
The Embedded I/O Company

TDRV006-S
Linux Device D

64 Digital Inputs/Outpu

Version 1.0.x

User Manu

Issue 1.0.3

January 201

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-82
river

ts (Bit I/O)

al

0

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TDRV006-SW-82 - Linux Device Driver Page 2 of 22

TDRV006-SW-82

Linux Device Driver

64 Digital Inputs/Outputs (Bit I/O)

Supported Modules:
TPMC681

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2005-2010 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue December 20, 2005

1.0.1 File list changed August 15, 2006

1.0.2 New Address TEWS LLC January 17, 2007

1.0.3 Address TEWS LLC removed June 24, 2010

TDRV006-SW-82 - Linux Device Driver Page 3 of 22

Table of Content

1 INTRODUCTION... 4

2 INSTALLATION.. 5

2.1 Build and install the device driver...5

2.2 Uninstall the device driver ...6

2.3 Install device driver into the running kernel ..6

2.4 Remove device driver from the running kernel ...6

2.5 Change Major Device Number ...7

2.6 Configuration...7

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 8

3.1 open() ...8

3.2 close()...10

3.3 ioctl() ..11

3.3.1 TDRV006_IOC_READ...13
3.3.2 TDRV006_IOC_WRITE ...14
3.3.3 TDRV006_IOC_OE..15
3.3.4 TDRV006_IOC_EVENTWAIT..16

4 DIAGNOSTIC.. 20

TDRV006-SW-82 - Linux Device Driver Page 4 of 22

1 Introduction
The TDRV006-SW-82 Linux device driver allows the operation of the TDRV006 compatible PMCs
conforming to the Linux I/O system specification. This includes a device-independent basic I/O
interface with open(), close() and ioctl() functions.

Special I/O operation that do not fit to the standard I/O calls will be performed by calling the ioctl()
function with a specific function code and an optional function dependent argument.

The TDRV006-SW-82 device driver supports the following features:

 Reading from input buffers
 Writing to output buffers
 Configuring I/O line directions
 Waiting for several input event types (PATTERN MATCH, RISING EDGE, FALLING EDGE)

The TDRV006-SW-82 supports the modules listed below:

TPMC681 64 Digital Inputs / Outputs (Bit I/O) (PMC)

In this document all supported modules and devices will be called TDRV006. Specials for
certain devices will be advised.

To get more information about the features and use of the supported devices it is recommended to
read the manuals listed below.

TPMC681 User manual

TPMC681 Engineering Manual

TDRV006-SW-82 - Linux Device Driver Page 5 of 22

2 Installation
Following files are located on the distribution media:

Directory path ‘TDRV006-SW-82’:

TDRV006-SW-82-1.0.3.pdf This manual in PDF format
TDRV006-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
ChangeLog.txt Release history
Release.txt Release information

For installation the files have to be copied to the desired target directory.

The GZIP compressed archive TDRV006-SW-82-SRC.tar.gz contains the following files and
directories:

Directory path ‘./tdrv006/’:

tdrv006.c Driver source code
tdrv006def.h Driver include file
tdrv006.h Driver include file for application program
makenode Script to create device nodes on the file system
Makefile Device driver make file
example/tdrv006exa.c Example application
example/Makefile Example application make file
include/tpmodule.h Driver and kernel independent library header file
include/tpmodule.c Driver and kernel independent library source file
include/tpxxxhwdep.h HAL library header file
include/tpxxxhwdep.c HAL library source file

In order to perform an installation, extract all files of the archive TDRV006-SW-82-SRC.tar.gz to the
desired target directory.

 Login as root and change to the target directory

 Copy tdrv006.h to /usr/include

2.1 Build and install the device driver

 Login as root

 Change to the target directory

 To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

 To update the device driver’s module dependencies, enter:

depmod -aq

TDRV006-SW-82 - Linux Device Driver Page 6 of 22

2.2 Uninstall the device driver

 Login as root

 Change to the target directory

 To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

2.3 Install device driver into the running kernel

 To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tdrv006drv

 After the first build or if you are using dynamic major device allocation it is necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a device file system (devfs or sysfs with udev) then you have to skip
running the makenode script. Instead of creating device nodes from the script the driver itself
takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each compatible channel found. The first
channel of the first PMC module can be accessed with device node /dev/tdrv006_0, the second
channel with device node /dev/tdrv006_1 and so on. The assignment of device nodes to physical PMC
modules depends on the search order of the PCI bus driver.

