TEWS &

The Embedded I/O Company TECHNOLOGIES

TDRV006-SW-42

VxWorks Device Driver
64 Digital Inputs/Outputs (Bit 1/O)

Version 2.0.x

User Manual

Issue 2.0.1
March 2010

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany
Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: inffo@tews.com www.tews.com

TDRV006-SW-42

VxWorks Device Driver

64 Digital Inputs/Outputs (Bit 1/0)
Supported Modules:

TEWS <

TECHNOLOGIES

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and

TPMC681

complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.
TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.
©2006-2010 by TEWS TECHNOLOGIES GmbH

Issue Date

1.0.0 July 7, 2006

1.0.1 New Address TEWS LLC, ChangeLog.txt added in file list December 3, 2006

2.0.0 New ioctl() function: FIO_TDRV006_WRITE_MASKED, January 26, 2010

description for APl and VxBus-support added,
Address TEWS LLC removed
2.0.1 Legacy vs. VxBus Driver modified March 26, 2010

TDRV006-SW-42 — VxWorks Device Driver

Page 2 of 49

TEWS <

TECHNOLOGIES

Table of Contents

1 INTRODUGCTION e et e e e e e e e e et e e e et e et e e eennns 4
2 INST ALLATION L.t e et e et et e et e e e et e et e e eennns 5
2.1 LEQACY VS. VXBUS DIIVEL ..eiiiiiiiiie i i i it e e e s sttt e e e e s e st e e e e e s s st e e e e e e e s s snnsbaaeeeeeeaeennnsrnneneeens 6

2.2 VXBUS DIIVEr INSTAlAtIONueeiiiiiiiiiiieei ettt e e e e et e e e e e e s e e sanbeeeeeaaeas 6

2.2.1 DireCt BSP BUIlAS........coiiiiiiiiiiici 7

2.3 Legacy Driver INSTAALIONcoii ettt e e e e e et e e e e e e e s annbreeeeaaens 8

2.3.1 Include device driver in VXWOIKS PrOJECESoiiuuiiiiiiiiee ittt 8

2.3.2 Special installation for Intel x86 based targetscccccceeviivciiiiieee e 8

2.3.3 SYStEM reSOUICE FEQUITEMIENT . .eiiieeissietieieieeeeesestteereeee e s s s satreeeeeeeessansssanereeeesssasnnnnneeeeesaanns 9

3 API DOCUMENTATION ..ot e e e et e et e e e eaeeaaaes 10
TR T oL - I U Yo {0 o 1 J PP RRTTTP 10

R 700 A (o 001G o =1 o P 10

R 70 I (o 00T @ [T Y P 12

3.2 DEVICE ACCESS FUNCIIONS ... ittt e e e e e e e s et e e e et e e e s et eesaaa s e eeaaaans 14

G T2 R (o [V00 5T 2 =T To [P PSRRRRPRRRPRRR 14

I (o [V 010 11T 11 =P PPPPUPPRTRRIN 16

3.2.3 tArVOOBWIEMASKEMccoiiiiiieiiiiie ettt st e e st e e s bt e e e s saneeeeen 18

3.2.4 tdrvOOBSEIOULPULLING ...eeveeeiieieiiiieeee e e et e e s s e e e e e s s e e e e e e s s e e e e e e e e e ansrnnneeeens 20

T T (o [(010G 1@ [T T @ W4 o 10 d N o = P 22

3.2.6 tdrvOOBOULPULENGDIEcceiiiiiiiee et e e e e e eaeee e s 24

3.2.7 tdrvO0BWaitFOrLOWTOHIGN ... 26

3.2.8 tdrvOO0BWaitFOrHIGNTOLOWeiiiiiiieeiiiiie et e e e e e 28

3.2.9 tdrvOOBWAITFOTANYTIANS ...ttt ettt ettt e e e e et b e e e e e e s anbbbbe e e e e e e e s sanbbeneeeaens 30

4 LEGACY 1/O SYSTEM FUNCTIONS ...t e e 32
o R (o [4V 0101 YA I PP UUPTP 32

A (o [V010GV @ T L= () PR 34

T T o [V70011 o 1 | 1 PSSR 36

5 BASIC I/O FUNCTIONS ...ttt e e e e e e e e et e e e e e e e e e eannnnnna s 37
Lo 00 o o 1= o T (PR 37

L7 o Lo 1=) PSP 39

LIRS I To T o] £ I) TP PERPT 41
5.3.1 FIO_TDRVOOE_READcttiiiiiiiieeiiitiie ettt ettt ettt e e sttt e e sttt e e e s stbe e e e s sbbeeeessbbeeeessnbeeeenns 43

5.3.2 FIO_TDRVOOE _WRITE......oitiiiiiiiie ittt ettt ettt e et e e st e e e s sbbe e e e s nnneeeean 44

5.3.3 FIO_TDRV0O06_WRITE_MASKEDcciiiiiiiiiiiiiee ittt et e et e staee e s snnaee e 45

5.3.4 FIO_TDRV0O06_OUTPUT_ENABLEcccoitiiiiiiiiiee ettt 47

5.3.5 FIO_TDRVOOE_EVENT_WAIT ..ooiiiiiiiiee ittt e st e et e e st e e s snnee e e s nnnaeeeens 48

TDRV006-SW-42 — VxWorks Device Driver Page 3 of 49

TEWS <

TECHNOLOGIES

1 Introduction

The TDRV006-SW-42 VxWorks device driver software allows the operation of the TPMC681 PMC
conforming to the VxWorks 1/O system specification.

The TDRV006-SW-42 release contains independent driver sources for the old legacy (pre-VxBus) and
the new VxBus-enabled driver model. The VxBus-enabled driver is recommended for new
developments with later VxWorks 6.x release and mandatory for VxWorks SMP systems.

