
The Embedded I/O Company

TDRV004-S
Linux Device D

Reconfigurable F

Version 1.1.x

User Manu

Issue 1.1.1

April 2010

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-82
river

PGA

al

mbH

lstenbek, Germany

0) 4101 4058 19

.com



TDRV004-SW-82 - Linux Device Driver Page 2 of 47

TDRV004-SW-82

Linux Device Driver

Reconfigurable FPGA

Supported Modules:
TPMC630
TCP630

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2005-2010 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue September 30, 2005

1.1.0 Interrupt Support functions added, New Address TEWS LLC June 08, 2007

1.1.1 Address TEWS LLC removed April 22, 2010



TDRV004-SW-82 - Linux Device Driver Page 3 of 47

Table of Contents

1 INTRODUCTION......................................................................................................... 4

2 INSTALLATION.......................................................................................................... 5

2.1 Build and install the device driver.................................................................................................5

2.2 Uninstall the device driver .............................................................................................................6

2.3 Install device driver into the running kernel ................................................................................6

2.4 Remove device driver from the running kernel ...........................................................................6

2.5 Change Major Device Number .......................................................................................................7

3 DEVICE INPUT/OUTPUT FUNCTIONS ..................................................................... 8

3.1 open() ...............................................................................................................................................8

3.2 close().............................................................................................................................................10

3.3 ioctl() ..............................................................................................................................................11

3.3.1 TD004_IOCS_XSVFPLAY...............................................................................................13
3.3.2 TD004_IOCG_XSVFPOS................................................................................................15
3.3.3 TD004_IOCG_XSVFLASTCMD ......................................................................................16
3.3.4 TD004_IOC_RECONFIG.................................................................................................17
3.3.5 TD004_IOCT_SETWAITSTATES ...................................................................................18
3.3.6 TD004_IOCS_SETCLOCK..............................................................................................19
3.3.7 TD004_IOCS_SPIWRITE................................................................................................22
3.3.8 TD004_IOCG_SPIREAD .................................................................................................24
3.3.9 TD004_IOCS_PLXWRITE...............................................................................................26
3.3.10 TD004_IOCG_PLXREAD ................................................................................................28
3.3.11 TD004_IOCG_READ_UCHAR ........................................................................................30
3.3.12 TD004_IOCG_READ_USHORT......................................................................................32
3.3.13 TD004_IOCG_READ_ULONG ........................................................................................34
3.3.14 TD004_IOCS_WRITE_UCHAR.......................................................................................36
3.3.15 TD004_IOCS_WRITE_USHORT ....................................................................................38
3.3.16 TD004_IOCS_WRITE_ULONG.......................................................................................40
3.3.17 TD004_IOCS_CONFIGURE_INT....................................................................................42
3.3.18 TD004_IOC_WAIT_FOR_INT1 .......................................................................................43
3.3.19 TD004_IOC_WAIT_FOR_INT2 .......................................................................................45

4 DIAGNOSTIC............................................................................................................ 47



TDRV004-SW-82 - Linux Device Driver Page 4 of 47

1 Introduction
The TDRV004-SW-82 Linux device driver allows the operation of the TDRV004 compatible devices
conforming to the Linux I/O system specification. This includes a device-independent basic I/O
interface with open(), close(),and ioctl() functions.

Special I/O operation that do not fit to the standard I/O calls will be performed by calling the ioctl()
function with a specific function code and an optional function dependent argument.

The TDRV004-SW-82 device driver supports the following features:

 Program and reconfigure onboard FPGA
 Program onboard clock generator using the Serial Programming Interface (SPI)
 Read/write FPGA registers (32bit / 16bit / 8bit)
 Read/write EEPROM blocks located in clock device using the Serial Programming Interface (SPI)
 Read/write specific PLX9030 registers

The TDRV004-SW-82 supports the modules listed below:

TPMC630 Reconfigurable FPGA with
64 TTL I/O / 32 Differential I/O Lines

PMC

TCP630 Reconfigurable FPGA with
64 TTL I/O / 32 Differential I/O Lines

CompactPCI

In this document all supported modules and devices will be called TDRV004. Specials for a
certain device will be advised.

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

TPMC630 (or compatible) User manual

TPMC630 (or compatible) Engineering Manual

PLX PCI9030 User Manual



TDRV004-SW-82 - Linux Device Driver Page 5 of 47

2 Installation
The directory TDRV004-SW-82 on the distribution media contains the following files:

TDRV004-SW-82-1.1.1.pdf This manual in PDF format
TDRV004-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
fpgaexa.tar.gz FPGA example XSVF
ChangeLog.txt Release history
Release.txt Information about the Device Driver Release

The GZIP compressed archive TDRV004-SW-82-SRC.tar.gz contains the following files and
directories:

tdrv004.c Driver source code
tdrv004def.h Driver include file
tdrv004.h Driver include file for application program
pf_micro.c XSVF player functions (Platform Flash)
pf_micro.h header file for XSVF player functions
pf_lenval.c special functions for XSVF player
pf_lenval.h header file for XSVF functions
pf_ports.c hardware layer for XSVF player
pf_ports.h header file for XSVF hardware layer
Makefile Device driver make file
makenode Script for device node creation
include/config.h Driver independent library header file
include/tpmodule.c Driver independent library
include/tpmodule.h Driver independent library header file
example/tdrv004exa.c Example application
example/Makefile Example application makefile

In order to perform an installation, extract all files of the archive TDRV004-SW-82.tar.gz to the desired
target directory. Additionally, copy tdrv004.h into your include path.

