes from EEPROM block 1, offset 0x00
** allocate enough memory to hold the data structure + read data
*/
BufferSize = (sizeof(TD004_SPI_BUF) + 5*sizeof(unsigned char));
pSpiBuf = (TD004_SPI_BUF*)malloc(BufferSize);
pSpiBuf->SpiAddr = TD004_CLKADDR_EEBLOCK1;
pSpiBuf->SubAddr = 0x00;
pSpiBuf->len = 5;

result = ioctl(fd, TD004_C_SPIREAD, (char*)pSpiBuf);

if (result != OK) {
/* handle ioctl error */

}
free(pSpiBuf);

ERRORS

EINVAL The specified SubAddr+len exceeds 256, or len is invalid

EIO An error occurred during SPI access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.
Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 29 of 50

3.3.9 TD004_C_PLXWRITE

NAME

TD004_C_PLXWRITE – Write 16bit value to PLX9030 EEPROM

DESCRIPTION

This TDRV004 control function writes an unsigned short value to a specific PLX9030 EEPROM
memory offset. A pointer to the caller’s data buffer (TD004_PLX_BUF) is passed by the parameter arg
to the driver.

Note that the PLX9030 reloads the new configuration from the EEPROM after a PCI reset, i.e.
the system must be rebooted to make PLX9030 dependent changes take effect.

typedef struct {
unsigned long Offset;
unsigned short Value;

} TD004_PLX_BUF;

Offset

Specifies the offset into the PLX9030 EEPROM, where the supplied data word should be
written. The offset must be specified as even byte-address. Following offsets are available:

Offset Access

00h – 0Ch R

0Eh R / W

10h – 26h R

28h – 36h R / W

38h – 3Ah R

3Ch – 4Ah R / W

4Ch – 4Eh R

50h – 5Eh R / W

60h – 62h R

64h – 7Eh R / W

80h – 86h R

88h - FEh R / W
Refer to the PLX9030 User Manual for detailed information on these registers.

Value

This value specifies a 16bit word that should be written to the specified EPROM offset.

TDRV004-SW-72 - LynxOS Device Driver Page 30 of 50

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
TD004_PLX_BUF PlxBuf;

/*
** Change the Subsystem Vendor ID to TEWS TECHNOLOGIES (0x1498)
*/
PlxBuf.Offset = 0x0E;
PlxBuf.Value = 0x1498

result = ioctl(fd, TD004_C_PLXWRITE, (char*)&PlxBuf);

if (result != OK) {
/* handle ioctl error */

}

ERRORS

EINVAL The specified offset is invalid, or read-only

EBUSY The device is already busy with XSVF, Reconfig or SPI action.
Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 31 of 50

3.3.10 TD004_C_PLXREAD

NAME

TD004_C_PLXREAD – Read 16bit value from PLX9030 EEPROM

DESCRIPTION

This TDRV004 control function reads an unsigned short value from a specific PLX9030 EEPROM
memory offset. A pointer to the caller’s data buffer (TD004_PLX_BUF) is passed by the parameter arg
to the driver.

typedef struct {
unsigned long Offset;
unsigned short Value;

} TD004_PLX_BUF;

Offset

Specifies the offset into the PLX9030 EEPROM, where the supplied data word should be
retrieved. The offset must be specified as even byte-address. Following offsets are available:

Offset Access

00h – 0Ch R

0Eh R / W

10h – 26h R

28h – 36h R / W

38h – 3Ah R

3Ch – 4Ah R / W

4Ch – 4Eh R

50h – 5Eh R / W

60h – 62h R

64h – 7Eh R / W

80h – 86h R

88h - FEh R / W
Refer to the PLX9030 User Manual for detailed information on these registers.

Value

This value holds the retrieved 16bit word.