Both drivers, legacy and VxBus, share the same application programming interface (API) and device-
independent basic 1/0 interface with open(), close() and ioctl() functions. The basic I/O interface is only
for backward compatibility with existing applications and should not be used for new developments.

Both drivers invoke a mutual exclusion and binary semaphore mechanism to prevent simultaneous
requests by multiple tasks from interfering with each other.

The TDRV006-SW-42 device driver supports the following features:

configure direction of I/O lines
set output value of output lines
read value of I/O lines

wait for input line events

YVVVY

The TDRV006-SW-42 supports the modules listed below:

TPMC681 64 bit digital 110 PMC

In this document all supported modules and devices will be called TDRV006. Specials for
certain devices will be advised.

To get more information about the features and use of the supported devices it is recommended to
read the manuals listed below.

TPMC681 User manual
TPMC681 Engineering Manual

TDRV006-SW-42 — VxWorks Device Driver Page 4 of 49

2 Installation

TEWS <

TECHNOLOGIES

Following files are located on the distribution media:

Directory path ‘TDRV006-SW-42':

TDRVO006-SW-42-2.0.1.pdf
TDRV006-SW-42-VXBUS.zip
TDRVO006-SW-42-LEGACY.zip
ChangelLog.txt

Release.txt

PDF copy of this manual

Zip compressed archive with VxBus driver sources
Zip compressed archive with legacy driver sources
Release history

Release information

The archive TDRV006-SW-42-VXBUS.zip contains the following files and directories:

Directory path ‘./tews/tdrv006’:

tdrv006drv.c
tdrv006def.h
tdrv006.h
tdrv006api.c
Makefile
40tdrv006.cdf
tdrv006.dc
tdrv006.dr
include/tvxbHal.h
apps/tdrvO06exa.c

TDRVO006 device driver source

TDRVO006 driver include file

TDRVO006 include file for driver and application

TDRVO0O06 API file

Driver Makefile

Component description file for VxWorks development tools
Configuration stub file for direct BSP builds

Configuration stub file for direct BSP builds

Hardware dependent interface functions and definitions
Example application

The archive TDRV006-SW-42-LEGACY.zip contains the following files and directories:

Directory path ‘./tdrv006’:

tdrv006drv.c
tdrv006def.h
tdrv006.h
tdrv006pci.c
tdrv006api.c
tdrvOO6exa.c
tdrv006init.c
include/tdhal.h

TDRV006-SW-42 — VxWorks Device Driver

TDRVO006 device driver source

TDRVO0O06 driver include file

TDRVO006 include file for driver and application
TDRVO006 device driver source for x86 based systems
TDRVO006 API file

Example application

Legacy driver initialization

Hardware dependent interface functions and definitions

Page 5 of 49

TEWS <

TECHNOLOGIES

2.1 Legacy vs. VxBus Driver

In later VxWorks 6.x releases, the old VxWorks 5.x legacy device driver model was replaced by
VxBus-enabled device drivers. Legacy device drivers are tightly coupled with the BSP and the board
hardware. The VxBus infrastructure hides all BSP and hardware differences under a well defined
interface, which improves the portability and reduces the configuration effort. A further advantage is
the improved performance of API calls by using the method interface and bypassing the VxWorks
basic I/O interface.

VxBus-enabled device drivers are the preferred driver interface for new developments.

The checklist below will help you to make a decision which driver model is suitable and possible for
your application:

Legacy Driver VxBus Driver

= VxWorks 5.x releases = VxWorks 6.6 and later releases

= VxWorks 6.5 and earlier with VxBus PCI bus

releases = SMP systems (only the VxBus

L |
= VxWorks 6.x releases without driver is SMP safel)

VxBus PCI bus support

TEWS TECHNOLOGIES recommends not using the VxBus Driver before VxWorks release 6.6.
In previous releases required header files are missing and the support for 3’d—party drivers may
not be available.

2.2 VVxBus Driver Installation

Because Wind River doesn't provide a standard installation method for 3" party VxBus device drivers
the installation procedure needs to be done manually.

In order to perform a manual installation extract all files from the archive TDRV006-SW-42-VXBUS.zip
to the typical 3" party directory installDir/vxworks-6.x/target/3rdparty (whereas installDir must be
substituted by the VxWorks installation directory).

After successful installation the TDRV006 device driver is located in the vendor and driver-specific
directory installDir/vxworks-6.x/target/3rdparty/tews/tdrv006.

At this point the TDRVO0O06 driver is not configurable and cannot be included with the kernel
configuration tool in a Wind River Workbench project. To make the driver configurable the driver library
for the desired processer (CPU) and build tool (TOOL) must be built in the following way:

(1) Open a VxWorks development shell (e.g. C:\WindRiver\wrenv.exe -p vxworks-6.7)

(2) Change into the driver installation directory
installDir/vxworks-6.x/target/3rdparty/tews/tdrv006

(3) Invoke the build command for the required processor and build tool
make CPU=cpuName TOOL=tool

TDRV006-SW-42 — VxWorks Device Driver Page 6 of 49

TEWS <

TECHNOLOGIES
For Windows hosts this may look like this:

C.> cd \WndRi ver\ vxworks-6. 7\target\3rdparty\tews\tdrv006
C. > make CPU=PENTI UMA TOOL=di ab

To compile SMP-enabled libraries, the argument VXBUILD=SMP must be added to the command line
C. > make CPU=PENTI UM4 TOOL=di ab VXBUI LD=SMP

To integrate the TDRV006 driver with the VxWorks development tools (Workbench), the component
configuration file 40tdrv006.cdf must be copied to the directory
installDir/vxworks-6.x/target/config/comps/VxWorks.

C.> cd \WndRi ver\ vxworks-6. 7\target\3rdparty\tews\tdrv006
C. > copy 40tdrv006. cdf \Wndriver\vxworks-6.7\target\config\conps\vxWrks

In VXWorks 6.7 and newer releases the kernel configuration tool scans the CDF file automatically and
updates the CxrCat.txt cache file to provide component parameter information for the kernel
configuration tool as long as the timestamp of the copied CDF file is newer than the one of the
CxrCat.txt. If your copy command preserves the timestamp, force to update the timestamp by a utility,
such as touch.