2.1 Build and install the device driver

 Login as root

 Change to the target directory

 To create and install the driver in the module directory /lib/modules/<version>/misc enter:

# make install

 To update the device driver’s module dependencies, enter:

# depmod -aq



TDRV004-SW-82 - Linux Device Driver Page 6 of 47

2.2 Uninstall the device driver

 Login as root

 Change to the target directory

 To remove the driver from the module directory /lib/modules/<version>/misc enter:

# make uninstall

2.3 Install device driver into the running kernel

 To load the device driver into the running kernel, login as root and execute the following
commands:

# modprobe tdrv004drv

 After the first build or if you are using dynamic major device allocation it is necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a device file system (devfs or sysfs with udev) then you have to skip
running the makenode script. Instead of creating device nodes from the script the driver itself
takes creating and destroying of device nodes in its responsibility.

# sh makenode

On success the device driver will create a minor device for each TDRV004 device found. The first
TDRV004 device can be accessed with device node /dev/tdrv004_0, the second module with device
node /dev/tdrv004_1 and so on.

The assignment of device nodes to physical TDRV004 modules depends on the search order of the
PCI bus driver.

2.4 Remove device driver from the running kernel

 To remove the device driver from the running kernel login as root and execute the following
command:

# modprobe –r tdrv004drv

If your kernel has enabled devfs or sysfs (udev), all /dev/tdrv004_x nodes will be automatically
removed from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tdrv004drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe –r again.



TDRV004-SW-82 - Linux Device Driver Page 7 of 47

2.5 Change Major Device Number

This paragraph is only for Linux kernels without DEVFS installed. The TDRV004 driver uses dynamic
allocation of major device numbers per default. If this isn’t suitable for the application it is possible to
define a major number for the driver.

To change the major number, edit the file tdrv004def.h, change the following symbol to appropriate
value and enter make install to create a new driver.

TDRV004_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

Example:

#define TDRV004_MAJOR 122

Be sure that the desired major number isn’t used by other drivers. Please check /proc/devices
to see which numbers are free.



TDRV004-SW-82 - Linux Device Driver Page 8 of 47

3 Device Input/Output functions
This chapter describes the interface to the device driver I/O system.

3.1 open()

NAME

open() opens a file descriptor.

SYNOPSIS

#include <fcntl.h>

int open (const char *filename, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask. Create the value by the bitwise OR
of the appropriate parameters (using the | operator in C). See also the GNU C Library documentation
for more information about the open function and open flags.

EXAMPLE

int fd;

fd = open(“/dev/tdrv004_0”, O_RDWR);

if (fd == -1)

{

/* handle error condition */

}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.



TDRV004-SW-82 - Linux Device Driver Page 9 of 47

ERRORS

E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output



TDRV004-SW-82 - Linux Device Driver Page 10 of 47

3.2 close()

NAME

close() closes a file descriptor.

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

. . .

if (close(fd) != 0) {

/* handle close error conditions */

}

RETURNS

The normal return value from close is 0. In case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output



TDRV004-SW-82 - Linux Device Driver Page 11 of 47

3.3 ioctl()

NAME

ioctl() device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in tdrv004.h:

Function Description

TD004_IOCS_XSVFPLAY Play an XSVF file for FPGA programming

TD004_IOCG_XSVFPOS Retrieve current play-position in XSVF file

TD004_IOCG_XSVFLASTCMD Get the last executed XSVF command

TD004_IOC_RECONFIG Trigger FPGA reconfiguration process

TD004_IOCT_SETWAITSTATES Specify number of waitstates for programming

TD004_IOCS_SETCLOCK Set clock generator parameters

TD004_IOCS_SPIWRITE Write values to clock generator

TD004_IOCG_SPIREAD Read values from clock generator

TD004_IOCS_PLXWRITE Write 16bit value to PLX9030 EEPROM

TD004_IOCG_PLXREAD Read 16bit value from PLX9030 EEPROM

TD004_IOCG_READ_UCHAR Read unsigned char values from FPGA resource

TD004_IOCG_READ_USHORT Read unsigned short values from FPGA resource

TD004_IOCG_READ_ULONG Read unsigned long values from FPGA resource

TD004_IOCS_WRITE_UCHAR Write unsigned char values to FPGA resource

TD004_IOCS_WRITE_USHORT Write unsigned short values to FPGA resource

TD004_IOCS_WRITE_ULONG Write unsigned long values to FPGA resource

TD004_IOCS_CONFIGURE_INT Configure local interrupt source polarity

TD004_IOC_WAIT_FOR_INT1 Wait for incoming Local Interrupt Source 1

TD004_IOC_WAIT_FOR_INT2 Wait for incoming Local Interrupt Source 2



TDRV004-SW-82 - Linux Device Driver Page 12 of 47

See below for more detailed information on each control code.

To use these TDRV004 specific control codes the header file tdrv004.h must be included in the
application.

RETURNS

On success, zero is returned. In case of an error, a value of –1 is returned. The global variable errno
contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the requested ioctl function is
unknown. Please check the argument request.

Other function dependant error codes will be described for each ioctl code separately. Note, the
TDRV004 device driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages



TDRV004-SW-82 - Linux Device Driver Page 13 of 47

3.3.1 TD004_IOCS_XSVFPLAY

NAME

TD004_IOCS_XSVFPLAY Play an XSVF file for FPGA programming

DESCRIPTION

This ioctl function programs the FPGA with a supplied XSVF file. A pointer to the caller’s data buffer
(TD004_XSVF_BUF), where the content of the XSVF file is stored, is passed to the device driver. For
information on building an XSVF file, please refer to the Engineering Documentation of the TDRV004
product family.

The device driver is not able to verify the XSVF file, so please make sure that the supplied
XSVF is of a valid file format.

