
The Embedded I/O Company

TDRV007-S
Windows 2000/XP D

ARCNET Contr

Version 1.0.x

User Manu
Issue 1.0.1

June 2008

TEWS TECHNOLOGIES GmbH TEWS TEC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49 (0) 4101 4058 0
Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com

9190 Doub
Suite 127,
www.tews.
W-65
evice Driver
oller

al

HNOLOGIES LLC
le Diamond Parkway,
Reno, NV 89521, USA
com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 2 of 25

TDRV007-SW-65

Windows 2000/XP Device Driver

ARCNET Controller

Supported Modules:
TPMC815
THP815

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2008 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue January 07, 2008

1.0.1 Files moved to subdirectory June 23, 2008

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 3 of 25

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Software Installation ...5
2.1.1 Windows 2000 / XP..5
2.1.2 Confirming Windows 2000 / XP Installation ...5

3 DEVICE DRIVER PROGRAMMING ... 6
3.1 Files and I/O Functions ..6

3.1.1 Opening a Device...6
3.1.2 Closing a Device ..8
3.1.3 Device I/O Control Functions ...9

3.1.3.1 IOCTL_TDRV007_READ, IOCTL_TDRV007_READ_NOWAIT................................11
3.1.3.2 IOCTL_TDRV007_WRITE ...13
3.1.3.3 IOCTL_TDRV007_DIAG ..15
3.1.3.4 IOCTL_TDRV007_MAP ...16
3.1.3.5 IOCTL_TDRV007_FLUSH ...18
3.1.3.6 IOCTL_TDRV007_OFFLINE..19
3.1.3.7 IOCTL_TDRV007_ONLINE..20
3.1.3.8 IOCTL_TDRV007_SET_VARIANT ..24

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 4 of 25

1 Introduction
The TDRV007-SW-65 Windows WDM (Windows Driver Model) device driver is a kernel mode driver
which allows the operation of the TPMC815 product family on an Intel or Intel-compatible x86
Windows 2000, Windows XP, Windows XP embedded operating system.

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceIoControl) provide
the basic interface for opening and closing a resource handle and for performing device I/O control
operations.

The TDRV007-SW-65 device driver supports the following features:

 Configure ARCNET node and set node online
 Remove node from ARCNET (set offline)
 Send messages
 Receive messages
 Read ARCNET map
 Get diagnostic information (reconfiguration cycles)

The TDRV007-SW-65 device driver supports the modules listed below:

TPMC815 1 Channel ARCNET (PMC)

THP815 1 Channel ARCNET (PC/104-Plus)

In this document all supported modules and devices will be called TDRV007. Specials for
certain devices will be advised.

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

TPMC815 Product Family User manual

TPMC815 Product Family Engineering Manual

COM20020-5 ULANC Reference Manual

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 5 of 25

2 Installation
Following files are located in directory TDRV007-SW-65 on the distribution media:

tdrv007.sys Windows 2000/XP driver binary
tdrv007.inf Windows 2000/XP installation script
tdrv007.h Header file with IOCTL code and structure definitions
TDRV007-SW-65-1.0.1.pdf This document
example/tdrv007exa.c Example application
Release.txt Release information
ChangeLog.txt Release history

2.1 Software Installation

2.1.1 Windows 2000 / XP

This section describes how to install the TDRV007 Device Driver on a Windows 2000 / XP operating
system.

After installing the TDRV007 module(s) and boot-up your system, Windows 2000 / XP setup will show
a "New hardware found" dialog box.

(1) The "Upgrade Device Driver Wizard" dialog box will appear on your screen.
Click "Next" button to continue.

(2) In the following dialog box, choose "Search for a suitable driver for my device".
Click "Next" button to continue.

(3) In Drive A, insert the TDRV007 driver disk; select "Disk Drive" in the dialog box.
Click "Next" button to continue.

(4) Now the driver wizard should find a suitable device driver on the diskette.
Click "Next" button to continue.

(5) Complete the upgrade device driver and click "Finish" to take all the changes effect.

(6) Repeat the steps above for each found device.

After successful installation the TDRV007 device driver will start immediately and create devices
(TDRV007_1, TDRV007_2 ...) for all recognized TDRV007 modules.

2.1.2 Confirming Windows 2000 / XP Installation

To confirm that the driver has been properly loaded in Windows 2000 / XP, perform the following
steps:

(1) From Windows 2000 / XP, open the "Control Panel" from "My Computer".

(2) Click the "System" icon and choose the "Hardware" tab, and then click the "Device Manager"
button.

(3) Click the "+" in front of "Other Devices".
The driver "TEWS TECHNOLOGIES – TDRV007 ARCNET (<ModuleName>)" should appear.