In earlier VxWorks releases the CxrCat.txt file may not be updated automatically. In this case, remove
or rename the original CxrCat.txt file and invoke the make command to force recreation of this file.

C.> cd \Wndriver\vxworks-6.7\target\config\conps\vxWrks

C. > del CxrcCat.txt

C. > nmke

After successful completion of all steps above and restart of the Wind River Workbench, the TDRV006
driver can be included in VxWorks projects by selecting the “TEWS TDRV006 Driver* component in
the “hardware (default) - Device Drivers” folder with the kernel configuration tool.

2.2.1 Direct BSP Builds

In development scenarios with the direct BSP build method without using the Workbench or the vxprj
command-line utility, the TDRVO006 configuration stub files must be copied to the directory
installDir/vxworks-6.x/target/config/comps/src/hwif. Afterwards the vxbUsrCmdLine.c file must be
updated by invoking the appropriate make command.

C.> cd \WndRi ver\ vxworks-6. 7\target\3rdparty\tews\tdrv006

C. > copy tdrv006.dc \Wndriver\vxworks-6.7\target\config\conps\src\hw f

C. > copy tdrv006.dr \Wndriver\vxworks-6.7\target\config\conps\src\hw f

C.> cd \Wndriver\vxworks-6. 7\target\config\conps\src\hw f
C. > make vxbUsr CndLi ne. c

TDRV006-SW-42 — VxWorks Device Driver Page 7 of 49

TEWS <

TECHNOLOGIES

2.3 Legacy Driver Installation

2.3.1 Include device driver in VxWorks projects

For including the TDRVO006-SW-42 device driver into a VxWorks project (e.g. Tornado IDE or
Workbench) follow the steps below:

(1) Extract all files from the archive TDRV006-SW-42-LEGACY.zip to your project directory.

(2) Add the device drivers C-files to your project.
Make a right click to your project in the ‘Workspace’ window and use the ‘Add Files ..." topic.
A file select box appears, and the driver files in the tdrv006 directory can be selected.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your VxWorks User’s
Guide (e.g. Tornado, Workbench, etc.)

2.3.2 Special installation for Intel x86 based targets

The TDRVO006 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU_FAMILY. If the content of this macro is equal to 180X86 special Intel x86 conforming code and
function calls will be included.

The second problem for Intel x86 based platforms can't be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn’'t map PCl memory spaces of devices
which are not used by the BSP, the required device memory spaces can’t be accessed.

To solve this problem a MMU mapping entry has to be added for the required TDRV006 PCI memory
spaces prior the MMU initialization (usrMmulnit()) is done.

The C source file tdrv00O6pci.c contains the function tdrvO06Pcilnit(). This routine finds out all
TDRVO006 devices and adds MMU mapping entries for all used PClI memory spaces. Please insert a
call to this function after the PClI initialization is done and prior to MMU initialization (usrMmulnit()).

The right place to call the function tdrvO06Pcilnit() is at the end of the function sysHwinit() in sysLib.c
(it can be opened from the project Files window).

Be sure that the function is called prior to MMU initialization otherwise the TDRV006 PCIl spaces
remains unmapped and an access fault occurs during driver initialization.

Please insert the following call at a suitable place in sysLib.c:

t drvOO6Pci I nit();

Modifying the sysLib.c file will change the sysLib.c in the BSP path. Remember this for future
projects and recompilations.

TDRV006-SW-42 — VxWorks Device Driver Page 8 of 49

2.3.3 System resource requirement

TEWS <

TECHNOLOGIES

The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement
Memory <1KB <1KB
Stack <1KB
Semaphores 0 up to 64

Memory and Stack usage may differ from system to system, depending on the used compiler

and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

TDRV006-SW-42 — VxWorks Device Driver

Page 9 of 49

TEWS <

TECHNOLOGIES

3 APl Documentation

3.1 General Functions

3.1.1 tdrv0060pen()

Name

tdrv0060pen() — opens a device.

Synopsis
TDRV006_DEV tdrv0060pen
(
char *DeviceName
)
Description

Before 1/0 can be performed to a device, a file descriptor must be opened by a call to this function.

Parameters

DeviceName

This parameter points to a null-terminated string that specifies the name of the device. The first
TDRVO006 device is named “/tdrv006/0", the second device is named “/tdrv006/1” and so on.

Example

#i ncl ude “tdrv006. h”

TDRV006_DEV pDev;

/*

** open file descriptor to device
*/

pDev = tdrv006QCpen(“/tdrv006/0");
if (pDev == NULL)
{

/* handl e open error */

TDRV006-SW-42 — VxWorks Device Driver Page 10 of 49

TEWS <

TECHNOLOGIES

RETURNS

A device descriptor pointer, or NULL if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TDRV006-SW-42 — VxWorks Device Driver Page 11 of 49

TEWS <

TECHNOLOGIES

3.1.2 tdrv006Close()

Name

tdrv006Close() — closes a device.

Synopsis

int tdrvO06Close
(

)

TDRV006_DEV pDev

Description

This function closes previously opened devices.

Parameters

pDev

This value specifies the file descriptor pointer to the hardware module retrieved by a call to the
corresponding open-function.

Example

#i ncl ude “tdrv006. h”

TDRVOO6_DEV pDev;

i nt result;

/*

** close file descriptor to device
*/

result = tdrv006d ose(pDev);
if (result < 0)
{

/* handl e cl ose error */

TDRV006-SW-42 — VxWorks Device Driver Page 12 of 49

TEWS <

TECHNOLOGIES

RETURNS

Zero, or -1 if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TDRV006-SW-42 — VxWorks Device Driver Page 13 of 49

TEWS <

TECHNOLOGIES

3.2 Device Access Functions

3.2.1 tdrvOO6Read

Name

tdrvOO6Read — read current input value of the I/O lines

Synopsis

STATUS tdrvOO6Read
TDRV006_DEV pDev,
UINT32 *in31_0,
UINT32 *in63_32

)

Description

This function reads the current input value of the 1/O lines.

