
The Embedded I/O Company

TDRV006-S
LynxOS Device

64 Digital Inputs/Outpu

Version 1.0.x

User Manu
Issue 1.0.0

January 200

TEWS TECHNOLOGIES GmbH TEWS TEC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49 (0) 4101 4058 0
Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com

9190 Doub
Suite 127,
www.tews.
W-72
Driver
ts (Bit I/O)

al

8

HNOLOGIES LLC
le Diamond Parkway,
Reno, NV 89521, USA
com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

TDRV006-SW-72 – LynxOS Device Driver Page 2 of 20

TDRV006-SW-72

LynxOS Device Driver

64 Digital Inputs/Outputs (Bit I/O)

Supported Modules:
TPMC681

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2008 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue January 29, 2008

TDRV006-SW-72 – LynxOS Device Driver Page 3 of 20

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Device Driver Installation ...6
2.1.1 Static Installation ..6

2.1.1.1 Build the driver object ...6
2.1.1.2 Create Device Information Declaration ..6
2.1.1.3 Modify the Device and Driver Configuration File ..6
2.1.1.4 Rebuild the Kernel ..7

2.1.2 Dynamic Installation ...8
2.1.2.1 Build the driver object ...8
2.1.2.2 Create Device Information Declaration ..8
2.1.2.3 Uninstall dynamic loaded driver ...8

2.1.3 Device Information Definition File ..9
2.1.4 Configuration File: CONFIG.TBL ...10

3 TDRV006 DEVICE DRIVER PROGRAMMING... 11
3.1 open() ...11
3.2 close()...13
3.3 ioctl() ..14

3.3.1 TDRV006_READ ...15
3.3.2 TDRV006_WRITE..16
3.3.3 TDRV006_OUTPUT_ENABLE ..17
3.3.4 TDRV006_EVENT_WAIT ..18

4 DEBUGGING AND DIAGNOSTIC.. 20

TDRV006-SW-72 – LynxOS Device Driver Page 4 of 20

1 Introduction
The TDRV006-SW-72 LynxOS device driver allows the operation of the TPMC681 product family on
LynxOS platforms with DRM based PCI interface.

The standard file (I/O) functions (open, close, ioctl) provide the basic interface for opening and closing
a file descriptor and for performing device I/O and configuration operations.

The TDRV006 device driver includes the following functions:

 configure direction of I/O lines
 set output value of output lines
 read value of I/O lines
 wait for I/O line events

The TDRV006-SW-72 device driver supports the modules listed below:

TPMC681 64 Digital Inputs/Outputs (Bit I/O) (PMC)

In this document all supported modules and devices will be called TDRV006. Specials for
certain devices will be advised.

To get more information about the features and use of TDRV006 devices it is recommended to read
the manuals listed below.

TPMC681 User manual

TPMC681 Engineering Manual

TDRV006-SW-72 – LynxOS Device Driver Page 5 of 20

2 Installation
Following files are located on the distribution media:

Directory path ‘.\TDRV006-SW-72\’:

TDRV006-SW-72-1.0.0.pdf This manual in PDF format
TDRV006-SW-72-SRC.tar Device Driver and Example sources
Release.txt Information about the Device Driver Release
ChangeLog.txt Release history

The TAR archive TDRV006-SW-72-SRC.tar contains the following files and directories:

tdrv006.c Driver source code
tdrv006.h Definitions and data structures for driver and application
tdrv006def.h Definitions and data structures for the driver
tdrv006_info.c Device information definition
tdrv006_info.h Device information definition header
tdrv006.cfg Driver configuration file include
tdrv006.import Linker import file
Makefile Device driver make file
example/tdrv006exa.c Example application source
example/Makefile Example application make file

In order to perform an installation, extract all files of the archive TDRV006-SW-72-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TDRV006-SW-72-SRC.tar.gz’ will extract the files into
the local directory. Then follow the steps below:

1. Create a new directory in the system drivers directory path /sys/drivers.xxx, where xxx represents
the BSP that supports the target hardware.

