TEWS &

The Embedded I/O Company TECHNOLOGIES

TDRV007-SW-42

VxWorks Device Driver
ARCNET

Version 1.0.x

User Manual

Issue 1.0.0
March 2006
TEWS TECHNOLOGIES GmbH TEWS TECHNOLOGIES LLC
Am Bahnhof 7 25469 Halstenbek / Germany 1 E. Liberty Street, Sixth Floor Reno, Nevada 89504 / USA
Phone: +49-0)4101-4058-0 Fax: +49-(0)4101-4058-19 Phone: +1 (775) 686 6077 Fax: +1 (775) 686 6024
e-mail: info@tews.com www.tews.com e-mail: usasales@tews.com WWw.tews.com

mailto:info@tews.com
mailto:usasales@tews.com

TDRVO007-SW-42
ARCNET
VxWorks Device Driver

Supported Modules:

TPMC815

THP815
Issue Description
1.0.0 First Issue

TDRV0O07-SW-42 — VxWorks Device Driver

TEWS <

TECHNOLOGIES

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

©2006 by TEWS TECHNOLOGIES GmbH

Date
March 1, 2006

Page 2 of 33

TEWS <

TECHNOLOGIES

Table of Content

1 INTRODUCGTION........ciiiiiiiiriiieris s sss s s s s s s e e rnmmm s a s s e e e e e nnm s s s e nnnns 4
2 INSTALLATIONccoiiiiiiiiiiiieeiere e s s s s s s s s e s s s s s s s s s s s s s s s s s s e s e s s e s e s s s smmmmnnnnns 5
2.1 Include device driver in Tornado IDE Projectccccccememmmmmemmmmmmmmmmmmmrssss s sssssssssssssssssssssssssssns 5

2.2 Special installation for Intel x86 based targets...........cccoiiiiiiiiiiis 6

2.3 System resource reqUIremMeNtcoceiiiiiiriiniirrisr s 6

3 /O SYSTEM FUNCTIONS..... .o s s s s s s s s s mmms s s e nnns 7
B3R I o 1T 1T T o 7

B o [V0L oY 0 =Y 1= 9

BT T o 1YL U7 o] T | 12

4 /O FUNCTIONS ... s s s s s e s e e s mmma s s e e e e nnmmn sennnns 13
B B o oYY o U PP SSRPR 13

S o o = - 15

O T T | 17

4.3.1 FIO_TDRVOOT7_READ ...cooititieieeeeeeeeeeeeeee et et e 19

4.3.2 FIO_TDRVOOT7_WRITE ..ottt ees sasasassesnsess s sa s s s s nenenes 22

4.3.3 FIO_TDRVOO7_MAP......ooiioioeieeeeeeeeeeeeeeeeee ettt ettt e s s s s s 25

4.3.4 FIO_TDRVOOT7_ONLINE ... oo et et e e e e e e e e e eeeeeeeeeaae s 27

4.3.5 FIO_TDRVOO7_OFFLINEooiitiiiiiieitie ettt ettt et st e e sibe e e sbbe e sabeesaneeeeeee e 30

4.3.6 FIO_TDRVOO7_DIAG ...cootiieitiiaitie et ettt sttt ettt ettt sbe e ebe e e sabe e ssbe e s be e e sabeeaabee e seesaneas 31

4.3.7 FIO_TDRVOO7_FLUSH ...ttt ettt et et e e smbe e e sbneessneesreenns 32

4.3.8 FIO_TDRVOO7_TXSTATUS ...ttt sttt sttt ettt et e e b e e snneeeneeas 33

TDRVO007-SW-42 — VxWorks Device Driver Page 3 of 33

TEWS <

TECHNOLOGIES

1 Introduction

The TDRVO007-SW-42 VVxWorks device driver software allows the operation of the TPMC815 product
family conforming to the VxWorks I/O system specification. This includes a device-independent basic
I/0 interface with open(), close(),and ioctl() functions.

Special 1/0 operation that do not fit to the standard I/O calls will be performed by calling the ioctl()
function with a specific function code and an optional function dependent argument.