Parameters

pDev
This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

in31_0
This argument points to a buffer where the current value of 1/0 lines 0 up to 31 will be returned.
Bit O returns the value of I/O line 0, bit 1 the value of I/O line 1, and so on.

in63_32

This argument points to a buffer where the current value of I/O lines 32 up to 63 will be
returned. Bit O returns the value of 1/O line 32, bit 1 the value of I/O line 33, and so on.

TDRV006-SW-42 — VxWorks Device Driver Page 14 of 49

TEWS <

TECHNOLOGIES

Example

#i ncl ude “tdrv006. h”

TDRV0O06_DEV pDev;

STATUS result;

Ul NT32 in_|ow

Ul NT32 i n_high;

/*

** read current state of I/Olines
*/

result = tdrvOO6Read(pDev, & n_Ilow, & n_high);
if (result == ERROR)

{
/* handl e error */
}
el se
{
printf(“INPUT: 0x%08X¥®8X\n”, in_high, in_|low;
}
RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGety().

The error code is a standard error code set by the /0 system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description
EINVAL A NULL pointer is referenced for an input value
EBADF The device handle is invalid

TDRV006-SW-42 — VxWorks Device Driver Page 15 of 49

TEWS <

TECHNOLOGIES

3.2.2 tdrvO0O6Write

Name

tdrvO06Write — set output value

Synopsis

STATUS tdrvO06Write

(
TDRVO006_DEV pDev,
UINT32 out31_0,
UINT32 out63_32

)

Description

This function sets the output value.

The specified value will only appear on the I/O lines which are configured for output.

Parameters

pDev
This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

out31 0

This argument specifies the output value for 1/O lines 0 up to 31. Bit 0 specifies the value of I/O
line 0, bit 1 the value of I/O line 1, and so on.

out63_32

This argument specifies the output value for I/O lines 32 up to 63. Bit 0 specifies the value of /O
line 32, bit 1 the value of I/O line 33, and so on.

TDRV006-SW-42 — VxWorks Device Driver Page 16 of 49

TEWS <

TECHNOLOGIES

Example

#i ncl ude “tdrv006. h”

TDRV0O06_DEV pDev;
STATUS result;

/*

** Set output value (set 1/O1lines 0-15)

*/

result = tdrvOO6Wite(pDev, O0xO000FFFF, 0x00000000);
if (result == ERROR)

{

/* error handling */

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGety().

The error code is a standard error code set by the /0 system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description
EBADF The device handle is invalid

TDRV006-SW-42 — VxWorks Device Driver Page 17 of 49

TEWS <

TECHNOLOGIES

3.2.3 tdrv006WriteMasked

Name

tdrv006WriteMasked — set output value for specified 1/O lines

Synopsis

STATUS tdrv006WriteMasked

(
TDRV006_DEV pDev,
UINT32 out31_0,
UINT32 out63_32,
UINT32 mask31_0,
UINT32 maks63 32

)

Description

This function sets the output value for specified 1/0 lines. The mask specifies which 1/O bits shall be
set to the specified output value and which shall keep the current value.

This specified value will only appear on the I/O lines which are configured for output.

Parameters

pDev
This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

out31 0
This argument specifies the output value for 1/O lines 0 up to 31. Bit 0 specifies the value of I/O
line 0, bit 1 the value of I/O line 1, and so on.

out63_32
This argument specifies the output value for I/O lines 32 up to 63. Bit O specifies the value of I1/0O
line 32, bit 1 the value of I/O line 33, and so on.

mask31_0

This argument specifies the output mask for output lines 0 up to 31. Bit O specifies the mask for
I/O line 0, bit 1 the value for I/O line 1, and so on.

A set bit (1) means the bit shall be set to the value specified by out_31_0.

A reset bit (0) means that the old output value will not be changed.

TDRV006-SW-42 — VxWorks Device Driver Page 18 of 49

TEWS <

TECHNOLOGIES

mask63_32

This argument specifies the output mask for output lines 32 up to 63. Bit O specifies the mask
for 1/0O line 32, bit 1 the value for I/O line 33, and so on.

A set bit (1) means the bit shall be set to the value specified by out_63_32.

A reset bit (0) means that the old output value will not be changed.

Example

#i ncl ude “tdrv006. h”

TDRV006_DEV pDev;

STATUS result;

/*

** Set a part of the output value (set/reset 1/Olines 0-15 and 48-63)
*/

result = tdrv0O0O6WiteMasked(pDev,
0x12345678, 0x87654321,
0x0000FFFF, OxFFFFO000);
if (result == ERROR)
{

/* error handling */

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGety().

The error code is a standard error code set by the /0 system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description
EBADF The device handle is invalid

TDRV006-SW-42 — VxWorks Device Driver Page 19 of 49

TEWS <

TECHNOLOGIES

3.2.4 tdrv006SetOutputLine

Name

tdrv006SetOutputLine — set a specified output line

Synopsis
STATUS tdrv006SetOutputLine

(
TDRV006_DEV pDev,

int outputLine

Description

This function sets a single bit of the output value.

This specified value will only appear if the corresponding I/O line is configured for output.

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

outputLine
This argument specifies a data bit that shall be set. Allowed values are 0 up to 63.

Example

#i ncl ude “tdrv006. h”

TDRV0O06_DEV pDev;
STATUS result;
/*

** Set |/Oline 32

*/

result = tdrv006Set Cut put Li ne(pDev, 32);
if (result == ERROR)
{

/* error handling */

TDRV006-SW-42 — VxWorks Device Driver Page 20 of 49

TEWS <

TECHNOLOGIES

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGety().