The TD004_XSVF_BUF structure has the following layout:

typedef struct {

unsigned long size;

unsigned char pData[1]; /* dynamically expandable */

} TD004_XSVF_BUF;

Members

size

Specifies the total size of the supplied XSVF data.

pData

This dynamically expandable array holds the XSVF data. The data must be included inside the
TD004_XSVF_BUF structure.

Programming Hints

Depending on the XSVF file, there might be a waiting period of approx. 15 seconds at the beginning of
programming. The programming of the delivered FPGA example design XSVF file should not take
much longer than 1 minute, depending on the system load.

If the programming fails, try to increase the used waitstates with control function
TD004_IOCT_SETWAITSTATES (refer to the corresponding section in this manual). Additionally, the
CLK1 should not be lower than 10MHz for programming.



TDRV004-SW-82 - Linux Device Driver Page 14 of 47

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

int bufsize;

TD004_XSVF_BUF *pXsvfBuf;

/*

** allocate enough memory (about 3MB) to hold XSVF content

*/

bufsize = sizeof(TD004_XSVF_BUF) + 3000000*sizeof(unsigned char);

pXsvfBuf = (TD004_XSVF_BUF*)malloc( bufsize );

/*

** read XSVF content from file and store it inside pXsvfBuf->pData[]

*/

...

/*

** start FPGA programming

*/

result = ioctl(fd, TD004_IOCS_XSVFPLAY, pXsvfBuf);

if (result < 0) {

/* handle ioctl error */

}

free( pXsvfBuf );

ERRORS

EINVAL There was an error during XSVF processing.

EINTR The function was cancelled.

EFAULT Error while copying data to or from user space.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

ENOMEM Error getting enough internal memory for XSVF data.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 15 of 47

3.3.2 TD004_IOCG_XSVFPOS

NAME

TD004_IOCG_XSVFPOS Retrieve current play-position in XSVF file.

DESCRIPTION

This TDRV004 control function returns the number of the current processed byte in the XSVF file
during programming with TD004_IOCS_XSVFPLAY. This control function can be used to monitor the
programming progress. A pointer to an unsigned long value is passed to the driver by the argument
argp.

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

unsigned long XsvfPos;

result = ioctl(fd, TD004_IOCG_XSVFPOS, &XsvfPos);

if (result < 0) {

/* handle ioctl error */

} else {

printf(“Current XSVF position: %d\n”, XsvfPos);

}

ERRORS

EFAULT Error while copying data to user space.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 16 of 47

3.3.3 TD004_IOCG_XSVFLASTCMD

NAME

TD004_IOCG_XSVFLASTCMD Get the last executed XSVF command.

DESCRIPTION

This TDRV004 control function returns the number of the last executed XSVF command. This value
can be used to find errors inside the supplied XSVF file. This value refers to the line inside the ASCII
SVF file. A pointer to an unsigned long value is passed to the driver by the argument argp.

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

unsigned long XsvfLastCmd;

result = ioctl(fd, TD004_IOCG_XSVFLASTCMD, &XsvfLastCmd);

if (result < 0) {

/* handle ioctl error */

} else {

printf(“Last XSVF command: %d\n”, XsvfLastCmd);

}

ERRORS

EFAULT Error while copying data to user space.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 17 of 47

3.3.4 TD004_IOC_RECONFIG

NAME

TD004_IOC_RECONFIG Trigger FPGA reconfiguration process.

DESCRIPTION

This function starts the reconfiguration process of the FPGA. This control function must be called after
the FPGA is programmed using DCMD_TD004_XSVFPLAY. The function returns after the
reconfiguration is done, or an error occurred. No additional parameter is used for this function, so the
optional argument can be omitted.

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

result = ioctl(fd, TD004_IOC_RECONFIG);

if (result < 0) {

/* handle ioctl error */

}

ERRORS

EIO An error occurred during reconfiguration. This may be caused by
an invalid FPGA content located inside the XSVF file.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 18 of 47

3.3.5 TD004_IOCT_SETWAITSTATES

NAME

TD004_IOCT_SETWAITSTATES Specify number of waitstates for programming.

DESCRIPTION

This TDRV004 control function configures the driver to use a number of waitstates during XSVF and
SPI programming. This might be necessary, if the local clock (CLK1) of the onboard clock generator is
configured to rather slow. The local programming interface is clocked with this frequency, which might
result in errors during programming for low CLK1 frequencies and a small amount of waitstates.

A pointer to an unsigned long value must be passed to the driver by the parameter argp.

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

unsigned long WaitStates;

/*

** configure driver to use 3 waitstates

*/

WaitStates = 3;

result = ioctl(fd, TD004_IOCT_SETWAITSTATES, &WaitStates);

if (result < 0) {

/* handle ioctl error */

}

ERRORS

This ioctl function returns no function specific error codes.