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 6 of 25

3 Device Driver Programming
The TDRV007-SW-65 Windows WDM device driver is a kernel mode device driver using Direct I/O.

All of these standard Win32 functions are described in detail in the Windows Platform SDK
Documentation (Windows base services / Hardware / Device Input and Output).

For details refer to the Win32 Programmers Reference of your used programming tools (C++, Visual
Basic etc.)

3.1 Files and I/O Functions
The following section doesn’t contain a full description of the Win32 functions for interaction with the
TDRV007 device driver. Only the required parameters are described in detail.

3.1.1 Opening a Device

Before you can perform any I/O the TDRV007 device must be opened by invoking the CreateFile
function. CreateFile returns a handle that can be used to access the TDRV007 device.

HANDLE CreateFile(
LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile

)

Parameters

lpFileName

Points to a null-terminated string, which specifies the name of the TDRV007 device to open.
The lpFileName string should be of the form \\.\TDRV007_x to open the device x. The ending x
is a one-based number. The first device found by the driver is \\.\TDRV007_1, the second
\\.\TDRV007_2 and so on.

dwDesiredAccess

Specifies the type of access to the TDRV007. For the TDRV007 this parameter must be set to
read-write access (GENERIC_READ | GENERIC_WRITE)

dwShareMode

Set of bit flags that specify how the object can be shared. Set to 0.

lpSecurityAttributes

Pointer to a security structure. Set to NULL for TDRV007 devices.

dwCreationDistribution

Specifies which action to take on files that exist, and which action to take when files do not
exist. TDRV007 devices must be always opened OPEN_EXISTING.

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 7 of 25

dwFlagsAndAttributes

Specifies the file attributes and flags for the file. This value must be set to 0 (no overlapped I/O).

hTemplateFile

This value must be NULL for TDRV007 devices.

Return Value

If the function succeeds, the return value is an open handle to the specified TDRV007 device. If the
function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call
GetLastError.

Example

HANDLE hDevice;

hDevice = CreateFile(
“\\\\.\\TDRV007_1”,
GENERIC_READ | GENERIC_WRITE,
0,
NULL, // no security attrs
OPEN_EXISTING, // TDRV007 device always open existing
0, // no overlapped I/O
NULL

);

if (hDevice == INVALID_HANDLE_VALUE) {
ErrorHandler("Could not open device"); // process error

}

See Also

CloseHandle(), Win32 documentation CreateFile()

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 8 of 25

3.1.2 Closing a Device

The CloseHandle function closes an open TDRV007 handle.

BOOL CloseHandle(
HANDLE hDevice

)

Parameters

hDevice

Identifies an open TDRV007 handle.

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Example

HANDLE hDevice;
if(!CloseHandle(hDevice)) {

ErrorHandler("Could not close device"); // process error
}

See Also

CreateFile (), Win32 documentation CloseHandle ()

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 9 of 25

3.1.3 Device I/O Control Functions

The DeviceIoControl function sends a control code directly to a specified device driver, causing the
corresponding device to perform the specified operation.

BOOL DeviceIoControl(
HANDLE hDevice,
DWORD dwIoControlCode,
LPVOID lpInBuffer,
DWORD nInBufferSize,
LPVOID lpOutBuffer,
DWORD nOutBufferSize,
LPDWORD lpBytesReturned,
LPOVERLAPPED lpOverlapped

)

Parameters

hDevice

Handle to the TDRV007 device that is to perform the operation.

dwIoControlCode

Specifies the control code for the operation. This value identifies the specific operation to be
performed. The following values are defined in tdrv007.h:

Value Meaning

IOCTL_TDRV007_READ Read a packet

IOCTL_TDRV007_READ_NOWAIT Same as IOCTL_TDRV007_READ but do not wait
if no packet is available

IOCTL_TDRV007_WRITE Transmit a packet

IOCTL_TDRV007_DIAG Get number of node reconfigurations

IOCTL_TDRV007_MAP Build a map of online nodes on the network

IOCTL_TDRV007_FLUSH Flush FIFO of received packets

IOCTL_TDRV007_OFFLINE Shutdown and remove the node from the network

IOCTL_TDRV007_ONLINE Initialize the node and enter the network

IOCTL_TDRV007_SET_VARIANT Setup the module variant if automatic recognition
failed

See behind for more detailed information on each control code.

lpInBuffer

Pointer to a buffer that contains the data required to perform the operation.

nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer.

lpOutBuffer

Pointer to a buffer that receives the operation’s output data.

nOutBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer.

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 10 of 25

lpBytesReturned

Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed to
by lpOutBuffer. A valid pointer is required.

lpOverlapped

Pointer to an Overlapped structure. This value must be set to NULL (no overlapped I/O).

To use these TDRV007 specific control codes the header file tdrv007.h must be included.