The error code is a standard error code set by the 1/0 system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description
EINVAL An invalid line number is specified
EBADF The device handle is invalid

TDRV006-SW-42 — VxWorks Device Driver Page 21 of 49

TEWS <

TECHNOLOGIES

3.2.5 tdrv006ClearOutputLine

Name

tdrv006ClearOutputLine — reset a specified /O line

Synopsis
STATUS tdrv006ClearOutputLine

(
TDRV006_DEV pDev,

int outputLine

Description

This function resets a single bit of output value.

This specified value will only appear if the corresponding I/O line is configured for output.

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

outputLine
This argument specifies data bit that shall be reset. Allowed values are 0 up to 63.

Example

#i ncl ude “tdrv006. h”

TDRV0O06_DEV pDev;

STATUS result;

/*

** Clear I/Oline 32

*/

result = tdrv006d ear Qut put Li ne(pDev, 32);
if (result == ERROR)

{

/* error handling */

TDRV006-SW-42 — VxWorks Device Driver Page 22 of 49

TEWS <

TECHNOLOGIES

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGety().

The error code is a standard error code set by the 1/0 system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description
EINVAL An invalid line number is specified
EBADF The device handle is invalid

TDRV006-SW-42 — VxWorks Device Driver Page 23 of 49

TEWS <

TECHNOLOGIES

3.2.6 tdrv0060QutputEnable

Name

tdrv0060utputEnable — set the 1/O line direction

Synopsis

STATUS tdrv0060utputEnable

(
TDRVO006_DEV pDev,
UINT32 enaout31_0,
UINT32 enaout63_32

)

Description

This function sets the 1/O line direction. The value specifies which I/O lines shall be configured for
output and which I/O lines should be used for input.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

enaout31 0

This argument specifies the direction of 1/0 lines 0 up to 31. Bit 0 specifies the direction of I/O
line 0, bit 1 the direction of I/O line 1, and so on. A set bit (1) configures the line for output, an
unset bit (0) configures input (tri-state).

enaout63 32

This argument specifies the direction of 1/0 lines 32 up to 63. Bit 0 specifies the direction of I/O
line 32, bit 1 the direction of I/O line 33, and so on. A set bit (1) configures the line for output, an
unset bit (0) configures input (tri-state).

TDRV006-SW-42 — VxWorks Device Driver Page 24 of 49

Example

#i ncl ude “tdrv006. h”

TDRV0O06_DEV pDev;
STATUS result;

/*

** Enable 1/Olines 0-8 for ouput
*/

result = tdrv006Qut put Enabl e(pDev,
if (result == ERROR)

{

/* error handling */

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

TEWS <

TECHNOLOGIES

0x000001FF, 0x00000000);

The error codes are stored in errno and can be read with the function errnoGety().

The error code is a standard error code set by the /0 system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description
EBADF The device handle is invalid

TDRV006-SW-42 — VxWorks Device Driver

Page 25 of 49

TEWS <

TECHNOLOGIES

3.2.7 tdrv0O6WaitForLowToHigh

Name

tdrv006WaitForLowToHigh — wait until a low to high transition occurs

Synopsis
STATUS tdrv006W aitForLowToHigh
(
TDRVO006_DEV pDev,
int inputLine,
int timeout
)
Description

This function waits until a low to high transition occurs on the specified input line or the specified
timeout time has passed.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

inputLine
This argument specifies the input line which shall be observed for a low to high transition.
Allowed values are 0 up to 63.

timeout

This argument specifies the time the function is willing to wait for the specified transition. If the
specified time has passed the function will return with an error. The timeout is specified in ticks.

TDRV006-SW-42 — VxWorks Device Driver Page 26 of 49

TEWS <

TECHNOLOGIES

Example

#i ncl ude “tdrv006. h”

TDRV0O06_DEV pDev;
STATUS result;

/*

** Wait for a lowto-high transition on input line O
** Timeout after 600 ticks (10 seconds)

*/

result = tdrv006Wit For LowToH gh (pDev, 0, 600);

if (result == ERROR)

{

/* error handling */

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGety().

The error code is a standard error code set by the 1/0 system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL Invalid parameter specified

EBUSY Another task is already waiting for a transition of the specified
input line

EBADF The device handle is invalid

S _objLib_OBJ_TIMEOUT Timeout occurred.

TDRV006-SW-42 — VxWorks Device Driver Page 27 of 49

TEWS <

TECHNOLOGIES

3.2.8 tdrv0O6WaitForHighToLow

Name

tdrv006WaitForHighToLow — wait until a high to low transition occurs

Synopsis
STATUS tdrv006WaitHighToLow
(
TDRV006_DEV pDev,
int inputLine,
int timeout
)
Description

This function waits until a high to low transition occurs on the specified input line or the specified
timeout time has passed.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

inputLine
This argument specifies the input line which shall be observed for a high to low transition.
Allowed values are 0 up to 63.

timeout

This argument specifies the time the function is willing to wait for the specified transition. If the
specified time has passed the function will return with an error. This time is specified in ticks.

TDRV006-SW-42 — VxWorks Device Driver Page 28 of 49

TEWS <

TECHNOLOGIES

Example

#i ncl ude “tdrv006. h”

TDRV0O06_DEV pDev;
STATUS result;

/*

** Wait for a high-to-lowtransition on input line O
** Timeout after 600 ticks (10 seconds)

*/

result = tdrv006Wit For H ghToLow (pDev, 0, 600);

if (result == ERROR)

{

/* error handling */

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGety().

The error code is a standard error code set by the 1/0 system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL Invalid parameter specified

EBUSY Another task is already waiting for a transition of the specified
input line

EBADF The device handle is invalid

S _objLib_OBJ_TIMEOUT Timeout occurred.