TDRV004-SW-72 - LynxOS Device Driver Page 32 of 50

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
TD004_PLX_BUF PlxBuf;

/*
** Read Subsystem ID
*/
PlxBuf.Offset = 0x0C;

result = ioctl(fd, TD004_C_PLXREAD, (char*)&PlxBuf);

if (result == OK) {
printf(“Subsystem-ID = 0x%04X \n”, PlxBuf.Value);

} else {
/* handle ioctl error */

}

ERRORS

EINVAL The specified offset is invalid, or read-only

EBUSY The device is already busy with XSVF, Reconfig or SPI action.
Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 33 of 50

3.3.11 TD004_C_READ_UCHAR

NAME

TD004_C_READ_UCHAR – Read unsigned char values from FPGA resource

DESCRIPTION

This TDRV004 control function reads a number of unsigned char values from a Memory or I/O area by
using BYTE (8bit) accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed by
the parameter arg to the driver. This data buffer can be enlarged to the desired needs. The data
section must be included inside this structure.

typedef struct {
TD004_RESOURCE Resource;
unsigned long Offset;
unsigned long Size;
unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

This parameter specifies the desired PCI resource to read from. The TDRV004_RESOURCE
enumeration contains values for all possible memory and I/O areas. Both first PCI-Memory and
PCI-I/O areas of the TDRV004 module are restricted and cannot be used by the application.
The second found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O
space found is named TDRV004_RES_IO_2 and so on.
The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address
Register

PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3
The PLX9030 default configuration utilizes only BAR0 to BAR1.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

TDRV004-SW-72 - LynxOS Device Driver Page 34 of 50

pData

The received values are copied into this buffer. It must be large enough to hold the specified
amount of data.

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
unsigned long BufferSize;
TD004_MEMIO_BUF *pMemIoBuf;
unsigned char *pValues;

/*
** read 50 bytes from MemorySpace 2, offset 0x00
** allocate enough memory to hold the data structure + read data
*/
BufferSize = (sizeof(TD004_MEMIO_BUF) + 50*sizeof(unsigned char));
pMemIoBuf = (TD004_MEMIO_BUF*)malloc(BufferSize);
pMemIoBuf->Size = 50;
pMemIoBuf->Resource = TD004_RES_MEM_2;
pMemIoBuf->Offset = 0;

result = ioctl(fd, TD004_C_READ_UCHAR, (char*)pMemIoBuf);

if (result != OK) {
/* handle ioctl error */

} else {
pValues = (unsigned char*)pMemIoBuf->pData;
printf(“Value[0] = 0x%02X \n”, pValues[0]);

}
free(pMemIoBuf);

ERRORS

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.
Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 35 of 50

3.3.12 TD004_C_READ_USHORT

NAME

TD004_C_READ_USHORT – Read unsigned short values from FPGA resource

DESCRIPTION

This TDRV004 control function reads a number of unsigned short values from a Memory or I/O area
by using WORD (16bit) accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is
passed by the parameter arg to the driver. This data buffer can be enlarged to the desired needs. The
data section must be included inside this structure.

typedef struct {
TD004_RESOURCE Resource;
unsigned long Offset;
unsigned long Size;
unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

This parameter specifies the desired PCI resource to read from. The TDRV004_RESOURCE
enumeration contains values for all possible memory and I/O areas. Both first PCI-Memory and
PCI-I/O areas of the TDRV004 module are restricted and cannot be used by the application.
The second found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O
space found is named TDRV004_RES_IO_2 and so on.
The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address
Register

PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3
The PLX9030 default configuration utilizes only BAR0 to BAR1.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

TDRV004-SW-72 - LynxOS Device Driver Page 36 of 50

pData

The received values are copied into this buffer. It must be large enough to hold the specified
amount of data. The data pointer is typecasted into an unsigned short pointer.