This driver invokes a mutual exclusion and binary semaphore mechanism to prevent simultaneous
requests by multiple tasks from interfering with each other.

The TDRVO007-SW-42 device driver supports the following features:

Configure ARCNET node and set node online
Remove node from ARCNET (set offline)

Send messages

Receive messages

Read ARCNET map

Get diagnostic information (reconfiguration cycles)

VVVVYY

The TDRV00Q7-SW-42 supports the modules listed below:

TPMC815 1 Channel ARCNET PMC
THP815 1 Channel ARCNET PC/104-Plus

To get more information about the features and use of TDRV007 devices it is recommended to read
the manuals listed below.

User manual of supported module
Engineering Manual of supported module

TDRVO007-SW-42 — VxWorks Device Driver Page 4 of 33

TEWS <

TECHNOLOGIES

2 Installation

Following files are located on the distribution media:

Directory path ‘. \TDRV007-SW-42\".

tdrv007drv.c TDRVO0O07Y device driver source

tdrv007def.h TDRVO0O7 driver include file

tdrv007.h TDRVO0O07 include file for driver and application
tdrv007pci.c TDRV007 PCI MMU mapping for Intel x86 based targets
tdrvOO7exa.c Example application

tdhal.h Hardware dependent interface functions and definitions
arcdef.h Definitions for ARCNET Controller Hardware
TDRV007-SW-42-1.0.0.pdf PDF copy of this manual

Release.txt Release information

2.1 Include device driver in Tornado IDE project

For Including the TDRVO007-SW -42 device driver into a Tornado IDE project follow the steps below:

(1) Copy the files from the distribution media into a subdirectory in your project path.
(For example: ./TDRV007)

(2) Add the device driver’'s C-files to your project.

Make a right click to your project in the ‘Workspace’ window and use the ‘Add Files ..." topic.
A file select box appears, and the driver files can be selected.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your Tornado User’s
Guide.

TDRVO007-SW-42 — VxWorks Device Driver Page 5 of 33

TEWS <

TECHNOLOGIES

2.2 Special installation for Intel x86 based targets

The TDRVO0O07 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU_FAMILY. If the content of this macro is equal to /180X86 special Intel x86 conforming code and
function calls will be included.

The second problem for Intel x86 based platforms can't be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn't map PClI memory spaces of devices
which are not used by the BSP, the required device memory spaces can't be accessed.

To solve this problem a MMU mapping entry has to be added for the required TDRV007 PCI memory
spaces prior the MMU initialization (usrMmulnit()) is done.

The C source file tdrv007pci.c contains the function tdrvO07Pcilnit(). This routine finds out all
TDRVO0O07 devices and adds MMU mapping entries for all used PCI memory spaces. Please insert a
call to this function after the PCI initialization is done and prior to MMU initialization (usrMmulnit()).

The right place to call the function tdrv007 Pcilnit() is at the end of the function sysHwinit() in sysLib.c
(it can be opened from the project Files window).

Be sure that the function is called prior to MMU initialization otherwise the TDRVO007 PCI spaces
remains unmapped and an access fault occurs during driver initialization.

Please insert the following call at a suitable place in sysLib.c:

tdrv0O07Pcilnit();

Modifying the sysLib.c file will change the sysLib.c in the BSP path. Remember this for future
projects and recompilations.

2.3 System resource requirement

The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement
Memory <1KB <5KB
Semaphores 0 >=4

D This value depends on the number of I/O request at the same time.

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

TDRVO007-SW-42 — VxWorks Device Driver Page 6 of 33

TEWS <

TECHNOLOGIES

3 1/0 system functions

This chapter describes the driver-level interface to the 1/0 system. The purpose of these functions is to
install the driver in the 1/O system, add and initialize devices.

3.1 tdrv007Drv()

NAME

tdrv007Drv() - installs the TDRVO0O7 driver in the I/O system

SYNOPSIS
#include “tdrv007.h”

STATUS tdrvO07Drv(void)

DESCRIPTION

This function searches for devices on the PCI bus and installs the TDRV007 driver in the 1/O system.
The function makes initial initializations of the devices.

The call of this function is the first thing the user has to do before adding any device to the
system or performing any /O request.