TDRV004-SW-82 - Linux Device Driver Page 19 of 47

3.3.6 TD004_IOCS_SETCLOCK

NAME

TD004_IOCS_SETCLOCK Set clock generator parameters

DESCRIPTION

This TDRV004 control function configures the onboard clock generator. A pointer to the caller’s data
buffer (TD004_CLOCK_PARAM) is passed by the parameter argp to the driver. The necessary values
can be calculated using the tool Cypress CycberClocks.

typedef struct {

unsigned char DeviceAddr;

unsigned char x09_ClkOE;

unsigned char x0C_DIV1SRCN;

unsigned char x10_InputCtrl;

unsigned char x40_CPumpPB;

unsigned char x41_CPumpPB;

unsigned char x42_POQcnt;

unsigned char x44_SwMatrix;

unsigned char x45_SwMatrix;

unsigned char x46_SwMatrix;

unsigned char x47_DIV2SRCN;

} TD004_CLOCK_PARAM;

DeviceAddr

Specifies the desired destination address. The CY27EE16 clock generator provides several
EEPROM banks as well as SRAM. If TD004_CLKADR_SRAM is specified, the values are
directly stored inside the volatile RAM area and take effect immediately. If
TD004_CLKADR_EEPROM is specified, the values are stored in the non-volatile area of the
clock generator, and the CY27EE16 loads it after the next power-up.

x09_ClkOE

Specifies which clock outputs shall be enabled.

x0C_DIV1SRCN

Specifies internal input source 1 and the corresponding frequency divider

x10_InputCtrl

Specifies value for the Input Pin Control register

x40_CPumpPB

Specifies value for Charge Pump and PB counter register

x41_CPumpPB

Specifies value for Charge Pump and PB counter register



TDRV004-SW-82 - Linux Device Driver Page 20 of 47

x41_POQcnt

Specifies value for PO and Q counter register

x44_SwMatrix

Specifies value for Switching Matrix Register

x45_SwMatrix

Specifies value for Switching Matrix Register

x46_SwMatrix

Specifies value for Switching Matrix Register

x47_DIV2SRCN

Specifies internal input source 2 and the corresponding frequency divider

Please refer to the Cypress CY27EE16 user manual for detailed explanation of the above
register values.

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

int bufsize;

TD004_CLOCK_PARAM ClockParam;

/*

** Setup clock generator (SRAM):

** CLK1: 50.0MHz CLK2: 20.0MHz

** CLK3: 10.0MHz CLK4: 1.0MHz

** CLK5: 0.2MHz CLK6: -off-

*/

ClockParam.DeviceAddress = TD004_CLKADR_SRAM;

ClockParam.x09_ClkOE = 0x6f;

ClockParam.x0C_DIV1SRCN = 0x64;

ClockParam.x10_InputCtrl = 0x50;

ClockParam.x40_CPumpPB = 0xc0;

ClockParam.x41_CPumpPB = 0x03;

ClockParam.x42_POQcnt = 0x81;

ClockParam.x44_SwMatrix = 0x42;

ClockParam.x45_SwMatrix = 0x9f;

ClockParam.x46_SwMatrix = 0x3f;

ClockParam.x47_DIV2SRCN = 0xe4;



TDRV004-SW-82 - Linux Device Driver Page 21 of 47

/*

** start Clock Parameter programming

*/

result = ioctl(fd, TD004_IOCS_SETCLOCK, &ClockParam);

if (result < 0) {

/* handle ioctl error */

}

ERRORS

EINVAL It was tried to disable CLK1. This is not allowed.

EIO An error occurred during SPI access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

EFAULT Error while copying data to or from user space.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 22 of 47

3.3.7 TD004_IOCS_SPIWRITE

NAME

TD004_IOCS_SPIWRITE Write values to clock generator.

DESCRIPTION

This TDRV004 control function writes up to 256 unsigned char values to a specific sub-address of a
Serial Programming Interface (SPI) address. A pointer to the caller’s data buffer (TD004_SPI_BUF) is
passed by the parameter argp to the driver. The data section must be included inside this structure.

typedef struct {

unsigned char SpiAddr;

unsigned char SubAddr;

unsigned long len;

unsigned char pData[1]; /* dynamically expandable */

} TD004_SPI_BUF;

SpiAddr

Specifies the Serial Programming Interface (SPI) address of the desired target. See file
tdrv004.h for definitions.

SubAddr

Specifies the sub-address (starting offset).

len

This value specifies the amount of data items to write. A maximum of 256 is allowed.

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data. The data must be stored inside the structure, no pointer allowed.

Do not use this control function to setup the clockgenerator. Please use control function
TD004_IOCS_SETCLOCK instead.



TDRV004-SW-82 - Linux Device Driver Page 23 of 47

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

int BufferSize;

TD004_SPI_BUF *pSpiBuf;

/*

** write 5 bytes to EEPROM block 1, offset 0x00

** allocate enough memory to hold the data structure + write data

*/

BufferSize = ( sizeof(TD004_SPI_BUF) + 5*sizeof(unsigned char) );

pSpiBuf = (TD004_SPI_BUF*)malloc( BufferSize );

pSpiBuf->SpiAddr = TD004_CLKADDR_EEBLOCK1;

pSpiBuf->SubAddr = 0x00;

pSpiBuf->len = 5;

pSpiBuf->pData[0] = 0x01;

pSpiBuf->pData[1] = 0x02;

pSpiBuf->pData[2] = 0x03;

pSpiBuf->pData[3] = 0x04;

pSpiBuf->pData[4] = 0x05;

result = ioctl(fd, TD004_IOCS_SPIWRITE, pSpiBuf);

if (result < 0) {

/* handle ioctl error */

}

free( pSpiBuf );

ERRORS

EINVAL The specified SubAddr+len exceeds 256, or len is invalid

EIO An error occurred during SPI access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

EFAULT Error while copying data to or from user space.

ENOMEM Error getting enough internal memory for SPI data.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 24 of 47

3.3.8 TD004_IOCG_SPIREAD

NAME

TD004_IOCG_SPIREAD Read values from clock generator.

DESCRIPTION

This TDRV004 control function reads up to 256 unsigned char values from a specific sub-address of a
Serial Programming Interface (SPI) address. A pointer to the caller’s data buffer (TD004_SPI_BUF) is
passed by the parameter argp to the driver. The data section must be included inside this structure.

typedef struct {

unsigned char SpiAddr;

unsigned char SubAddr;

unsigned long len;

unsigned char pData[1]; /* dynamically expandable */

} TD004_SPI_BUF;

SpiAddr

Specifies the Serial Programming Interface (SPI) address of the desired target. See file
tdrv004.h for definitions.