TDRV006-SW-42 — VxWorks Device Driver Page 29 of 49

TEWS <

TECHNOLOGIES

3.2.9 tdrvO0O6WaitForAnyTrans

Name

tdrv006WaitForAnyTrans — wait until a transition occurs

Synopsis

STATUS tdrvO0O6ForAnyTrans

(
TDRVO006_DEV pDev,
int inputLine,
int timeout

)

Description

This function waits until a transition (high to low or low to high) occurs on the specified input line or the
specified timeout time has passed.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

inputLine
This argument specifies the input line which shall be observed for a transition. Allowed values
are 0 up to 63.

timeout

This argument specifies the time the function is willing to wait for the specified transition. If the
specified time has passed the function will return with an error. This time is specified in ticks.

TDRV006-SW-42 — VxWorks Device Driver Page 30 of 49

TEWS <

TECHNOLOGIES

Example

#i ncl ude “tdrv006. h”

TDRV0O06_DEV pDev;
STATUS result;

/*

** WAit for a transition on input line O
** Timeout after 600 ticks (10 seconds)

*/

result = tdrv006For AnyTrans (pDev, 0, 600);
if (result == ERROR)

{

/* error handling */

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGety().

The error code is a standard error code set by the 1/0 system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL Invalid parameter specified

EBUSY Another task is already waiting for a transition of the specified
input line

EBADF The device handle is invalid

S _objLib_OBJ_TIMEOUT Timeout occurred.

TDRV006-SW-42 — VxWorks Device Driver Page 31 of 49

4 Leqgacy I/O system functions

TEWS <

TECHNOLOGIES

This chapter describes the legacy driver-level interface to the 1/0 system. The purpose of these

functions is to install the driver in the 1/0O system, add and initialize devices.

The legacy I/O system functions are only relevant for the legacy TDRVO0O06 driver. For the
VxBus-enabled TDRVO006 driver, the driver will be installed automatically in the 1/O system and

devices will be created as needed for detected modules.

4.1 tdrv006Drv()

NAME

tdrv006Drv() - installs the TDRV0O06 driver in the I/O system

SYNOPSIS
#include “tdrv006.h”

STATUS tdrv006Drv(void)

DESCRIPTION

This function searches for supported devices on the PCI bus, installs the TDRV006 driver in the I/O

system.

A call to this function is the first thing the user has to do before adding any device to the

system or performing any I/O request.

EXAMPLE

#i nclude "tdrv006.h”

STATUS result;

result = tdrv006Drv();
if (result == ERROR)

{
/[* Error handling */

TDRV006-SW-42 — VxWorks Device Driver

Page 32 of 49

TEWS <

TECHNOLOGIES

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGety().

Error code Description

ENOBUFS Can't allocate memory buffers

ENXIO No TDRVO006 device found
SEE ALSO

VxWorks Programmer’s Guide: 1/0 System

TDRV006-SW-42 — VxWorks Device Driver Page 33 of 49

TEWS <

TECHNOLOGIES

4.2 tdrv006DevCreate()

NAME

tdrv006DevCreate() — Add a TDRV006 device to the VxWorks system

SYNOPSIS
#include “tdrv006.h”

STATUS tdrv006DevCreate

(
char *name,
int devldx,
int funcType,
void *pParam

)

DESCRIPTION

This routine adds the selected device to the VxWorks system. The device hardware will be setup and
prepared for use.

This function must be called before performing any I/O request to this device.

PARAMETER

name

This string specifies the name of the device that will be used to identify the device, for example
for open() calls.

devldx
This index number specifies the device to add to the system.

funcType
This parameter is unused and should be set to 0.

pParam
This parameter is unused and should be set to NULL.

TDRV006-SW-42 — VxWorks Device Driver Page 34 of 49

TEWS <

TECHNOLOGIES

EXAMPLE

#i nclude "tdrv006.h”

STATUS result;
2
Create the device "/tdrv006/0" for the first 1/0O device
___ * [
result = tdrv006DevCreate("/tdrv006/0",
01
Ol
0);
if (result '= K
{
/* Error occurred when creating the device */
}
RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGety().

Error code Description

ENXIO No matching device found

EBUSY Device has already been created
SEE ALSO

VxWorks Programmer’s Guide: 1/0 System

TDRV006-SW-42 — VxWorks Device Driver Page 35 of 49

TEWS <

TECHNOLOGIES

4.3 tdrv006Pcilnit()

NAME

tdrv006Pcilnit() — Generic PCI device initialization

SYNOPSIS

void tdrvO06Pcilnit()

DESCRIPTION

This function is required only for Intel x86 VxWorks platforms. The purpose is to setup the MMU
mapping for all required TDRV006 family PCI spaces (base address register) and to enable the
TDRVO006 device for access.

The global variable tdrvO06Status obtains the result of the device initialization and can be polled later
by the application before the driver will be installed.

Value Meaning

>0 Initialization successful completed. The value of tdrvO06Status is equal to the
number of mapped PCI spaces
0 No TDRV006 device found
<0 Initialization failed. The value of (tdrvO06Status & OxFF) is equal to the number of

mapped spaces until the error occurs.
Possible cause: Too few entries for dynamic mappings in sysPhysMemDesc]].
Remedy: Add dummy entries as necessary (syslib.c).

EXAMPLE

extern void tdrv006Pcilnit();

t drvOO6Pci I nit();

TDRV006-SW-42 — VxWorks Device Driver Page 36 of 49

TEWS <

TECHNOLOGIES

5Basic I/O Functions

The VxWorks basic I/O interface functions are useable with the TDRV006 legacy and VxBus-enabled
driver in a uniform manner.

5.1 open()

NAME

open() - open a device or file.

SYNOPSIS

int open

(
const char *name,
int flags,
int mode

)

DESCRIPTION

Before 1/0 can be performed to the TDRV006 device, a file descriptor must be opened by invoking the
basic 1/0O function open().