EXAMPLE

#i ncl ude "tdrvO007.h”

status = tdrv007Drv();
if (status == ERROR)

{
/* Error handling */

TDRVO007-SW-42 — VxWorks Device Driver Page 7 of 33

TEWS <

TECHNOLOGIES

RETURNS

OK, or ERROR if the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description
S tdrv007Drv_NOMEM Driver can not allocate memory for devices control block
S tdrv007Drv_NXIO Driver has not found a supported module

SEE ALSO

VxWorks Programmer’s Guide: I/0O System

TDRVO007-SW-42 — VxWorks Device Driver Page 8 of 33

TEWS <

TECHNOLOGIES

3.2 tdrv007DevCreate()

NAME

tdrv007DevCreate() — Add a TDRV0O07 device to the VxWorks system

SYNOPSIS
#include “tdrv007.h"

STATUS tdrvO07DevCreate

(
char *name,
int devldx,
int funcType,
void *pParam

)

DESCRIPTION

This routine adds the selected device to the VxWorks system. The device hardware will be setup and
prepared for use.

This function must be called before performing any I/O request to this device.

PARAMETER

name
This string specifies the name of the device that will be used to identify the device, for example
for open() calls.

devldx

This index number specifies the device to add to the system. The index nhumber depends on the
search priority of the modules. The modules will be searched in the following order:

- TPMC815-xx

- THP815-xx

TDRVO007-SW-42 — VxWorks Device Driver Page 9 of 33

TEWS <

TECHNOLOGIES

If modules of the same type are installed the channel numbers will be assigned in the order the
VxWorks pciFindDevice() function will find the devices.

Example: (A system with 1 TPMC815-xx and 2 THP815-xx) will assign the following device

indexes:
Module Device Index
TPMC815-xx 0
THP815-xx (1%) 1
THP815-xx (2™ 2
funcType

This parameter is unused and should be set to 0.

pParam
This parameter is unused and should be set to NULL.

EXAMPLE

#i ncl ude "tdrv007.h”

STATUS result;
2
Create the device "/tdrv007/0" for the first device
___ * [
result = tdrv00O7DevCreate("/tdrv007/0",
01
01
NULL) ;
if (result == K
{
/* Device successfully created */
}
el se
{
/* Error occurred when creating the device */
}

TDRVO007-SW-42 — VxWorks Device Driver Page 10 of 33

TEWS <

TECHNOLOGIES

RETURNS

OK, or ERROR if the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

S tdrv007Drv_NODRV Driver has not been initialized

S tdrv007Drv_NODEV The specified device is not installed

S tdrv007Drv_EXISTS The device has been created before
SEE ALSO

VxWorks Programmer’s Guide: /O System

TDRVO007-SW-42 — VxWorks Device Driver Page 11 of 33

TEWS <

TECHNOLOGIES

3.3 tdrv007Pcilnit()

NAME

tdrv007 Pcilnit() — Generic PCI device initialization

SYNOPSIS

void tdrvO07Pcilnit()

DESCRIPTION

This function is required only for Intel x86 VxWorks platforms. The purpose is to setup the MMU
mapping for all required TPMCO007 PCI spaces (base address register) and to enable the TDRV007
device for access.

The global variable tdrv007 Status obtains the result of the device initialization and can be polled later
by the application before the driver will be installed.

Value Meaning

>0 Initialization successful completed. The value of tdrv007Status is equal to the
number of mapped PCI spaces
0 No TDRV007 device found
<0 Initialization failed. The value of (tdrv007 Status & OxFF) is equal to the number of

mapped spaces until the error occurs.
Possible cause: Too few entries for dynamic mappings in sysPhysMemDesc]].
Remedy: Add dummy entries as necessary (syslib.c).

EXAMPLE

extern void tdrv0OO7Pcilnit();

tdrv0O7Pcilnit();

TDRVO007-SW-42 — VxWorks Device Driver Page 12 of 33

TEWS <

TECHNOLOGIES

4 1/0 Functions
4.1 open()

NAME

open() - open a device or file.

SYNOPSIS
int open

const char *name,

int flags,
int mode
)
DESCRIPTION

Before 1/0 can be performed to the TDRV007 device, a file descriptor must be opened by invoking the
basic I/O function open().