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
unsigned long BufferSize;
TD004_MEMIO_BUF *pMemIoBuf;
unsigned short *pValues;

/*
** read 50 16bit words from MemorySpace 2, offset 0x00
** allocate enough memory to hold the data structure + read data
*/
BufferSize = (sizeof(TD004_MEMIO_BUF) + 50*sizeof(unsigned short));
pMemIoBuf = (TD004_MEMIO_BUF*)malloc(BufferSize);
pMemIoBuf->Size = 50;
pMemIoBuf->Resource = TD004_RES_MEM_2;
pMemIoBuf->Offset = 0;

result = ioctl(fd, TD004_C_READ_USHORT, (char*)pMemIoBuf);

if (result != OK) {
/* handle ioctl error */

} else {
pValues = (unsigned short*)pMemIoBuf->pData;
printf(“Value[0] = 0x%04X \n”, pValues[0]);

}
free(pMemIoBuf);

ERRORS

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.
Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 37 of 50

3.3.13 TD004_C_READ_ULONG

NAME

TD004_C_READ_ULONG – Read unsigned long values from FPGA resource

DESCRIPTION

This TDRV004 control function reads a number of unsigned long values from a Memory or I/O area by
using DWORD (32bit) accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed
by the parameter arg to the driver. This data buffer can be enlarged to the desired needs. The data
section must be included inside this structure.

typedef struct {
TD004_RESOURCE Resource;
unsigned long Offset;
unsigned long Size;
unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

This parameter specifies the desired PCI resource to read from. The TDRV004_RESOURCE
enumeration contains values for all possible memory and I/O areas. Both first PCI-Memory and
PCI-I/O areas of the TDRV004 module are restricted and cannot be used by the application.
The second found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O
space found is named TDRV004_RES_IO_2 and so on.
The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address
Register

PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3
The PLX9030 default configuration utilizes only BAR0 to BAR1.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

TDRV004-SW-72 - LynxOS Device Driver Page 38 of 50

pData

The received values are copied into this buffer. It must be large enough to hold the specified
amount of data. The data pointer is typecasted into an unsigned long pointer.

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
unsigned long BufferSize;
TD004_MEMIO_BUF *pMemIoBuf;
unsigned long *pValues;

/*
** read 50 32bit dwords from MemorySpace 2, offset 0x00
** allocate enough memory to hold the data structure + read data
*/
BufferSize = (sizeof(TD004_MEMIO_BUF) + 50*sizeof(unsigned long));
pMemIoBuf = (TD004_MEMIO_BUF*)malloc(BufferSize);
pMemIoBuf->Size = 50;
pMemIoBuf->Resource = TD004_RES_MEM_2;
pMemIoBuf->Offset = 0;

result = ioctl(fd, TD004_C_READ_ULONG, (char*)pMemIoBuf);

if (result != OK) {
/* handle ioctl error */

} else {
pValues = (unsigned long*)pMemIoBuf->pData;
printf(“Value[0] = 0x%08lX \n”, pValues[0]);

}
free(pMemIoBuf);

ERRORS

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.
Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 39 of 50

3.3.14 TD004_C_WRITE_UCHAR

NAME

TD004_C_WRITE_UCHAR – Write unsigned char values to FPGA resource

DESCRIPTION

This TDRV004 control function writes a number of unsigned char values to a Memory or I/O area by
using BYTE (8bit) accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed by
the parameter arg to the driver. This data buffer can be enlarged to the desired needs. The data
section must be included inside this structure.

typedef struct {
TD004_RESOURCE Resource;
unsigned long Offset;
unsigned long Size;
unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

This parameter specifies the desired PCI resource to read from. The TDRV004_RESOURCE
enumeration contains values for all possible memory and I/O areas. Both first PCI-Memory and
PCI-I/O areas of the TDRV004 module are restricted and cannot be used by the application.
The second found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O
space found is named TDRV004_RES_IO_2 and so on.
The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address
Register

PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3
The PLX9030 default configuration utilizes only BAR0 to BAR1.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

TDRV004-SW-72 - LynxOS Device Driver Page 40 of 50

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data.