2.4 Remove device driver from the running kernel

 To remove the device driver from the running kernel login as root and execute the following
command:

modprobe -r tdrv006drv

If your kernel has enabled devfs or sysfs (udev), all /dev/tdrv006_* nodes will be automatically
removed from your file system after this.

Be sure that the driver is not opened by any application program. If opened you will get the
response ``tdrv006drv: Device or resource busy`` and the driver will still remain in the system
until you close all opened files and execute modprobe -r again.

TDRV006-SW-82 - Linux Device Driver Page 7 of 22

2.5 Change Major Device Number

This paragraph is only for Linux kernels without DEVFS installed.

The TPCM150 driver uses dynamic allocation of major device numbers per default. If this isn’t suitable
for the application it’s possible to define a major number for the driver.

To change the major number edit the file tdrv006def.h, change the following symbol to appropriate
value and enter make install to create a new driver.

TDRV006_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

Example:

#define TDRV006_MAJOR 122

Be sure that the desired major number is not used by other drivers. Please check /proc/devices
to see which numbers are free.

Keep in mind that is necessary to create new device nodes if the major number for the
TDRV006 driver has changed and the makenode script is not used.

2.6 Configuration

To adjust application specific driver properties see tdrv006def.h and look for the following symbol
defines (#define <symbol> <value>):

TDRV006_MAX_EVENT_RECORDS

This symbol specifies the size of the interrupt routine event record queue. If you have input
event loss during multiple TDRV006_IOC_EVENTWAIT jobs, please double the certain value.

TDRV006_MAX_EVENTWAIT_JOBS

This symbol specifies the maximum number of concurrent waiting threads in
TDRV006_IOC_EVENTWAIT.

TDRV006-SW-82 - Linux Device Driver Page 8 of 22

3 Device Input/Output functions
This chapter describes the interface to the device driver I/O system.

3.1 open()

NAME

open() - open a file descriptor

SYNOPSIS

#include <fcntl.h>

int open
(

const char *filename,
int flags

)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise
OR of the appropriate parameters (using the | operator in C).

See also the GNU C Library documentation for more information about the open function and open
flags.

EXAMPLE

int fd;

fd = open(“/dev/tdrv006_0”, O_RDWR);

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

TDRV006-SW-82 - Linux Device Driver Page 9 of 22

ERRORS

E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TDRV006-SW-82 - Linux Device Driver Page 10 of 22

3.2 close()

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close
(

int filedes
)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) != 0) /* handle close error conditions */

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TDRV006-SW-82 - Linux Device Driver Page 11 of 22

3.3 ioctl()

NAME

ioctl() – device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl
(

int filedes,
int request
[, void *argp]

)

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in tdrv006.h :

Symbol Meaning

TDRV006_IOC_READ Read value from input buffer

TDRV006_IOC_WRITE Write value to output buffer

TDRV006_IOC_OE Set pin direction

TDRV006_IOC_EVENTWAIT Wait for input event

See behind for more detailed information on each control code.

To use these TDRV006 specific control codes the header file tdrv006.h must be included in the
application.

RETURNS

On success, zero is returned. In the case of an error, a value of –1 is returned. The global variable
errno contains the detailed error code.

TDRV006-SW-82 - Linux Device Driver Page 12 of 22

ERRORS

EINVAL Invalid argument. This error code is returned if the requested ioctl function is
unknown. Please check the argument request

EFAULT Parameter data can not be copied to the drivers context

Other function dependent error codes will be described for each ioctl code separately. Note, the
TDRV006 driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TDRV006-SW-82 - Linux Device Driver Page 13 of 22

3.3.1 TDRV006_IOC_READ

NAME

TDRV006_IOC_ READ – Read value from input buffer

DESCRIPTION

This function reads the module input buffer. A pointer to the read buffer (TDRV006_UINT64) is passed
by the parameter arg to the driver.

The TDRV006_UINT64 data type represents a 64-bit unsigned value. Each bit of the return value
corresponds to an I/O line. Bit 0 represents the state of I/O line 0, Bit 1 belongs to I/O line 1 and so on.