PARAMETER

name

Specifies the device which shall be opened, the name specified in tdrvO07DevCreate() must be
used

flags
Not used

mode
Not used

TDRVO007-SW-42 — VxWorks Device Driver Page 13 of 33

TEWS <

TECHNOLOGIES

EXAMPLE

int fd;

2
Open the device named "/tdrv007/0" for 1/0
__ *

fd = open("/tdrv007/0", 0, 0);

RETURNS

A device descriptor number, or ERROR if the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic 1/O routine - open()

TDRVO007-SW-42 — VxWorks Device Driver Page 14 of 33

TEWS <

TECHNOLOGIES

4.2 close()

NAME

close() — close a device or file

SYNOPSIS
STATUS close
(

int fd
)
DESCRIPTION

This function closes opened devices.

PARAMETER

fd

This file descriptor specifies the device to be closed. The file descriptor has been returned by
the open() function.

EXAMPLE

int fd;

int retval;

| % e oo-
cl ose the device
________________ * |

retval = close(fd);

TDRVO007-SW-42 — VxWorks Device Driver Page 15 of 33

TEWS <

TECHNOLOGIES

RETURNS

OK or ERROR if the function fails, an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic 1/O routine - close()

TDRVO007-SW-42 — VxWorks Device Driver Page 16 of 33

4.3 ioctl()

NAME

ioctl() - performs an 1/O control function.

SYNOPSIS

#include “tdrv007.h"

int ioctl

(
int fd,
int request,
int arg

)

DESCRIPTION

TEWS <

TECHNOLOGIES

Special I/O operation that do not fit to the standard basic I/O calls (read, write) will be performed by

calling the ioctl() function.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the

open() function.

request

This argument specifies the function that shall be executed. Following functions are defined:

Function
FIO_TDRVO007_READ
FIO_TDRV007_WRITE
FIO_TDRV007_MAP
FIO_TDRVO007_ONLINE
FIO_TDRVO007_ OFFLINE
FIO_TDRVO007_DIAG
FIO_TDRVO007_FLUSH
FIO_TDRVO007_TXSTATUS

arg

Description

Read an ARCNET message
Send an ARCNET message
Build a map of online nodes
Configure node and set online
Set node offline

Read number of reconfigurations
Flush receive buffer

Get transmit state

This parameter depends on the selected function (request). How to use this parameter is

described below with the function.

TDRV007-SW-42 — VxXWorks Device Driver

Page 17 of 33

TEWS <

TECHNOLOGIES

RETURNS

Function dependent value (described with the function) or ERROR if the function fails an error code
will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the 1/0 system (see VxWorks Reference Manual) or a
driver set code. Function specific error codes will be described below with the function.

Error code Description
S tdrv007Drv_ICMD Undefined request specified
SEE ALSO

ioLib, basic 1/O routine - ioctl()

TDRVO007-SW-42 — VxWorks Device Driver Page 18 of 33

TEWS <

TECHNOLOGIES

4.3.1 FIO_TDRV007_READ

This 1/O control function reads an ARCNET message. The function specific control parameter arg is a
pointer to a TDRV007_MSG structure which contains the read data and special flags for execution of
the function.

The structure (TDRV007_MSG) has the following layout and is defined in tdrv007.h:

typedef struct
{
unsigned char SID;
unsigned char DID;
unsigned short len;
unsigned char data[TDRV007_MAX_LONG_MSG];
unsigned int io_flags;
int timeout;
} TDRV007_MSG;

SID
This value returns the source ID of the message. It is the node ID of the node the message has
been sent from.
DID
This value contains the destination ID of the message. This should be the node ID of the current
device or 0 if the message has been sent as broadcast message.
len
This value returns the number of received data bytes.
dataf]
This is the buffer which contains the data of the read message.
io_flags
This value is an ORed value of the following flags defined in “tdrv007.h":
Flag Description
TDRVO0O07_F _FLUSH Flush the read buffer and wait for the next message
reception
timeout

This value specifies the maximum time the function will wait for message reception. The value is
specified in system ticks.