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
unsigned long BufferSize;
TD004_MEMIO_BUF *pMemIoBuf;
unsigned char *pValues;

/*
** write 10 byte to MemorySpace 2, offset 0x00
** allocate enough memory to hold the data structure + write data
*/
BufferSize = (sizeof(TD004_MEMIO_BUF) + 10*sizeof(unsigned char));
pMemIoBuf = (TD004_MEMIO_BUF*)malloc(BufferSize);
pMemIoBuf->Size = 10;
pMemIoBuf->Resource = TD004_RES_MEM_2;
pMemIoBuf->Offset = 0;
pValues = (unsigned char*)pMemIoBuf->pData;
pValues[0] = 0x01;
pValues[1] = 0x02;
…

result = ioctl(fd, TD004_C_WRITE_UCHAR, (char*)pMemIoBuf);

if (result != OK) {
/* handle ioctl error */

}
free(pMemIoBuf);

ERRORS

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.
Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 41 of 50

3.3.15 TD004_C_WRITE_USHORT

NAME

TD004_C_WRITE_USHORT – Write unsigned short values to FPGA resource

DESCRIPTION

This TDRV004 control function writes a number of unsigned short values to a Memory or I/O area by
using WORD (16bit) accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed
by the parameter arg to the driver. This data buffer can be enlarged to the desired needs. The data
section must be included inside this structure.

typedef struct {
TD004_RESOURCE Resource;
unsigned long Offset;
unsigned long Size;
unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

This parameter specifies the desired PCI resource to read from. The TDRV004_RESOURCE
enumeration contains values for all possible memory and I/O areas. Both first PCI-Memory and
PCI-I/O areas of the TDRV004 module are restricted and cannot be used by the application.
The second found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O
space found is named TDRV004_RES_IO_2 and so on.
The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address
Register

PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3
The PLX9030 default configuration utilizes only BAR0 to BAR1.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

TDRV004-SW-72 - LynxOS Device Driver Page 42 of 50

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data. The data pointer is typecasted into an unsigned short pointer.

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
unsigned long BufferSize;
TD004_MEMIO_BUF *pMemIoBuf;
unsigned short *pValues;

/*
** write 10 16bit words to MemorySpace 2, offset 0x00
** allocate enough memory to hold the data structure + write data
*/
BufferSize = (sizeof(TD004_MEMIO_BUF) + 10*sizeof(unsigned short));
pMemIoBuf = (TD004_MEMIO_BUF*)malloc(BufferSize);
pMemIoBuf->Size = 10;
pMemIoBuf->Resource = TD004_RES_MEM_2;
pMemIoBuf->Offset = 0;
pValues = (unsigned short*)pMemIoBuf->pData;
pValues[0] = 0x0001;
pValues[1] = 0x0002;
…

result = ioctl(fd, TD004_C_WRITE_USHORT, (char*)pMemIoBuf);

if (result != OK) {
/* handle ioctl error */

}
free(pMemIoBuf);

ERRORS

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.
Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 43 of 50

3.3.16 TD004_C_WRITE_ULONG

NAME

TD004_C_WRITE_ULONG – Write unsigned long values to FPGA resource

DESCRIPTION

This TDRV004 control function writes a number of unsigned long values to a Memory or I/O area by
using DWORD (32bit) accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed
by the parameter arg to the driver. This data buffer can be enlarged to the desired needs. The data
section must be included inside this structure.

typedef struct {
TD004_RESOURCE Resource;
unsigned long Offset;
unsigned long Size;
unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

This parameter specifies the desired PCI resource to read from. The TDRV004_RESOURCE
enumeration contains values for all possible memory and I/O areas. Both first PCI-Memory and
PCI-I/O areas of the TDRV004 module are restricted and cannot be used by the application.
The second found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O
space found is named TDRV004_RES_IO_2 and so on.
The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address
Register

PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3
The PLX9030 default configuration utilizes only BAR0 to BAR1.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

TDRV004-SW-72 - LynxOS Device Driver Page 44 of 50

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data. The data pointer is typecasted into an unsigned long pointer.