SubAddr

Specifies the sub-address (starting offset).

len

This value specifies the amount of data items to read. A maximum of 256 is allowed.

pData

The values are copied to this buffer. It must be large enough to hold the specified amount of
data. The data space must be located inside the structure, no pointer allowed.



TDRV004-SW-82 - Linux Device Driver Page 25 of 47

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

int BufferSize;

TD004_SPI_BUF *pSpiBuf;

/*

** read 5 bytes from EEPROM block 1, offset 0x00

** allocate enough memory to hold the data structure + read data

*/

BufferSize = ( sizeof(TD004_SPI_BUF) + 5*sizeof(unsigned char) );

pSpiBuf = (TD004_SPI_BUF*)malloc( BufferSize );

pSpiBuf->SpiAddr = TD004_CLKADDR_EEBLOCK1;

pSpiBuf->SubAddr = 0x00;

pSpiBuf->len = 5;

result = ioctl(fd, TD004_IOCG_SPIREAD, pSpiBuf);

if (result < 0) {

/* handle ioctl error */

}

free( pSpiBuf );

ERRORS

EINVAL The specified SubAddr+len exceeds 256, or len is invalid

EIO An error occurred during SPI access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

EFAULT Error while copying data to or from user space.

ENOMEM Error getting enough internal memory for SPI data.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 26 of 47

3.3.9 TD004_IOCS_PLXWRITE

NAME

TD004_IOCS_PLXWRITE Write 16bit value to PLX9030 EEPROM.

DESCRIPTION

This TDRV004 control function writes an unsigned short value to a specific PLX9030 EEPROM
memory offset. A pointer to the caller’s data buffer (TD004_PLX_BUF) is passed by the parameter
argp to the driver.

typedef struct {

unsigned long Offset;

unsigned short Value;

} TD004_PLX_BUF;

Offset

Specifies the offset into the PLX9030 EEPROM, where the supplied data word should be
written. The offset must be specified as even byte-address.

Following offsets are available:

Offset Access

00h – 0Ch R

0Eh R / W

10h – 26h R

28h – 36h R / W

38h – 3Ah R

3Ch – 4Ah R / W

4Ch – 4Eh R

50h – 5Eh R / W

60h – 62h R

64h – 7Eh R / W

80h – 86h R

88h - FEh R / W

Refer to the PLX9030 User Manual for detailed information on these registers.

Value

This value specifies a 16bit word that should be written to the specified offset.



TDRV004-SW-82 - Linux Device Driver Page 27 of 47

Note that the PLX9030 reloads the new configuration from the EEPROM after a PCI reset, i.e.
the system must be rebooted to make PLX9030 dependent changes take effect.

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

int BufferSize;

TD004_PLX_BUF PlxBuf;

/*

** Change the Subsystem Vendor ID to TEWS TECHNOLOGIES (0x1498)

*/

PlxBuf.Offset = 0x0E;

PlxBuf.Value = 0x1498

result = ioctl(fd, TD004_IOCS_PLXWRITE, &PlxBuf);

if (result < 0) {

/* handle ioctl error */

}

ERRORS

EINVAL The specified offset is invalid, or read-only

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

EFAULT Error while copying data from user space.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 28 of 47

3.3.10 TD004_IOCG_PLXREAD

NAME

TD004_IOCG_PLXREAD Read 16bit value from PLX9030 EEPROM.

DESCRIPTION

This TDRV004 control function reads an unsigned short value from a specific PLX9030 EEPROM
memory offset. A pointer to the caller’s data buffer (TD004_PLX_BUF) is passed by the parameter
argp to the driver.

typedef struct {

unsigned long Offset;

unsigned short Value;

} TD004_PLX_BUF;

Offset

Specifies the offset into the PLX9030 EEPROM, from where the supplied data word should be
retrieved. The offset must be specified as even byte-address.

Following offsets are available:

Offset Access

00h – 0Ch R

0Eh R / W

10h – 26h R

28h – 36h R / W

38h – 3Ah R

3Ch – 4Ah R / W

4Ch – 4Eh R

50h – 5Eh R / W

60h – 62h R

64h – 7Eh R / W

80h – 86h R

88h - FEh R / W

Refer to the PLX9030 User Manual for detailed information on these registers.

Value

This value holds the retrieved 16bit word.



TDRV004-SW-82 - Linux Device Driver Page 29 of 47

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

int BufferSize;

TD004_PLX_BUF PlxBuf;

/*

** Read Subsystem ID

*/

PlxBuf.Offset = 0x0C;

result = ioctl(fd, TD004_IOCG_PLXREAD, &PlxBuf);

if (result < 0) {

/* handle ioctl error */

} else {

printf( “SubsystemVendorID = 0x%04X\n”, PlxBuf.Value );

}

ERRORS

EINVAL The specified offset is invalid.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

EFAULT Error while copying data to user space.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 30 of 47

3.3.11 TD004_IOCG_READ_UCHAR

NAME

TD004_IOCG_READ_UCHAR Read unsigned char values from FPGA resource.

DESCRIPTION

This TDRV004 control function reads a number of unsigned char values from a Memory or I/O area by
using BYTE accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed by the
parameter argp to the driver. This data buffer can be enlarged to the desired needs. The data section
must be included inside this structure.

typedef struct {

TD004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TDRV004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O space found is
named TDRV004_RES_IO_2 and so on.