TDRVO007-SW-42 — VxWorks Device Driver Page 19 of 33

TEWS <

TECHNOLOGIES

EXAMPLE

#i ncl ude "tdrv007. h"

i nt fd;
TDRVOO7_MsG nmsgBuf ;
i nt retval;

Read a nessage, wait a max. tinme of 300 ticks

msgBuf.io_flags = O;
nsgBuf. ti meout = 300;

retval = ioctl(fd, FI O TDRVOO7_READ, (int)&rsgBuf);
if (retval !'= ERROR)
{
/* function succeeded */
printf(" Packet fromnode % with bytes %l Bytes:\n",
nsgBuf . SI D,
nsgBuf. | en);
printf(" Text:");
for (i = 0; i < msgBuf.len; i++)
{
printf("%", nsgBuf.dataf[i]);

el se

/* handl e the error */

TDRVO007-SW-42 — VxWorks Device Driver Page 20 of 33

TEWS <

TECHNOLOGIES

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES
S tdrv007Drv_NREADY Device is not online
S tdrv007Drv_TIMEOUT Read access has exceeded the specified timeout
S tdrv007Drv_10O A hardware detected error has occurred

TDRVO007-SW-42 — VxWorks Device Driver Page 21 of 33

TEWS <

TECHNOLOGIES

4.3.2 FIO_TDRV007_WRITE

This 1/O control function sends an ARCNET message. The function specific control parameter arg is a
pointer to a TDRV007_MSG structure which contains the message information to send and special
flags for execution of the function.

The structure (TDRV007_MSG) has the following layout and is defined in tdrv007.h:

typedef struct
{
unsigned char SID;
unsigned char DID;
unsigned short len;
unsigned char data[TDRV007_MAX_LONG_MSG];
unsigned int io_flags;
int timeout;
} TDRV007_MSG;

SID
This value is not used.
DID
This value specifies the node number the message is addressed to or ‘0’ if a broadcast
message shall be send.
len
This value specifies the number of data bytes stored in data[]. The maximum length for short
messages is 253 Byte and for long messages is 508 Byte.
dataf]
This is the buffer which contains the data to be sent.
io_flags
This value is an ORed value of the following flags defined in “tdrv007.h":
Flag Description
TDRV0O07_F_NOWAIT If this flag is set the write function will not wait for
message acknowledge.
timeout

This value specifies the maximum time the function will wait to send the message. The value is
specified in system ticks.

TDRVO007-SW-42 — VxWorks Device Driver Page 22 of 33

TEWS <

TECHNOLOGIES

EXAMPLE

#i ncl ude "tdrv007. h"

i nt fd;

TDRVOO7_MSG nmsgBuf ;

i nt retval;

)
Send a nessage to node 100, wait a nmax. time of 300 ticks

msgBuf . DI D = 100;
nsgBuf .|l en = 5;

msgBuf . data[0] = "A;
msgBuf . data[1l] = ‘B ;
nsgBuf.data[2] = ‘' C;
msgBuf . data[3] = ‘D ;
nmsgBuf . data[4] = ‘'E;

nmsgBuf.io_flags = O;
msgBuf. ti meout = 300;

retval = ioctl(fd, FIO TDRVOO7_WRI TE, (i nt)&rsgBuf);
if (retval != ERROR)
{
/* function succeeded */
}
el se
{
/* handl e the error */
}

TDRVO007-SW-42 — VxWorks Device Driver Page 23 of 33

TEWS <

TECHNOLOGIES

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES
S tdrv007Drv_NREADY Device is not online
S tdrv007Drv_TIMEOUT Write access has exceeded the specified timeout
S tdrv007Drv_NOTACK The message has not been acknowledged

TDRVO007-SW-42 — VxWorks Device Driver Page 24 of 33

TEWS <

TECHNOLOGIES

4.3.3 FIO_TDRV007_MAP

This 1/O control function returns a network map. The function specific control parameter arg is a
pointer to an array of 32 bytes where the map information will be stored.