EXAMPLE

#include <tdrv006.h>

int fd;

int result;

TDRV006_UINT64 ioBuffer;

printf("Read from input buffer ... ");

result = ioctl(fd, TDRV006_IOC_READ, &ioBuffer);

if (result >= 0)

{

printf("OK\n");

printf(" input value: "%08X%08X", (unsigned int)(ioBuffer >> 32),

(unsigned int)ioBuffer);

}

else

{

/* process ioctl error */

}

SEE ALSO

ioctl man pages

TDRV006-SW-82 - Linux Device Driver Page 14 of 22

3.3.2 TDRV006_IOC_WRITE

NAME

TDRV006_IOC_ WRITE – Write value to output buffer

DESCRIPTION

This function writes to the output buffer. A pointer to the write buffer (TDRV006_UINT64) is passed by
the parameter arg to the driver. Before writing to the output lines ensure the setting of the certain pin
directions. You can set the pin direction (input or output) through TDRV006_OE ioctl function.

The TDRV006_UINT64 data type represents a 64-bit unsigned value. Each bit of the parameter value
corresponds to an I/O line. Bit 0 represents the state of I/O line 0, Bit 1 belongs to I/O line 1 and so on.

EXAMPLE

#include <tdrv006.h>

int fd;

int result;

TDRV006_UINT64 ioBuffer;

printf("Write to output buffer ... ");

/* Set I/O lines 63, 34 to 32 and 0 to HIGH, all others set to LOW */

ioBuffer = ((TDRV006_UINT64)0x80000007 << 32) | (TDRV006_UINT64)0x00000001;

result = ioctl(fd, TDRV006_IOC_WRITE, &ioBuffer);

if (result >= 0)

{

printf("OK\n");

}

else

{

/* process ioctl error */

}

SEE ALSO

ioctl man pages

TDRV006-SW-82 - Linux Device Driver Page 15 of 22

3.3.3 TDRV006_IOC_OE

NAME

TDRV006_IOC_ OE – Set pin directions

DESCRIPTION

This function sets the direction of each I/O line. A pointer to the direction buffer (TDRV006_UINT64) is
passed by the parameter arg to the driver.

The TDRV006_UINT64 data type represents a 64-bit unsigned value. Each bit of the parameter value
corresponds to an I/O line. Bit 0 represents I/O line 0, Bit 1 belongs to I/O line 1 and so on.
A set bit in the certain position of the direction buffer enables the certain pin output buffer, otherwise
the I/O line direction is set to input.

EXAMPLE

#include <tdrv006.h>

int fd;

int result;

TDRV006_UINT64 ioBuffer;

printf("Set pin direction ... ");

/* Set I/O lines 63, 34 to 32 and 0 to output, all others set to input */

ioBuffer = ((TDRV006_UINT64)0x80000007 << 32) | (TDRV006_UINT64)0x00000001;

result = ioctl(fd, TDRV006_IOC_OE, &ioBuffer);

if (result >= 0)

{

printf("OK\n");

}

else

{

/* process ioctl error */

}

SEE ALSO

ioctl man pages

TDRV006-SW-82 - Linux Device Driver Page 16 of 22

3.3.4 TDRV006_IOC_EVENTWAIT

NAME

TDRV006_IOC_ EVENTWAIT – Wait for an input event

DESCRIPTION

This function waits a given amount of system ticks for a user defined input event. A pointer to the
event buffer (TDRV006_EVENTWAIT) is passed by the parameter arg to the driver.

The TDRV006_UINT64 data type represents a 64-bit unsigned value. Each bit of a value corresponds
to an I/O line. Bit 0 represents I/O line 0, Bit 1 belongs to I/O line 1 and so on. Ensure all bits used for
input event detection are set to input through TDRV006_IOC_OE ioctl function.

struct {

int mode;

TDRV006_UINT64 mask;

TDRV006_UINT64 code;

TDRV006_UINT64 input;

unsigned long timeout;

} TDRV006_EVENTWAIT;

mode

This parameter specifies the event mode for this request.

TDRV006_RISING_EDGE In this mode the ioctl function waits until a rising
edge at one of the selected input line(s) or a
timeout occurs.

TDRV006_FALLING_EDGE In this mode the ioctl function waits until a falling
edge at one of the selected input line(s) or a
timeout occurs.

TDRV006_ANY_EDGE In this mode the ioctl function waits until a falling or
rising edge occurs at one of the selected input
line(s) or a timeout occurs.

TDRV006_MATCH In this mode the ioctl function waits until the
masked bit group matches to the corresponding
I/O-line group or a timeout occurs.

mask

This parameter specifies a bit mask to select a certain bit position or a group of bits for an input
transition or match detection. A certain input line can be selected by setting the corresponding
bit to 1, all others are don’t care bit positions.