For example: /sys/drivers.pp_drm/tdrv006 or /sys/drivers.cpci_x86/tdrv006

2. Copy the following files to this directory:
- tdrv006.c
- tdrv006def.h
- tdrv006.import
- Makefile

3. Copy tdrv006.h to /usr/include/

4. Copy tdrv006_info.c to /sys/devices.xxx/ or /sys/devices if /sys/devices.xxx does not exist (xxx
represents the BSP).

5. Copy tdrv006_info.h to /sys/dheaders/

6. Copy tdrv006.cfg to /sys/cfg.xxx/, where xxx represents the BSP for the target platform. For
example: /sys/cfg.ppc or /sys/cfg.x86

TDRV006-SW-72 – LynxOS Device Driver Page 6 of 20

2.1 Device Driver Installation
The two methods of driver installation are as follows:

 Static Installation
 Dynamic Installation (only native LynxOS systems)

2.1.1 Static Installation

With this method, the driver object code is linked with the kernel routines and is installed during
system start-up.

2.1.1.1 Build the driver object

1. Change to the directory /sys/drivers.xxx/tdrv006, where xxx represents the BSP that supports the
target hardware.

2. To update the library /sys/lib/libdrivers.a enter:

make install

2.1.1.2 Create Device Information Declaration

1. Change to the directory /sys/devices.xxx/ or /sys/devices if /sys/devices.xxx does not exist (xxx
represents the BSP).

2. Add the following dependencies to the Makefile

DEVICE_FILES_all = ... tdrv006_info.x

And at the end of the Makefile

tdrv006_info.o:$(DHEADERS)/tdrv006_info.h

3. To update the library /sys/lib/libdevices.a enter:

make install

2.1.1.3 Modify the Device and Driver Configuration File

In order to insert the driver object code into the kernel image, an appropriate entry in file CONFIG.TBL
must be created.

1. Change to the directory /sys/lynx.os/ respective /sys/bsp.xxx, where xxx represents the BSP that
supports the target hardware.

2. Create an entry at the end of the file CONFIG.TBL

Insert the following entry at the end of this file.

I:tdrv006.cfg

TDRV006-SW-72 – LynxOS Device Driver Page 7 of 20

2.1.1.4 Rebuild the Kernel

1. Change to the directory /sys/lynx.os/ (/sys/bsp.xxx)

2. Enter the following command to rebuild the kernel:

make install

3. Reboot the newly created operating system by the following command (not necessary for KDIs):

reboot –aN

The N flag instructs init to run mknod and create all the nodes mentioned in the new nodetab.

4. After reboot you should find the following new devices (depends on the device configuration):
/dev/tdrv006a, /dev/tdrv006b, …

TDRV006-SW-72 – LynxOS Device Driver Page 8 of 20

2.1.2 Dynamic Installation

This method allows you to install the driver after the operating system is booted. The driver object
code is attached to the end of the kernel image and the operating system dynamically adds this driver
to its internal structures. The driver can also be removed dynamically.

2.1.2.1 Build the driver object

1. Change to the directory /sys/drivers.xxx/tdrv006, where xxx represents the BSP that supports the
target hardware.

2. To make the dynamic link-able driver enter :

make dldd

2.1.2.2 Create Device Information Declaration

1. Change to the directory /sys/drivers.xxx/tdrv006, where xxx represents the BSP that supports the
target hardware.

2. To create a device definition file for the major device (this works only on native systems)

make t006info

3. To install the driver enter:

drinstall –c tdrv006.obj

If successful, drinstall returns a unique <driver-ID>

4. To install the major device enter:

devinstall –c –d <driver-ID> t006info

The <driver-ID> is returned by the drinstall command

5. To create nodes for both minor devices enter:

mknod /dev/tdrv006a c <major_no> 0

The <major_no> is returned by the devinstall command.

If all steps are successfully completed, the TDRV006 device is ready to use.

2.1.2.3 Uninstall dynamic loaded driver

To uninstall the TDRV006 device enter the following commands:

devinstall –u –c <device-ID>
drinstall –u <driver-ID>

TDRV006-SW-72 – LynxOS Device Driver Page 9 of 20

2.1.3 Device Information Definition File

The device information definition contains information necessary to install the TDRV006 major device.

The implementation of the device information definition is done through a C structure, which is defined
in the header file tdrv006_info.h.

This structure contains the following parameter:

PCIBusNumber Contains the PCI bus number at which the supported device is connected.
Valid bus numbers are in range from 0 to 255.

PCIDeviceNumber Contains the device number (slot) at which the supported device is
connected. Valid device numbers are in range from 0 to 31.

If both PCIBusNumber and PCIDeviceNumber are –1 then the driver will auto scan for
supported devices. The first device found in the scan order will be allocated by the driver for
this major device.