Every bit in the array represents a possible node in the net. A set bit represents an online node, a
reset bit shows that the node is offline or not present. The assignment of nodes to the bits inside the

array is made in the following way:

Bit | o 1 2 3 4 5 6 7
Index
0 0 1 2 3 4 5 6 7
1 8 9 | 10 | 12 | 12 | 13 | 14 | 15
2 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
30 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247
31 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255
EXAMPLE

#i ncl ude "tdrv007. h"

i nt fd;
unsi gned char map[32] ;
i nt retval ;
i nt i
[% oo
Get network map
_______________ * [
retval = ioctl(fd, FIO TDRVOO7_MAP, (int)&rap[0]);
if (retval != ERROR
{
/* function succeeded */
for (i =0; i < 32; i++)
{
printf("%®2X ", map[i]);
}
}
el se
{
/* handl e the error */
}

TDRVO007-SW-42 — VxWorks Device Driver Page 25 of 33

TEWS <

TECHNOLOGIES

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

S tdrv007Drv_NREADY Device is not online
S tdrv007Drv_NETWORK_DOWN Write access has exceeded the specified timeout

TDRVO007-SW-42 — VxWorks Device Driver Page 26 of 33

TEWS <

TECHNOLOGIES

4.3.4 FIO_TDRV007_ONLINE

This 1/O control function configures the ARCNET node and sets the node online. The function specific
control parameter arg is a pointer to a TDRV007_CONFIG structure which contains the information
how to configure the node.

The structure (TDRV007_CONFIG) has the following layout and is defined in tdrv007.h:

typedef struct

{
unsigned int io_flags;
unsigned char node_id;

unsigned char network_timeout;
unsigned char speed;
} TDRV007_CONFIG;

io_flags
This value is an ORed value of the flags described below and defined in “tdrv007.h":
Value Description
TDRVO007_F_BROADCAST If set, the controller will be configured to accept
broadcast messages from the network.
TDRVO007_F LONGPACKET If set the controller will be configured to receive

both short and long packets.
If not set only short packets can be received.

TDRVO007_F_NODE_ID If set the node ID specified in TDRV007_CONFIG
will be used for the node.

If not set, the node ID chosen by the hardware DIP
switch will be used.

node _id
This value selects the node ID that will be configured if TDRV007_F _NODE ID is configured in
io_flag.

network_timeout

This value specifies the network timeout configuration to be set up. Allowed configuration values
are shown in the table below:

Value Response Time Idle Time Reconfig Time
0 596.8 us 656 us 840 ms
1 298.4 ps 328 ps 840 ms
2 74.7 ps 82 us 840 ms
3 37.35 ps 41 ps 420 ms

TDRVO007-SW-42 — VxWorks Device Driver Page 27 of 33

TEWS <

TECHNOLOGIES

speed
This value specifies the network speed. The following values are valid and predefined in
“tdrv007.h":
Speed Description
TDRVO007_312KBTS 312.5 kbps
TDRVO007_625KBTS 625.0 kbps
TDRV007_1250KBTS 1.25 Mbps
TDRVO007_2500KBTS 2.5 Mbps
TDRV007_5000KBTS 5 Mbps
EXAMPLE

#i ncl ude "tdrv007. h"

i nt fd;
TDRVOO7_NMSG cf gBuf ;
i nt retval;
[o o e
Set node online: node Id: 33
accept broadcast and accept | ong nessages
2.5 Mips and network tineout configuration 3
__ */
cfgBuf.io_flags = TDRVOO7_F_BROADCAST |
TDRVOO7_F_LONGPACKET |
TDRVOO7_F_NODE_I D
cfgBuf.node_id = 33;
cf gBuf. network_tineout = 3;
cf gBuf . speed = TDRVOO7_2500KBTS;
retval = ioctl(fd, FIO TDRVOO7_ONLINE, (int)&cfgBuf);
if (retval != ERROR)
{
/* function succeeded */
}
el se
{
/* handl e the error */
}

TDRV007-SW-42 — VxXWorks Device Driver

Page 28 of 33

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES
S_tdrv007Drv_IO

S_tdrv007Drv_ISPEED
S_tdrv007Drv_ITYPE

S_tdn/007Drv_DUPID

S_tdrv007Drv_NETWORK_DOWN

TDRV007-SW-42 — VxXWorks Device Driver

TEWS <

TECHNOLOGIES

Device initialization failed, hardware returned an
unexpected value

The specified speed value is invalid

The detected module type is not supported, can't
decide to use RS485 or hybrid setup.