TDRV006-SW-82 - Linux Device Driver Page 17 of 22

code

This parameter specifies a bit code for input match detection. Don’t care bit position are masked
by parameter mask. To achieve a match condition the following expression has to become
TRUE.

((code & mask) == (<input buffer state> & mask))

This parameter in only used for TDRV006_MATCH mode.

input

After a successful completion of this request this parameter holds the state of the input buffer.
Please note that the input buffer state isn’t latched with the interrupt and depending on the
interrupt latency the read to the input buffer is delayed.

timeout

This parameter specifies the amount of time (in ticks) the caller is willing to wait for the
occurrence of the requested transition or value match. A value of 0 means wait indefinitely.

EXAMPLE

#include <tdrv006.h>

int fd;

int result;

TDRV006_UINT64 ioBuffer;

TDRV006_EVENTWAIT eW;

printf("Wait for input match event ... ");

/*

** Waiting for input match with code = 0x0200000230007000

** -lines 63 to 56 are don’t care -> mask = 0xF000000000000000

** -wait at least 1000 system ticks

*/

eW.mode = TDRV006_MATCH;

eW.mask = ((TDRV006_UINT64)0xF0000000 << 32) | (TDRV006_UINT64)0x00000000;

eW.code = ((TDRV006_UINT64)0x02000002 << 32) | (TDRV006_UINT64)0x30007000;

ew.timeout = 1000;

result = ioctl(fd, TDRV006_IOC_EVENTWAIT, &eW);

< example continued on the next page >

TDRV006-SW-82 - Linux Device Driver Page 18 of 22

< continued >

if (result >= 0)

{

printf("OK\n");

printf(" input value: "%08X%08X", (unsigned int)(eW.input >> 32),
(unsigned int)eW.input);

}

else

{

/* process ioctl error */

}

printf("Wait for input transition event (RISING EDGE) ... ");

#define _BV64(n) ((TDRV006_UINT64)1 << n)

/*

** Waiting for rising edge on line 2,3,5,7,11,43

** -wait at least 1000 system ticks

*/

eW.mode = TDRV006_RISING_EDGE;

eW.mask = _BV64(2) | _BV64(3) | _BV64(5) | _BV64(7) | _BV64(11) |
_BV64(43);

ew.timeout = 1000;

result = ioctl(fd, TDRV006_IOC_EVENTWAIT, &eW);

if (result >= 0)

{

printf("OK\n");

printf(" input value: "%08X%08X", (unsigned int)(eW.input >> 32),
(unsigned int)eW.input);

}

else

{

/* process ioctl error */

}

TDRV006-SW-82 - Linux Device Driver Page 19 of 22

ERROR

EINVAL Invalid argument. This error code is returned if the
requested ioctl function is unknown. Please check
the argument request.

EFAULT Parameter data can not be copied to or from the
drivers context.

EAGAIN Resource temporarily unavailable; the call might
work if you try again later. This error occurs only if
the device is opened with the flag O_NONBLOCK
set.

ETIME The allowed time to finish the input event request
has elapsed.

EINTR Interrupted function call; an asynchronous signal
occurred and prevented completion of the call.
When this happens, you should try the call again.

SEE ALSO

ioctl man pages

TDRV006-SW-82 - Linux Device Driver Page 20 of 22

4 Diagnostic
If the TDRV006 does not work properly it is helpful to get some status information from the driver
respective kernel.

The Linux /proc file system provides information about kernel, resources, driver, devices and so on.
The following screen dumps displays information of a correct running TDRV006 driver (see also the
proc man pages).

lspci -v

...

02:08.0 Signal processing controller: TEWS Datentechnik GmBH: Unknown
device 02a9

Subsystem: TEWS Datentechnik GmBH: Unknown device 000a

Flags: medium devsel, IRQ 177

Memory at ff5fe400 (32-bit, non-prefetchable)

I/O ports at a800 [size=128]

Memory at ff5fe000 (32-bit, non-prefetchable) [size=256]...