PARAMETER

name

Specifies the device which shall be opened. The name specified in tdrv006DevCreate() must be
used

flags
Not used

mode
Not used

TDRV006-SW-42 — VxWorks Device Driver Page 37 of 49

TEWS <

TECHNOLOGIES

EXAMPLE

i nt fd;

fd = open("/tdrv006/0", 0, 0);
if (fd == ERROR)

{

/* handl e error */
}
RETURNS

A device descriptor number or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual.

SEE ALSO

ioLib, basic 1/O routine - open()

TDRV006-SW-42 — VxWorks Device Driver Page 38 of 49

5.2 close()

NAME

close() — close a device or file

SYNOPSIS
STATUS close
(

int fd
)
DESCRIPTION

This function closes opened devices.

PARAMETER

fd

TEWS <

TECHNOLOGIES

This file descriptor specifies the device to be closed. The file descriptor has been returned by

the open() function.

EXAMPLE

i nt fd;
STATUS retval ;

retval = close(fd);
if (retval == ERROR)
{

/* handl e error */

TDRV006-SW-42 — VxWorks Device Driver

Page 39 of 49

TEWS <

TECHNOLOGIES

RETURNS

OK or ERROR. If the function fails, an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual)

SEE ALSO

ioLib, basic I/O routine - close()

TDRV006-SW-42 — VxWorks Device Driver Page 40 of 49

TEWS <

TECHNOLOGIES

5.3 ioctl()

NAME

ioctl() - performs an 1/O control function.

SYNOPSIS

#include “tdrv006.h”

int ioctl

(
int fd,
int request,
int arg

)

DESCRIPTION

Special I/O operation that do not fit to the standard basic 1/O calls (read, write) will be performed by
calling the ioctl() function.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

request
This argument specifies the function that shall be executed. Following functions are defined:

Function Description
FIO_TDRV006_READ Read value of I/O lines
FIO_TDRV006_WRITE Write value of output lines
FIO_TDRV006_WRITE_MASKED Write value of specified output lines
FIO_TDRV006_OUTPUT_ENABLE Enable output
FIO_TDRV006_EVENT_WAIT Wait for 1/O transition events

arg

This parameter depends on the selected function (request). How to use this parameter is
described below with the function.

TDRV006-SW-42 — VxWorks Device Driver Page 41 of 49

TEWS <

TECHNOLOGIES

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).
Function specific error codes will be described with the function.

Error code Description
ENOSYS Invalid request value specified
SEE ALSO

ioLib, basic 1/O routine - ioctl()

TDRV006-SW-42 — VxWorks Device Driver Page 42 of 49

TEWS <

TECHNOLOGIES

5.3.1 FIO_TDRV006_READ

This 1/O control function reads the value of the I/O lines. The function specific control parameter arg is
a pointer on a TDRV006_64BITBUFFER structure.

typedef struct

{
UINT32 val_31 0;
UINT32 val_63 32;

} TDRV006_64BITBUFFER,;

val_ 31 0

This argument returns the value of 1/0O lines 0 up to 31. Bit O returns the value of I/O line 0, bit 1
the value of I/O line 1, and so on.

val_63 32

This argument returns the value of I/O lines 32 up to 63. Bit 0 returns the value of I/O line 32, bit
1 the value of I/O line 33, and so on.

EXAMPLE

#i ncl ude “tdrv006. h”

i nt fd;
TDRVO06_64BI TBUFFER r Buf ;
i nt retval ;
[* e e
read 1/0O val ue
______________ * |
retval = ioctl(fd, FI O TDRVO06_READ, (int)&r Buf);
if (retval !'= ERROR
{

/* function succeeded */
printf(“value: %98l X %081 Xh\n”, rBuf.val _63 32, rBuf.val_31_0);

/* handl e the error */

TDRV006-SW-42 — VxWorks Device Driver Page 43 of 49

TEWS <

TECHNOLOGIES

5.3.2 FIO_TDRVO006_WRITE

This 1/0 control function sets the value of the output lines. The function specific control parameter arg
is a pointer on a TDRV006_64BITBUFFER structure.

typedef struct

{
UINT32 val_31 0;
UINT32 val_63_32;

} TDRV006_64BITBUFFER,;

val 31 0

This argument specifies the output value of 1/0 lines 0 up to 31. Bit 0 specifies the value of 1/O
line 0, bit 1 the value of I/O line 1, and so on.

val_63_32

This argument specifies the output value of 1/O lines 32 up to 63. Bit 0 specifies the value of I/O
line 32, bit 1 the value of I/O line 33, and so on.

EXAMPLE

#i ncl ude “tdrv006. h”

i nt fd;

TDRV006_64BI TBUFFER wBuf ;

i nt retval ;

| % o oo
set I/Oline 0-7 and 56-61
__________________________ * |

wBuf .val _31_0 = Ox000000FF;

wBuf . val _63_32 = 0x3F000000;

retval = ioctl(fd, FIO TDRVO0O6_WRI TE, (i nt)&wBuf);

if (retval == ERROR)

{

/* handl e the error */

TDRV006-SW-42 — VxWorks Device Driver Page 44 of 49

TEWS <

TECHNOLOGIES

5.3.3 FIO_TDRV006_WRITE_MASKED

This 1/0 control function sets the value of specified output lines. The function specific control
parameter arg is a pointer on a TDRV006_64BITMASKBUFFER structure.

typedef struct

{
UINT32 val_31 0;
UINT32 val_63_32;
UINT32 mask 31 _0;
UINT32 mask_63_32;

} TDRV006_64BITMASKBUFFER,;

val 31 0
This argument specifies the output value of output lines 0 up to 31. Bit O specifies the value of
I/O line 0, bit 1 the value of I/O line 1, and so on.

val_63_32
This argument specifies the output value of output lines 32 up to 63. Bit 0 specifies the value of
I/O line 32, bit 1 the value of I/O line 33, and so on.

mask 31 0

This argument specifies the output mask for output lines 0 up to 31. Bit 0 specifies the mask for
I/O line 0, bit 1 the value of 1/O line 1, and so on.