Already allocated devices can’t be allocated twice. This is important to know if there are more
than one TDRV006 major devices.

A device information definition is unique for every TDRV006 major device. The file tdrv006_info.c on
the distribution media contains two device information declarations, tdrv006a_info for the first major
device and tdrv006b_info for the second major device.

If the driver should support more than two major devices it is necessary to copy and paste an existing
declaration and rename it with a unique name, for example tdrv006c_info, tdrv006d_info and so on.

It is also necessary to modify the device and driver configuration file, respectively the
configuration include file tdrv006.cfg.

The following device declaration information uses the auto find method to detect a supported device
on the PCI bus.

TDRV006_INFO tdrv006a_info = {

-1, /* Auto find the device on any PCI bus */
-1,

};

TDRV006-SW-72 – LynxOS Device Driver Page 10 of 20

2.1.4 Configuration File: CONFIG.TBL

The device and driver configuration file CONFIG.TBL contains entries for device drivers and its major
and minor device declarations. Each time the system is rebuild, the config utility read this file and
produces a new set of driver and device configuration tables and a corresponding nodetab.

To install the TDRV006 driver and devices into the LynxOS system, the configuration include file
tdrv006.cfg must be included in the CONFIG.TBL (see also chapter 2.1.1.3).

The file tdrv006.cfg on the distribution disk contains the driver entry (C:tdrv006:\....) and two major
device entries (D:TDRV006 1:tdrv006a_info:: and D:TDRV006 2:tdrv006b_info::).

If the driver should support more than one major device, the following entries for major devices must
be enabled by removing the comment character (#). By copy and paste an existing major and minor
entries and renaming the new entries, it is possible to add any number of additional TDRV006
devices.

This example shows a driver entry with one major device and one minor device:

Format:
C:driver-name:open:close:read:write:select:control:install:uninstall
D:device-name:info-block-name:raw-partner-name
N:node-name:minor-dev

C:tdrv006:\
:tdrv006open:tdrv006close:::\
::tdrv006ioctl:tdrv006install:tdrv006uninstall

D:TDRV006 1:tdrv006a_info::
N:tdrv006a:0
D:TDRV006 2:tdrv006b_info::
N:tdrv006b:0

The configuration above creates the following nodes in the /dev directory.

/dev/tdrv006a /dev/tdrv006b

TDRV006-SW-72 – LynxOS Device Driver Page 11 of 20

3 TDRV006 Device Driver Programming
LynxOS system calls are all available directly to any C program. They are implemented as ordinary
function calls to "glue" routines in the system library, which trap to the OS code.

Note that many system calls use data structures, which should be obtained in a program from
appropriate header files. Necessary header files are listed with the system call synopsis.

3.1 open()

NAME

open() - open a file

SYNOPSIS

#include <sys/file.h>
#include <sys/types.h>
#include <fcntl.h>

int open (char *path, int oflags[, mode_t mode])

DESCRIPTION

Opens a file (TDRV006 device) named in path for reading and writing. The value of oflags indicates
the intended use of the file. In case of a TDRV006 device oflags must be set to O_RDWR to open the
file for both reading and writing.

The mode argument is required only when a file is created. Because a TDRV006 device already
exists this argument is ignored.

EXAMPLE

int fd

/* open the device named "/dev/tdrv006a" for I/O */
fd = open ("/dev/tdrv006a", O_RDWR);
if (!fd)
{

/* handle error */
}

TDRV006-SW-72 – LynxOS Device Driver Page 12 of 20

RETURNS

open returns a file descriptor number if successful, or –1 on error.

SEE ALSO

LynxOS System Call - open()

TDRV006-SW-72 – LynxOS Device Driver Page 13 of 20

3.2 close()

NAME

close() – close a file

SYNOPSIS

int close(int fd)

DESCRIPTION

This function closes an opened device.

EXAMPLE

int result;

/*
** close the device
*/
result = close(fd);
if (result < 0)
{

/* handle error */
}

RETURNS

close returns 0 (OK) if successful, or –1 on error

SEE ALSO

LynxOS System Call - close()

TDRV006-SW-72 – LynxOS Device Driver Page 14 of 20

3.3 ioctl()

NAME

ioctl() – I/O device control

SYNOPSIS

#include <ioctl.h>
#include <tdrv006.h>

int ioctl (int fd, int request, char *arg)

DESCRIPTION

ioctl provides a way of sending special commands to a device driver. The call sends the value of
request and the pointer arg to the device associated with the descriptor fd.