02:09.0 Signal processing controller: TEWS Datentechnik GmBH: Unknown
device 02a9

Subsystem: TEWS Datentechnik GmBH: Unknown device 000a

Flags: medium devsel, IRQ 169

Memory at ff5fec00 (32-bit, non-prefetchable)

I/O ports at a880 [size=128]

Memory at ff5fe800 (32-bit, non-prefetchable) [size=256]

...

cat /proc/devices

Character devices:

1 mem

2 pty

3 ttyp

4

5 cua

7 vcs

10 misc

13 input

14 sound

29 fb

36 netlink

162 raw

180 usb

226 drm

254 tdrv006drv

TDRV006-SW-82 - Linux Device Driver Page 21 of 22

cat /proc/interrupts

CPU0 CPU1

0: 4482728 4529560 IO-APIC-edge timer

1: 0 10 IO-APIC-edge i8042

2: 0 0 XT-PIC cascade

8: 0 1 IO-APIC-edge rtc

9: 70 58 IO-APIC-level acpi

12: 0 58 IO-APIC-edge i8042

14: 2708 8067 IO-APIC-edge ide0

169: 577517 581029 IO-APIC-level radeon@PCI:1:0:0, TDRV006

177: 85 43 IO-APIC-level uhci_hcd, TDRV006

185: 11832 29 IO-APIC-level uhci_hcd, eth0

193: 0 0 IO-APIC-level libata, ehci_hcd, ohci_hcd,
ohci_hcd

NMI: 0 0

LOC: 9011342 9011340

ERR: 0

MIS: 0

cat /proc/ioports

...

03f6-03f6 : ide0

03f8-03ff : serial

0cf8-0cff : PCI conf1

7000-9fff : PCI Bus #01

9000-90ff : 0000:01:00.0

a000-bfff : PCI Bus #02

a400-a43f : 0000:02:03.0

a400-a43f : e1000

a480-a4bf : 0000:02:06.0

a480-a4bf : e100

a800-a87f : 0000:02:08.0

a880-a8ff : 0000:02:09.0

ac00-ac7f : 0000:02:0a.0

b000-b01f : 0000:02:0b.0

b000-b01f : uhci_hcd

b080-b09f : 0000:02:0b.1

b080-b09f : uhci_hcd

b400-b40f : 0000:02:05.0

b400-b40f : sata_sil

b480-b483 : 0000:02:05.0

dc00-dcff : SiS 7012

...

TDRV006-SW-82 - Linux Device Driver Page 22 of 22

cat /proc/iomem

00000000-0009fbff : System RAM

0009fc00-0009ffff : reserved

000a0000-000bffff : Video RAM area

000c0000-000cbfff : Video ROM

000cc000-000cd7ff : Adapter ROM

000cd800-000ce7ff : Adapter ROM

000f0000-000fffff : System ROM

00100000-3ffeffff : System RAM

00100000-002a2fff : Kernel code

002a3000-003542ff : Kernel data

3fff0000-3fffefff : ACPI Tables

3ffff000-3fffffff : ACPI Non-volatile Storage

deb00000-eeafffff : PCI Bus #01

e0000000-e7ffffff : 0000:01:00.0

f0000000-f7ffffff : 0000:00:00.0

f0000000-f7ffffff : aperture

ff200000-ff2fffff : PCI Bus #01

ff2f0000-ff2fffff : 0000:01:00.0

ff300000-ff5fffff : PCI Bus #02

ff580000-ff59ffff : 0000:02:03.0

ff580000-ff59ffff : e1000

ff5a0000-ff5bffff : 0000:02:03.0

ff5a0000-ff5bffff : e1000

ff5c0000-ff5dffff : 0000:02:06.0

ff5c0000-ff5dffff : e100

ff5fb000-ff5fbfff : 0000:02:00.0

ff5fb000-ff5fbfff : ohci_hcd

ff5fc000-ff5fcfff : 0000:02:00.1

ff5fc000-ff5fcfff : ohci_hcd

ff5fd000-ff5fdfff : 0000:02:06.0

ff5fd000-ff5fdfff : e100

ff5fe000-ff5fe0ff : 0000:02:08.0

ff5fe000-ff5fe0ff : TDRV006

ff5fe400-ff5fe47f : 0000:02:08.0

ff5fe800-ff5fe8ff : 0000:02:09.0

ff5fe800-ff5fe8ff : TDRV006

ff5fec00-ff5fec7f : 0000:02:09.0

...

	1	Introduction
	2	Installation
	2.1	Build and install the device driver
	Uninstall the device driver
	2.3	Install device driver into the running kernel
	2.4	Remove device driver from the running kernel
	Change Major Device Number
	2.6	Configuration

	3	Device Input/Output functions
	3.1	open()
	close()
	ioctl()
	TDRV006_IOC_READ
	TDRV006_IOC_WRITE
	TDRV006_IOC_OE
	3.3.4	TDRV006_IOC_EVENTWAIT

	4	Diagnostic