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Please note that the TDRV007 device driver returns always standard Win32 error codes on failure.
Please refer to the Windows Platform SDK Documentation for a detailed description of returned error
codes.

See Also

Win32 documentation DeviceIoControl ()

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 11 of 25

3.1.3.1 IOCTL_TDRV007_READ, IOCTL_TDRV007_READ_NOWAIT

This TDRV007 control function reads a data packet from the specified device. A pointer to the callers
message buffer (TP815_MSG) is passed by the parameter lpOutBuffer to the driver.

After successful execution the message buffer (lpOutBuffer) receives the packet.

The control function IOCTL_TDRV007_READ_NOWAIT returns immediately with the error code
ERROR_NO_DATA if no data are available.

typedef struct {
UCHAR SID;
UCHAR DID;
USHORT MsgLen;
UCHAR Data[TDRV007_MAX_LONG_MSG];

} TDRV007_MSG, *PTDRV007_MSG;

SID

Contains the source ID

DID

Contains the destination ID or 0 for broadcast messages

MsgLen

Contains the number of message data bytes.

Data

This buffer receives up to 253 bytes of data for short packets and up to 508 bytes for long
packets.

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 12 of 25

Example

#include “tdrv007.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TDRV007_MSG MsgBuf;

success = DeviceIoControl (
hDevice, // device handle
IOCTL_TDRV007_READ, // control code
NULL, // input buffer
0,
&MsgBuf, // output buffer
sizeof(MsgBuf),
&NumBytes, // number of bytes transferred
NULL

);

if(success) {
// Process received data

}
else {

// Process DeviceIoControl() error
}

Error Codes

ERROR_INSUFFICIENT_BUFFER The message buffer is too small for a long or short
packet.

ERROR_NOT_READY The ARCNET controller is OFFLINE. Execute
IOCTL_TDRV007_ONLINE to enter the network.

ERROR_SEM_TIMEOUT No packet received within the specified time
(DeviceReadTimeout).

All other returned error codes are system error conditions.

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 13 of 25

3.1.3.2 IOCTL_TDRV007_WRITE

This TDRV007 control function writes a packet to the specified device. A pointer to the callers
message buffer (TDRV007_MSG) is passed by the parameter lpInBuffer to the driver.

typedef struct {
UCHAR SID;
UCHAR DID;
USHORT MsgLen;
UCHAR Data[TDRV007_MAX_LONG_MSG];

} TDRV007_MSG, *PTDRV007_MSG;

SID

Not used can be 0.

DID

Contains the destination ID or 0 for broadcast messages

MsgLen

Contains the number of message data bytes.

Data

This buffer receives up to 253 bytes of data for short packets and between 257 and 508 bytes
for long packets. Data packets between 254 and 256 bytes must be filled with dummy data to
make the packet fit into a long packet.

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 14 of 25

Example

#include “tdrv007.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TDRV007_MSG MsgBuf;

MsgBuf.DID = 1;
strcpy(MsgBuf.Data, “GET PARAMETER”);
MsgBuf.MsgLen = strlen(MsgBuf.Data);

success = DeviceIoControl (
hDevice, // device handle
IOCTL_TDRV007_WRITE, // control code
&MsgBuf, // input buffer
sizeof(MsgBuf),
NULL, // output buffer
0,
&NumBytes, // number of bytes transferred
NULL

);

if(!success) {
// Process DeviceIoControl() error

}

Error Codes

ERROR_INSUFFICIENT_BUFFER The data packet does not fit into the passed
message buffer. Please check the field MsgLen of
the message buffer.

ERROR_BAD_LENGTH Illegal message length. A short may contain between
1 and 253 bytes, while a long packet contain
between 257 and 508 bytes.
NOTE. Data Packet length of 254, 255 and 256 must
be filled with dummy bytes to make the packet fit into
a long packet.

ERROR_NOT_READY The ARCNET controller is OFFLINE. Execute
IOCTL_TDRV007_ONLINE to enter the network.

ERROR_SEM_TIMEOUT The data packet could not be sent within the
specified time (DeviceWriteTimeout).

ERROR_REQ_NOT_ACCEP No acknowledge received after transmission
All other returned error codes are system error conditions.

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 15 of 25

3.1.3.3 IOCTL_TDRV007_DIAG

This TDRV007 control function gets the number of node reconfigurations. The number of node
reconfigurations reflects the quality of the network. If the number grows up soon there is something
wrong on the network.

The internal reconfiguration counter will be reset after reading.

A pointer to a ULONG variable which receives the current counter value is passed by the parameters
lpOutBuffer to the driver.