The following ioctl codes are supported by the driver and are defined in tdrv006.h:

Symbol Meaning

TDRV006_READ Read value of I/O lines

TDRV006_WRITE Write value of output lines

TDRV006_OUTPUT_ENABLE Enable output

TDRV006_EVENT_WAIT Wait for I/O transition events

See behind for more detailed information on each control code.

RETURNS

ioctl returns 0 if successful, or –1 on error.

On error, errno will contain a standard error code (see also LynxOS System Call – ioctl).

SEE ALSO

LynxOS System Call - ioctl().

tdrv006exa.c programming example

TDRV006-SW-72 – LynxOS Device Driver Page 15 of 20

3.3.1 TDRV006_READ

NAME

TDRV006_READ – Read value of I/O lines

DESCRIPTION

This I/O control function reads the value of the I/O lines. The function specific control parameter arg is
a pointer on a TDRV006_64BITBUFFER structure.

typedef struct
{

unsigned long val_31_0;
unsigned long val_63_32;

} TDRV006_64BITBUFFER;

val_31_0

This argument returns the value of I/O lines 0 up to 31. Bit 0 returns the value of I/O line 0, bit 1
the value of I/O line 1, and so on.

val_63_32

This argument returns the value of I/O lines 32 up to 63. Bit 0 returns the value of I/O line 32, bit
1 the value of I/O line 33, and so on.

EXAMPLE

#include “tdrv006.h”

int fd;
int result;
TDRV006_64BITBUFFER rBuf;

/*--------------
read I/O value
--------------*/

result = ioctl(fd, TDRV006_READ, (char*)&rBuf);

if (result >= 0) {
/* function succeeded */
printf(“value: %08lX %08lXh\n”, rBuf.val_63_32, rBuf.val_31_0);

} else {
/* handle the error */

}

TDRV006-SW-72 – LynxOS Device Driver Page 16 of 20

3.3.2 TDRV006_WRITE

NAME

TDRV006_WRITE – Write value of output lines

DESCRIPTION

This I/O control function sets the value of the output lines. The function specific control parameter arg
is a pointer on a TDRV006_64BITBUFFER structure.

typedef struct
{

unsigned long val_31_0;
unsigned long val_63_32;

} TDRV006_64BITBUFFER;

val_31_0

This argument specifies the output value of I/O lines 0 up to 31. Bit 0 specifies the value of I/O
line 0, bit 1 the value of I/O line 1, and so on.

val_63_32

This argument specifies the output value of I/O lines 32 up to 63. Bit 0 specifies the value of I/O
line 32, bit 1 the value of I/O line 33, and so on.

EXAMPLE

#include “tdrv006.h”

int fd;
int result;
TDRV006_64BITBUFFER wBuf;

/*--------------------------
set I/O line 0-7 and 56-61
--------------------------*/

wBuf.val_31_0 = 0x000000FF;
wBuf.val_63_32 = 0x3F000000;
result = ioctl(fd, TDRV006_WRITE, (char*)&wBuf);

if (result < 0) {
/* handle the error */

}

TDRV006-SW-72 – LynxOS Device Driver Page 17 of 20

3.3.3 TDRV006_OUTPUT_ENABLE

NAME

TDRV006_OUTPUT_ENABLE – Enable output

DESCRIPTION

This I/O control function configures the direction of the I/O lines. The function specific control
parameter arg is a pointer on a TDRV006_64BITBUFFER structure.

typedef struct
{

unsigned long val_31_0;
unsigned long val_63_32;

} TDRV006_64BITBUFFER;

val_31_0

This argument specifies the direction of I/O lines 0 up to 31. Bit 0 specifies the direction of I/O
line 0, bit 1 the direction of I/O line 1, and so on. A set bit configures the line for output, an unset
bit configures input (tri-state).

val_63_32

This argument specifies the direction of I/O lines 32 up to 63. Bit 0 specifies the direction of I/O
line 32, bit 1 the direction of I/O line 33, and so on. A set bit configures the line for output, an
unset bit configures input (tri-state).