The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address
Register

PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX9030 default configuration utilizes only BAR0 to BAR1.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.



TDRV004-SW-82 - Linux Device Driver Page 31 of 47

pData

The received values are copied into this buffer. It must be large enough to hold the specified
amount of data.

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

unsigned long BufferSize;

TD004_MEMIO_BUF *pMemIoBuf;

unsigned char *pValues;

/*

** read 50 bytes from MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + read data

*/

BufferSize = ( sizeof(TD004_MEMIO_BUF) + 50*sizeof(unsigned char) );

pMemIoBuf = (TD004_MEMIO_BUF*)malloc( BufferSize );

pMemIoBuf->Size = 50;

pMemIoBuf->Resource = TD004_RES_MEM_2;

pMemIoBuf->Offset = 0;

result = ioctl(fd, TD004_IOCG_READ_UCHAR, pMemIoBuf);

if (result < 0) {

/* handle ioctl error */

} else {

pValues = (unsigned char*)pMemIoBuf->pData;

}

free( pMemIoBuf );

ERRORS

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

EFAULT Error while copying data to user space.

ENOMEM Error getting enough internal memory for data.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 32 of 47

3.3.12 TD004_IOCG_READ_USHORT

NAME

TD004_IOCG_READ_USHORT Read unsigned short values from FPGA resource.

DESCRIPTION

This TDRV004 control function reads a number of unsigned short values from a Memory or I/O area
by using WORD accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed by the
parameter argp to the driver. This data buffer can be enlarged to the desired needs. The data section
must be included inside this structure.

typedef struct {

TD004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TDRV004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O space found is
named TDRV004_RES_IO_2 and so on.

The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address
Register

PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX9030 default configuration utilizes only BAR0 to BAR1.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.



TDRV004-SW-82 - Linux Device Driver Page 33 of 47

pData

The received values are copied into this buffer. It must be large enough to hold the specified
amount of data. The data pointer is typecasted into an unsigned short pointer.

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

unsigned long BufferSize;

TD004_MEMIO_BUF *pMemIoBuf;

unsigned short *pValues;

/*

** read 50 16bit words from MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + read data

*/

BufferSize = ( sizeof(TD004_MEMIO_BUF) + 50*sizeof(unsigned short) );

pMemIoBuf = (TD004_MEMIO_BUF*)malloc( BufferSize );

pMemIoBuf->Size = 50;

pMemIoBuf->Resource = TD004_RES_MEM_2;

pMemIoBuf->Offset = 0;

result = ioctl(fd, TD004_IOCG_READ_USHORT, pMemIoBuf);

if (result < 0) {

/* handle ioctl error */

} else {

pValues = (unsigned short*)pMemIoBuf->pData;

}

free( pMemIoBuf );

ERRORS

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

EFAULT Error while copying data to user space.

ENOMEM Error getting enough internal memory for data.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 34 of 47

3.3.13 TD004_IOCG_READ_ULONG

NAME

TD004_IOCG_READ_ULONG Read unsigned long values from FPGA resource.

DESCRIPTION

This TDRV004 control function reads a number of unsigned long values from a Memory or I/O area by
using DWORD accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed by the
parameter argp to the driver. This data buffer can be enlarged to the desired needs. The data section
must be included inside this structure.

typedef struct {

TD004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TDRV004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O space found is
named TDRV004_RES_IO_2 and so on.

The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address
Register

PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX9030 default configuration utilizes only BAR0 to BAR1.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.



TDRV004-SW-82 - Linux Device Driver Page 35 of 47

pData

The received values are copied into this buffer. It must be large enough to hold the specified
amount of data. . The data pointer is typecasted into an unsigned long pointer.

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

unsigned long BufferSize;

TD004_MEMIO_BUF *pMemIoBuf;

unsigned long *pValues;

/*

** read 50 32bit dwords from MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + read data

*/

BufferSize = ( sizeof(TD004_MEMIO_BUF) + 50*sizeof(unsigned long) );

pMemIoBuf = (TD004_MEMIO_BUF*)malloc( BufferSize );

pMemIoBuf->Size = 50;

pMemIoBuf->Resource = TD004_RES_MEM_2;

pMemIoBuf->Offset = 0;

result = ioctl(fd, TD004_IOCG_READ_ULONG, pMemIoBuf);

if (result < 0) {

/* handle ioctl error */

} else {

pValues = (unsigned long*)pMemIoBuf->pData;

}

free( pMemIoBuf );

ERRORS

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

EFAULT Error while copying data to user space.

ENOMEM Error getting enough internal memory for data.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 36 of 47

3.3.14 TD004_IOCS_WRITE_UCHAR

NAME

TD004_IOCS_WRITE_UCHAR Write unsigned char values to FPGA resource.

DESCRIPTION

This TDRV004 control function writes a number of unsigned char values to a Memory or I/O area by
using BYTE accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed by the
parameter argp to the driver. This data buffer can be enlarged to the desired needs. The data section
must be included inside this structure.

typedef struct {

TD004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TDRV004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O space found is
named TDRV004_RES_IO_2 and so on.

The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address
Register

PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX9030 default configuration utilizes only BAR0 to BAR1.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to write.



TDRV004-SW-82 - Linux Device Driver Page 37 of 47

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data.