A set bit means the bit shall be set to the value specified by val 31 0.

A reset bit means that the old output value will not be changed.

mask_63 32

This argument specifies the output mask for output lines 32 up to 63. Bit O specifies the mask
for I/O line 32, bit 1 the value of I/O line 33, and so on.

A set bit means the bit shall be set to the value specified by val_63_32.

A reset bit means that the old output value will not be changed.

TDRV006-SW-42 — VxWorks Device Driver Page 45 of 49

TEWS <

TECHNOLOGIES

EXAMPLE

#i ncl ude “tdrv006. h”

i nt fd;
TDRV006_64BI TMASKBUFFER wirBuf ;

i nt retval ;

| ® e e e e e e e e

set 1/Oline 0-7 and 56-61
change 1/O lines 4-15 and 60-63 only

.................................... */
wrBuf.val 31 0 = 0x000000FF;
wnBuf . val _63 32 = 0x3F000000;
wBuf . mask 31 0 = Ox0000FFFO;
wBuf . mask 63 32 = 0xF0000000;
retval = ioctl(fd, FIO TDRVO06 WRI TE MASKED, (i nt)&uwnBuf);
if (retval == ERROR)
{

/* handl e the error */

}

TDRV006-SW-42 — VxWorks Device Driver Page 46 of 49

TEWS <

TECHNOLOGIES

5.3.4 FIO_TDRVO006_OUTPUT_ENABLE

This 1/O control function configures the direction of the 1/O lines. The function specific control
parameter arg is a pointer on a TDRV006_64BITBUFFER structure.

typedef struct

{
UINT32 val_31 0;
UINT32 val_63_32;

} TDRV006_64BITBUFFER,;

val 31 0

This argument specifies the direction of 1/0 lines 0 up to 31. Bit O specifies the direction of I/O
line O, bit 1 the direction of I/O line 1, and so on. A set bit configures the line for output, an unset
bit configures input (tri-state).

val_63_32

This argument specifies the direction of 1/0 lines 32 up to 63. Bit 0 specifies the direction of I/O
line 32, bit 1 the direction of I/O line 33, and so on. A set bit configures the line for output, an
unset bit configures input (tri-state).

EXAMPLE

#i ncl ude “tdrv006. h”

i nt fd;
TDRV006_64BI TBUFFER dBuf ;
i nt retval ;

configure line 0-12 for output, other are input

dBuf.val _31 0 0x00001FFF;

dBuf . val _63_32 0x00000000;

retval = ioctl(fd, FI O TDRVO06_QUTPUT_ENABLE, (i nt)&dBuf);
if (retval == ERROR)

{

/* handl e the error */

TDRV006-SW-42 — VxWorks Device Driver Page 47 of 49

TEWS <

TECHNOLOGIES

5.3.5 FIO_TDRVO006_EVENT_WAIT

This I/O control function waits for an I/O line transition event. The function specific control parameter
arg is a pointer on a TDRV006_EVENTWAITBUFFER structure.

typedef struct

{
int mode;
int inputLine;
int timeout;

} TDRVO006_EVENTWAITBUFFER;

mode
This argument specifies the transition the function should wait for. The following values are
valid:
definition event
TDRV006_HIGH_TR The function will return after a low to high transition has been
detected
TDRV006_LOW_TR The function will return after a high to low transition has been
detected
TDRV006_ANY_TR The function will return after a transition has been detected
inputLine

This argument specifies the input line the event shall occur. Valid values are 0 up to 63.

timeout

This argument specifies the maximum time the function shall wait for the event. After this
specified time the function will return with an error. The timeout time is specified in ticks.

EXAMPLE

#i ncl ude “tdrv006. h"”

i nt fd;
TDRV0O06_EVENTWAI TBUFFER evBuf ;
i nt retval ;

TDRV006-SW-42 — VxWorks Device Driver Page 48 of 49

TEWS <

TECHNOLOGIES

2
Wait for any transition on I/Oline 4
_____________________________________ * [

evBuf . node = TDRVO06_ANY TR;

evBuf. i nputLine = 4;

evBuf . ti meout = 600; [* Ticks */

retval = ioctl(fd, FI O TDRVO0O6_EVENT_WAIT, (int)&evBuf);

if (retval !'= ERROR

{

/* handl e the error */
}
ERROR CODES
Error code Description
EINVAL Invalid parameter specified
EBUSY An other task is already waiting for a transition of the
specified input line
S objLib_OBJ_TIMEOUT Timeout occurred.

TDRV006-SW-42 — VxWorks Device Driver Page 49 of 49

	Introduction
	Installation
	Legacy vs. VxBus Driver
	VxBus Driver Installation
	Direct BSP Builds

	Legacy Driver Installation
	Include device driver in VxWorks projects
	Special installation for Intel x86 based targets
	System resource requirement

	API Documentation
	General Functions
	tdrv006Open()
	tdrv006Close()

	Device Access Functions
	tdrv006Read
	tdrv006Write
	tdrv006WriteMasked
	tdrv006SetOutputLine
	tdrv006ClearOutputLine
	tdrv006OutputEnable
	tdrv006WaitForLowToHigh
	tdrv006WaitForHighToLow
	tdrv006WaitForAnyTrans

	Legacy I/O system functions
	tdrv006Drv()
	tdrv006DevCreate()
	tdrv006PciInit()

	Basic I/O Functions
	open()
	close()
	ioctl()
	FIO_TDRV006_READ
	FIO_TDRV006_WRITE
	FIO_TDRV006_WRITE_MASKED
	FIO_TDRV006_OUTPUT_ENABLE
	FIO_TDRV006_EVENT_WAIT