EXAMPLE

#include “tdrv006.h”

int fd;
int result;
TDRV006_64BITBUFFER dBuf;

/*---
configure line 0-12 for output, other are input
---*/

dBuf.val_31_0 = 0x00001FFF;
dBuf.val_63_32 = 0x00000000;
result = ioctl(fd, TDRV006_OUTPUT_ENABLE, (char*)&dBuf);

if (result < 0) {
/* handle the error */

}

TDRV006-SW-72 – LynxOS Device Driver Page 18 of 20

3.3.4 TDRV006_EVENT_WAIT

NAME

TDRV006_EVENT_WAIT – Wait for I/O transition events

DESCRIPTION

This I/O control function waits for an I/O line transition event. The function specific control parameter
arg is a pointer on a TDRV006_EVENTWAITBUFFER structure.

typedef struct
{

int mode;
int inputLine;
long timeout;

} TDRV006_EVENTWAITBUFFER;

mode

This argument specifies the transition the function should wait for. The following values are
valid:

Definition Event

TDRV006_HIGH_TR The function will return after a low to high transition has been
detected

TDRV006_LOW_TR The function will return after a high to low transition has been
detected

TDRV006_ANY_TR The function will return after a transition has been detected

inputLine

This argument specifies the input line the event shall occur. Valid values are 0 up to 63.

timeout

This argument specifies the maximum time the function shall wait for the event. After this
specified time the function will return with an error. The timeout time is specified in ticks.
Specify -1 to wait indefinitely.

TDRV006-SW-72 – LynxOS Device Driver Page 19 of 20

EXAMPLE

#include “tdrv006.h”

int fd;
int result;
TDRV006_EVENTWAITBUFFER evBuf;

/*-------------------------------------
Wait for any transition on I/O line 4
-------------------------------------*/

evBuf.mode = TDRV006_ANY_TR;
evBuf.inputLine = 4;
evBuf.timeout = 600; /* Ticks */

result = ioctl(fd, TDRV006_EVENT_WAIT, (char*)&evBuf);

if (result >= 0) {
/* function succeeded */

}
else
{

/* handle the error */
}

ERRORS

EINTR The function was cancelled.

EBUSY Another task is already waiting for a transition of the specified
input line

EINVAL Invalid parameter specified

ETIMEDOUT The maximum allowed time to finish the request is exhausted.
Other returned error codes are system error conditions.

TDRV006-SW-72 – LynxOS Device Driver Page 20 of 20

4 Debugging and Diagnostic
If the driver does not work properly, please enable debug outputs by defining the symbols DEBUG,
DEBUG_TPMC, DEBUG_PCI and DEBUG_INT.

The debug output should appear on the console. If not, please check the symbol KKPF_PORT in
uparam.h. This symbol should be configured to a valid COM port (e.g. SKDB_COM1).

The debug output displays the device information data for the current major device, and a memory
dump of the PCI base address registers like this.

TDRV006 Device Driver Install
Bus = 0 Dev = 11 Func = 0
[00] = 02A91498
[04] = 02800003
[08] = 11800000
[0C] = 00000008
[10] = EB021000
[14] = 0000B401
...
PCI Base Address 0 (PCI_RESID_BAR0)
E7021000 : 00 FF FF 0F 00 00 00 00 00 00 00 00 00 00 00 00
E7021010 : 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00
E7021020 : 00 00 00 00 00 00 00 00 A0 20 81 15 00 00 00 00
E7021030 : 00 00 00 00 00 00 00 00 00 00 00 00 81 00 00 00
...
PCI Base Address 1 (PCI_RESID_BAR1)
0000B400 : 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08
0000B410 : 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08
0000B420 : 00 01 02 02 03 03 03 03 04 04 04 04 04 04 04 04
0000B430 : 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05
...
PCI Base Address 2 (PCI_RESID_BAR2)
E7022000 : 00 00 00 00 00 00 00 00 FF FF FF FE FF FF FF FF
E7022010 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E7022020 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E7022030 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...
Found a TPMC681, BusNo=0, DevNo=11

The debug output above is only an example. Debug output on other systems may be different
for addresses and data in some locations.

	Introduction
	Installation
	Device Driver Installation
	Static Installation
	Build the driver object
	Create Device Information Declaration
	Modify the Device and Driver Configuration File
	Rebuild the Kernel

	Dynamic Installation
	Build the driver object
	Create Device Information Declaration
	Uninstall dynamic loaded driver

	Device Information Definition File
	Configuration File: CONFIG.TBL

	TDRV006 Device Driver Programming
	open()
	close()
	ioctl()
	TDRV006_READ
	TDRV006_WRITE
	TDRV006_OUTPUT_ENABLE
	TDRV006_EVENT_WAIT

	Debugging and Diagnostic