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

unsigned long BufferSize;

TD004_MEMIO_BUF *pMemIoBuf;

unsigned char *pValues;

/*

** write 10 byte to MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + write data

*/

BufferSize = ( sizeof(TD004_MEMIO_BUF) + 10*sizeof(unsigned char) );

pMemIoBuf = (TD004_MEMIO_BUF*)malloc( BufferSize );

pMemIoBuf->Size = 10;

pMemIoBuf->Resource = TD004_RES_MEM_2;

pMemIoBuf->Offset = 0;

pValues = (unsigned char*)pMemIoBuf->pData;

pValues[0] = 0x01;

pValues[1] = 0x02;

...

result = ioctl(fd, TD004_IOCS_WRITE_UCHAR, pMemIoBuf);

if (result < 0) {

/* handle ioctl error */

}

free( pMemIoBuf );

ERRORS

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

EFAULT Error while copying data to user space.

ENOMEM Error getting enough internal memory for data.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 38 of 47

3.3.15 TD004_IOCS_WRITE_USHORT

NAME

TD004_IOCS_WRITE_USHORT Write unsigned short values to FPGA resource.

DESCRIPTION

This TDRV004 control function writes a number of unsigned short values to a Memory or I/O area by
using WORD accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed by the
parameter argp to the driver. This data buffer can be enlarged to the desired needs. The data section
must be included inside this structure.

typedef struct {

TD004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TDRV004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O space found is
named TDRV004_RES_IO_2 and so on.

The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address
Register

PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX9030 default configuration utilizes only BAR0 to BAR1.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to write.



TDRV004-SW-82 - Linux Device Driver Page 39 of 47

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data. The data pointer is typecasted into an unsigned short pointer.

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

unsigned long BufferSize;

TD004_MEMIO_BUF *pMemIoBuf;

unsigned short *pValues;

/*

** write 10 16bit words to MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + write data

*/

BufferSize = ( sizeof(TD004_MEMIO_BUF) + 10*sizeof(unsigned short) );

pMemIoBuf = (TD004_MEMIO_BUF*)malloc( BufferSize );

pMemIoBuf->Size = 10;

pMemIoBuf->Resource = TD004_RES_MEM_2;

pMemIoBuf->Offset = 0;

pValues = (unsigned char*)pMemIoBuf->pData;

pValues[0] = 0x0001;

pValues[1] = 0x0002;

...

result = ioctl(fd, TD004_IOCS_WRITE_USHORT, pMemIoBuf);

if (result < 0) {

/* handle ioctl error */

}

free( pMemIoBuf );

ERRORS

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

EFAULT Error while copying data to user space.

ENOMEM Error getting enough internal memory for data.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 40 of 47

3.3.16 TD004_IOCS_WRITE_ULONG

NAME

TD004_IOCS_WRITE_ULONG Write unsigned long values to FPGA resource.

DESCRIPTION

This TDRV004 control function writes a number of unsigned long values to a Memory or I/O area by
using DWORD accesses. A pointer to the caller’s data buffer (TD004_MEMIO_BUF) is passed by the
parameter argp to the driver. This data buffer can be enlarged to the desired needs. The data section
must be included inside this structure.

typedef struct {

TD004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TD004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TDRV004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O space found is
named TDRV004_RES_IO_2 and so on.

The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

PCI Base
Address
Register

PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX9030 default configuration utilizes only BAR0 to BAR1.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to write.



TDRV004-SW-82 - Linux Device Driver Page 41 of 47

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data. The data pointer is typecasted into an unsigned long pointer.

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

unsigned long BufferSize;

TD004_MEMIO_BUF *pMemIoBuf;

unsigned long *pValues;

/*

** write 10 32bit dwords to MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + write data

*/

BufferSize = ( sizeof(TD004_MEMIO_BUF) + 10*sizeof(unsigned long) );

pMemIoBuf = (TD004_MEMIO_BUF*)malloc( BufferSize );

pMemIoBuf->Size = 10;

pMemIoBuf->Resource = TD004_RES_MEM_2;

pMemIoBuf->Offset = 0;

pValues = (unsigned long*)pMemIoBuf->pData;

pValues[0] = 0x00000001;

pValues[1] = 0x00000002;

...

result = ioctl(fd, TD004_IOCS_WRITE_ULONG, pMemIoBuf);

if (result < 0) {

/* handle ioctl error */

}

free( pMemIoBuf );

ERRORS

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

EFAULT Error while copying data to user space.

ENOMEM Error getting enough internal memory for data.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 42 of 47

3.3.17 TD004_IOCS_CONFIGURE_INT

NAME

TD004_IOCS_CONFIGURE_INT Configure local interrupt source polarity

DESCRIPTION

This TDRV004 control function configures the polarity of the PLX PCI9030 interrupt sources.

A pointer to the caller’s data buffer (unsigned long) is passed by the parameter argp to the driver. This
value is an OR’ed value using the following definitions (only one value valid for each interrupt source):

Value Description

TD004_LINT1_POLHIGH Local Interrupt Source 1 HIGH active

TD004_LINT1_POLLOW Local Interrupt Source 1 LOW active

TD004_LINT2_POLHIGH Local Interrupt Source 2 HIGH active

TD004_LINT2_POLLOW Local Interrupt Source 2 LOW active

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

unsigned long IntConfig;

/*

** Setup LINT1 to LOW polarity, and LINT2 to HIGH polarity

*/

IntConfig = TD004_LINT1_POLLOW | TD004_LINT2_POLHIGH;

result = ioctl(fd, TD004_IOCS_CONFIGURE_INT, &IntConfig);

if (result < 0) {

/* handle ioctl error */

}

ERRORS

EFAULT Error while copying data to or from user space.

EINVAL Invalid parameter specified.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 43 of 47

3.3.18 TD004_IOC_WAIT_FOR_INT1

NAME

TD004_IOC_WAIT_FOR_INT Wait for incoming Local Interrupt Source 1

DESCRIPTION

This TDRV004 control function enables the corresponding interrupt source, and waits for Local
Interrupt Source 1 (LINT1) to arrive. After the interrupt has arrived, this specific local interrupt source is
disabled inside the PLX9030.