The node ID specified or read from the DIP-switch is
already online on another node in the network

The node can't get online

Page 29 of 33

TEWS <

TECHNOLOGIES

4.3.5 FIO_TDRV007_OFFLINE

This 1/0 control function removed the ARCNET node from the network and sets it to offline mode.
There is no function specific control parameter arg used.

EXAMPLE

#i ncl ude "tdrv007. h"

i nt fd;

i nt retval ;

[% o o oo
Renove devi ce from network
.......................... * [

retval = ioctl(fd, FIO TDRVOO7_OFFLINE, 0);

if (retval != ERROR)

{

/* function succeeded */

}

el se

{

/* handl e the error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

No special error codes defined.

TDRVO007-SW-42 — VxWorks Device Driver Page 30 of 33

TEWS <

TECHNOLOGIES

4.3.6 FIO_TDRV007_DIAG

This 1/O control function returns diagnostic information. The function specific control parameter arg is
a pointer to an int value where the number of reconfigurations will be stored. After executing the
function the reconfiguration counter will be reset.

EXAMPLE

#i ncl ude "tdrv007. h"

i nt fd;

i nt recons;

STATUS retval ;

[% e e e e e e e e e e e oo -
Get diagnostic infornmation
__________________________ */

retval = ioctl(fd, FIO TDRVOO7_DI AG (int)&r econs);

if (retval != ERROR

{

/* function succeeded */
printf("Nunber of reconfigurations: %\n", recons);

/* handl e the error */

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

No special error codes defined.

TDRVO007-SW-42 — VxWorks Device Driver Page 31 of 33

TEWS <

TECHNOLOGIES

4.3.7 FIO_TDRV007_FLUSH

This 1/O control function flushes the receive buffer. There is no function specific control parameter arg
used.

EXAMPLE

#i ncl ude "tdrv007. h"

i nt fd;
i nt retval ;
| % o o_o_o-.
Fl ush the receive buffer
........................ * [
retval = ioctl(fd, FIO TDRVOO7_FLUSH, O0);
if (retval != ERROR)
{
/* function succeeded */
}
el se
{
/* handl e the error */
}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

No special error codes defined.

TDRVO007-SW-42 — VxWorks Device Driver Page 32 of 33

TEWS <

TECHNOLOGIES

4.3.8 FIO_TDRVO007_TXSTATUS

This I/O control function returns the current transmit state of the device. The function specific control
parameter arg is a pointer to an int value where the transmit status will be stored.

The transmit state may return the following values, defined in ‘tdrv007.h’:

S tdrv007Drv_BUSY The message transmission is active
S tdrv007Drv_NOTACK The message is not acknowledged
S tdrv007Drv_TIMEOUT The message transmission times out
OK OK

EXAMPLE

#i ncl ude "tdrv007. h"

i nt fd;
i nt t xSt at e;
i nt retval ;
/* __________________________
Get transmt status
__________________________ */
retval = ioctl(fd, FI O TDRVOO7_TXSTATUS, (int)&t xState);
if (retval != ERROR
{

/* function succeeded */
printf("Wite State: %\n", txState);

/* handl e the error */

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

No special error codes defined.

TDRVO007-SW-42 — VxWorks Device Driver Page 33 of 33

	Introduction
	Installation
	Include device driver in Tornado IDE project
	Special installation for Intel x86 based targets
	System resource requirement

	I/O system functions
	tdrv007Drv()
	tdrv007DevCreate()
	tdrv007PciInit()

	I/O Functions
	open()
	close()
	ioctl()
	FIO_TDRV007_READ
	FIO_TDRV007_WRITE
	FIO_TDRV007_MAP
	FIO_TDRV007_ONLINE
	FIO_TDRV007_OFFLINE
	FIO_TDRV007_DIAG
	FIO_TDRV007_FLUSH
	FIO_TDRV007_TXSTATUS