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
unsigned long BufferSize;
TD004_MEMIO_BUF *pMemIoBuf;
unsigned long *pValues;

/*
** write 10 32bit dwords to MemorySpace 2, offset 0x00
** allocate enough memory to hold the data structure + write data
*/
BufferSize = (sizeof(TD004_MEMIO_BUF) + 10*sizeof(unsigned long));
pMemIoBuf = (TD004_MEMIO_BUF*)malloc(BufferSize);
pMemIoBuf->Size = 10;
pMemIoBuf->Resource = TD004_RES_MEM_2;
pMemIoBuf->Offset = 0;
pValues = (unsigned long*)pMemIoBuf->pData;
pValues[0] = 0x00000001;
pValues[1] = 0x00000002;
…

result = ioctl(fd, TD004_C_WRITE_ULONG, (char*)pMemIoBuf);

if (result != OK) {
/* handle ioctl error */

}
free(pMemIoBuf);

ERRORS

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.
Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 45 of 50

3.3.17 TD004_C_CONFIGURE_INT

NAME

TD004_C_CONFIGURE_INT – Configure local interrupt source polarity

DESCRIPTION

This TDRV004 control function configures the polarity of the PLX PCI9030 interrupt sources.

A pointer to the caller’s data buffer (unsigned long) is passed by the parameter argp to the driver. This
value is an OR’ed value using the following definitions (only one value valid for each interrupt source):

Value Description

TD004_LINT1_POLHIGH Local Interrupt Source 1 HIGH active

TD004_LINT1_POLLOW Local Interrupt Source 1 LOW active

TD004_LINT2_POLHIGH Local Interrupt Source 2 HIGH active

TD004_LINT2_POLLOW Local Interrupt Source 2 LOW active

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
unsigned long IntConfig;

/*
** Setup LINT1 to LOW polarity, and LINT2 to HIGH polarity
*/
IntConfig = TD004_LINT1_POLLOW | TD004_LINT2_POLHIGH;

result = ioctl(fd, TD004_C_CONFIGURE_INT, (char*)&IntConfig);

if (result != OK) {
/* handle ioctl error */

}

ERRORS

EINVAL The specified parameter is invalid.
Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 46 of 50

3.3.18 TD004_C_WAIT_FOR_INT1

NAME

TD004_C_WAIT_FOR_INT1 – Wait for incoming Local Interrupt Source 1

DESCRIPTION

This TDRV004 control function enables the corresponding interrupt source, and waits for Local
Interrupt Source 1 (LINT1) to arrive. After the interrupt has arrived, this specific local interrupt source is
disabled inside the PLX9030.

A pointer to the caller’s data buffer (int) is passed by the parameter argp to the driver. This value
contains the timeout in system ticks. To wait indefinitely, specify -1 as timeout parameter.

The delay between an incoming interrupt and the return of the described function is system-
dependent, and is most likely several microseconds.

For high interrupt load, a customized device driver should be used which serves the module-
specific functionality directly on interrupt level.

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
int Timeout;

/*
** Wait at least 50 system ticks for incoming interrupt
*/
Timeout = 50;

result = ioctl(fd, TD004_C_WAIT_FOR_INT1, (char*)&Timeout);

if (result == OK) {
/* acknowledge interrupt source in FPGA logic */
/* to clear the PLX PCI9030 Local Interrupt Source */

} else {
/* handle the error */

}

TDRV004-SW-72 - LynxOS Device Driver Page 47 of 50

ERRORS

EBUSY Another job already waiting for this interrupt. Only one job is
allowed at the same time.

Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 48 of 50

3.3.19 TD004_C_WAIT_FOR_INT2

NAME

TD004_C_WAIT_FOR_INT2 – Wait for incoming Local Interrupt Source 2

DESCRIPTION

This TDRV004 control function enables the corresponding interrupt source, and waits for Local
Interrupt Source 2 (LINT2) to arrive. After the interrupt has arrived, this specific local interrupt source is
disabled inside the PLX9030.

A pointer to the caller’s data buffer (int) is passed by the parameter argp to the driver. This value
contains the timeout in system ticks. To wait indefinitely, specify -1 as timeout parameter.

The delay between an incoming interrupt and the return of the described function is system-
dependent, and is most likely several microseconds.

For high interrupt load, a customized device driver should be used which serves the module-
specific functionality directly on interrupt level.

EXAMPLE

#include “tdrv004.h”

int fd;
int result;
int Timeout;

/*
** Wait at least 50 system ticks for incoming interrupt
*/
Timeout = 50;

result = ioctl(fd, TD004_C_WAIT_FOR_INT2, (char*)&Timeout);

if (result == OK) {
/* acknowledge interrupt source in FPGA logic */
/* to clear the PLX PCI9030 Local Interrupt Source */

} else {
/* handle the error */

}

TDRV004-SW-72 - LynxOS Device Driver Page 49 of 50

ERRORS

EBUSY Another job already waiting for this interrupt. Only one job is
allowed at the same time.

Other returned error codes are system error conditions.

TDRV004-SW-72 - LynxOS Device Driver Page 50 of 50

4 Debugging and Diagnostic
If the driver will not work properly, please enable debug outputs by defining the symbols DEBUG,
DEBUG_TPMC, and DEBUG_PCI.

The debug output should appear on the console. If not, please check the symbol KKPF_PORT in
uparam.h. This symbol should be configured to a valid COM port (e.g. SKDB_COM1).

The debug output displays the device information data for the current major device like this.

Bus = 1 Dev = 2 Func = 0
[00] = 02761498
[04] = 02800000
[08] = 11800000
[0C] = 00000000
[10] = 84000000
[14] = 00804001
[18] = 85000000
[1C] = 00000000
[20] = 00000000
[24] = 00000000
[28] = 00000000
[2C] = 000A1498
[30] = 00000000
[34] = 00000040
[38] = 00000000
[3C] = 0000010B
Found a TDRV004 compatible module, BusNo=1, DevNo=2

MEM[0] = 0xB4600000 (size=0x00000080)
MEM[1] = 0xB5600000 (size=0x01000000)
I/O[0] = 0xB0204000 (size=0x00000080)

The debug output above is only an example. Debug output on other systems may be different
for addresses and data in some locations.

	Introduction
	Installation
	Device Driver Installation
	Static Installation
	Build the driver object
	Create Device Information Declaration
	Modify the Device and Driver Configuration File
	Rebuild the Kernel

	Dynamic Installation
	Build the driver object
	Create Device Information Declaration
	Uninstall dynamic loaded driver

	Device Information Definition File
	Configuration File: CONFIG.TBL

	TDRV004 Device Driver Programming
	open()
	close()
	ioctl()
	TD004_C_XSVFPLAY
	TD004_C_XSVFPOS
	TD004_C_XSVLASTCMD
	TD004_C_RECONFIG
	TD004_C_SETWAITSTATES
	TD004_C_SETCLOCK
	TD004_C_SPIWRITE
	TD004_C_SPIREAD
	TD004_C_PLXWRITE
	TD004_C_PLXREAD
	TD004_C_READ_UCHAR
	TD004_C_READ_USHORT
	TD004_C_READ_ULONG
	TD004_C_WRITE_UCHAR
	TD004_C_WRITE_USHORT
	TD004_C_WRITE_ULONG
	TD004_C_CONFIGURE_INT
	TD004_C_WAIT_FOR_INT1
	TD004_C_WAIT_FOR_INT2

	Debugging and Diagnostic