A pointer to the caller’s data buffer (int) is passed by the parameter argp to the driver. This value
contains the timeout in system ticks. To wait indefinitely, specify 0 as timeout parameter.

The delay between an incoming interrupt and the return of the described function is system-
dependent, and is most likely several microseconds.

For high interrupt load, a customized device driver should be used which serves the module-
specific functionality directly on interrupt level.

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

unsigned long IntConfig;

/*

** Wait at least 5 seconds for incoming interrupt

*/

Timeout = 5 * HZ;

result = ioctl(fd, TD004_WAIT_FOR_INT1, &Timeout);

if (resul < 0)

{

/* acknowledge interrupt source in FPGA logic */

/* to clear the PLX PCI9030 Local Interrupt Source */

} else {

/* handle the error */

}



TDRV004-SW-82 - Linux Device Driver Page 44 of 47

ERRORS

EFAULT Error while copying data to or from user space.

EINVAL Invalid parameter specified (Timeout must be >= 0)

EBUSY Another job already waiting for this interrupt. Only one job is
allowed at the same time.

ETIME The specified timeout occurred.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 45 of 47

3.3.19 TD004_IOC_WAIT_FOR_INT2

NAME

TD004_IOC_WAIT_FOR_INT2 Wait for incoming Local Interrupt Source 2

DESCRIPTION

This TDRV004 control function enables the corresponding interrupt source, and waits for Local
Interrupt Source 2 (LINT2) to arrive. After the interrupt has arrived, this specific local interrupt source is
disabled inside the PLX9030.

A pointer to the caller’s data buffer (int) is passed by the parameter argp to the driver. This value
contains the timeout in system ticks. To wait indefinitely, specify 0 as timeout parameter.

The delay between an incoming interrupt and the return of the described function is system-
dependent, and is most likely several microseconds.

For high interrupt load, a customized device driver should be used which serves the module-
specific functionality directly on interrupt level.

EXAMPLE

#include “tdrv004.h”

int fd;

int result;

unsigned long IntConfig;

/*

** Wait at least 5 seconds for incoming interrupt

*/

Timeout = 5 * HZ;

result = ioctl(fd, TD004_WAIT_FOR_INT2, &Timeout);

if (resul < 0)

{

/* acknowledge interrupt source in FPGA logic */

/* to clear the PLX PCI9030 Local Interrupt Source */

} else {

/* handle the error */

}



TDRV004-SW-82 - Linux Device Driver Page 46 of 47

ERRORS

EFAULT Error while copying data to or from user space.

EINVAL Invalid parameter specified (Timeout must be >= 0)

EBUSY Another job already waiting for this interrupt. Only one job is
allowed at the same time.

ETIME The specified timeout occurred.

Other returned error codes are system error conditions.



TDRV004-SW-82 - Linux Device Driver Page 47 of 47

4 Diagnostic
If the TDRV004 does not work properly it is helpful to get some status information from the driver
respective kernel.

The Linux /proc file system provides information about kernel, resources, driver, devices, and so on.
The following screen dumps displays information of a correct running TDRV004 driver (see also the
proc man pages).

# cat /proc/pci

. . .

Bus 0, device 11, function 0:

Signal processing controller: PCI device 1498:0276 (TEWS Datentechnik
GmBH) (rev 0).

IRQ 11.

Non-prefetchable 32 bit memory at 0xec020000 [0xec02007f].

I/O at 0xd400 [0xd47f].

Non-prefetchable 32 bit memory at 0xeb000000 [0xebffffff].

# cat /proc/devices

Character devices:

1 mem

2 pty

. . .

136 pts

162 raw

254 tdrv004drv

# cat /proc/ioports

. . .

d000-d03f : Intel Corp. 82557/8/9 [Ethernet Pro 100]

d000-d03f : e100

d400-d47f : PCI device 1498:0276 (TEWS Datentechnik GmBH)

. . .

# cat /proc/iomem

00000000-0009f7ff : System RAM

. . .

eb000000-ebffffff : PCI device 1498:0276 (TEWS Datentechnik GmBH)

ec000000-ec01ffff : Intel Corp. 82557/8/9 [Ethernet Pro 100]

ec000000-ec01ffff : e100

ec020000-ec02007f : PCI device 1498:0276 (TEWS Datentechnik GmBH)

. . .


	1	Introduction
	2	Installation
	2.1	Build and install the device driver
	Uninstall the device driver
	2.3	Install device driver into the running kernel
	2.4	Remove device driver from the running kernel
	Change Major Device Number

	3	Device Input/Output functions
	3.1	open()
	close()
	ioctl()
	TD004_IOCS_XSVFPLAY
	TD004_IOCG_XSVFPOS
	TD004_IOCG_XSVFLASTCMD
	TD004_IOC_RECONFIG
	TD004_IOCT_SETWAITSTATES
	TD004_IOCS_SETCLOCK
	TD004_IOCS_SPIWRITE
	TD004_IOCG_SPIREAD
	TD004_IOCS_PLXWRITE
	TD004_IOCG_PLXREAD
	TD004_IOCG_READ_UCHAR
	TD004_IOCG_READ_USHORT
	TD004_IOCG_READ_ULONG
	TD004_IOCS_WRITE_UCHAR
	TD004_IOCS_WRITE_USHORT
	TD004_IOCS_WRITE_ULONG
	TD004_IOCS_CONFIGURE_INT
	TD004_IOC_WAIT_FOR_INT1
	TD004_IOC_WAIT_FOR_INT2


	4	Diagnostic