Example

#include “tdrv007.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
ULONG NumRecons;

success = DeviceIoControl (
hDevice, // device handle
IOCTL_TDRV007_DIAG, // control code
NULL, // input buffer
0,
&NumRecons, // output buffer
sizeof(ULONG),
&NumBytes, // number of bytes transferred
NULL

);

if(success) {
printf("\n%ld recons since last query\n", NumRecons);

}
else {

// Process DeviceIoControl() error
}

Error Codes

ERROR_INSUFFICIENT_BUFFER The reconfiguration counter (ULONG) does not fit into
the passed buffer. Please check the parameter
nOutBufferSize of the DeviceIoControl () function call.

All other returned error codes are system error conditions.

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 16 of 25

3.1.3.4 IOCTL_TDRV007_MAP

This TDRV007 control function builds a map of nodes contained on the network. The driver puts the
map into a user defined buffer with 32 bytes in length. Every bit (256) in this buffer represents a node
on the network. Bits in this buffer are set (present) or reset (not present) depending on if a node is
present or not. The first byte in the buffer presents nodes 0 through 7; the second byte presents 8
through 15, and so on. The least significant bit of a byte presents the smallest node number.

A pointer to the buffer which receives the node map must be passed by the parameters lpOutBuffer to
the driver.

Example

#include “tdrv007.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
UCHAR map[TDRV007_MAX_MAP_SIZE];

success = DeviceIoControl (
hDevice, // device handle
IOCTL_TDRV007_MAP, // control code
NULL, // input buffer
0,
map, // output buffer
TDRV007_MAX_MAP_SIZE,
&NumBytes, // number of bytes transferred
NULL

);

if(success) {
printf("Network Map:\n\t");

for (i = 0; i < TDRV007_MAX_MAP_SIZE; i++) {
if ((i % 16) == 0) printf("\n\t");
printf("%02X ",map[i]);

}
}
else {

// Process DeviceIoControl() error
}

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 17 of 25

Error Codes

ERROR_INSUFFICIENT_BUFFER The node map does not fit into the passed buffer.
Please check the parameter nOutBufferSize of the
DeviceIoControl () function call.

ERROR_NOT_READY The ARCNET controller is OFFLINE. Execute
IOCTL_TDRV007_ONLINE to enter the network.

ERROR_NETWORK_UNREACHABLE No token was seen. The network seems to be
down.

All other returned error codes are system error conditions.

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 18 of 25

3.1.3.5 IOCTL_TDRV007_FLUSH

This TDRV007 control function flushes the driver’s internal message FIFO.

No additional parameters are required for this call.

Example

#include “tdrv007.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;

success = DeviceIoControl (
hDevice, // device handle
IOCTL_TDRV007_FLUSH, // control code
NULL, // input buffer
0,
NULL, // output buffer
0,
&NumBytes, // number of bytes transferred
NULL

);

if(!success) {
// Process DeviceIoControl() error

}

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 19 of 25

3.1.3.6 IOCTL_TDRV007_OFFLINE

This TDRV007 control function shuts down the node hardware and removes the node from the
network.

No additional parameters are required for this call.

Example

#include “tdrv007.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;

success = DeviceIoControl (
hDevice, // device handle
IOCTL_TDRV007_OFFLINE, // control code
NULL, // input buffer
0,
NULL, // output buffer
0,
&NumBytes, // number of bytes transferred
&Overlapped

);

if(!success) {
// Process DeviceIoControl() error and free allocated memory

}

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 20 of 25

3.1.3.7 IOCTL_TDRV007_ONLINE

This TDRV007 control function initializes the ARCNET controller and sets the controller online to enter
the network.

After successful execution of this control function the ARCNET controller is connected to the network
and packets can be received from and transmitted to the network.

A pointer to the caller’s configuration parameter (TDRV007_CONFIG) is passed by the parameter
lpInBuffer to the driver.

typedef struct {
BOOLEAN Broadcast;
BOOLEAN LongPacket;
USHORT NodeID;
USHORT NetworkTimeout;
USHORT Speed;
ULONG DeviceWriteTimeout;
ULONG DeviceReadTimeout;

} TDRV007_CONFIG, *PTDRV007_CONFIG;

Broadcast

If this parameter is TRUE (1) the controller will accept broadcast messages from the network.

LongPacket

If this parameter is TRUE (1) the controller will receive both short and long packets, otherwise
only short packets will be accepted.

NodeID

Specifies the node ID used by this controller in range between 1 and 255. If this parameter is
set to 0, the node ID will be determined by reading the hardware DIP switch.

NetworkTimeout

Specifies the response, idle and recon timing of the ARCNET controller. The resulting timing
depends on the configured network speed (see below) and the value of the bits ET1 and ET2 in
the configuration register of the controller. All nodes should be configured with the same timeout
value for proper network operation.
Valid values are:

Value ET2 ET1 Response (s) Idle Time (s) Reconfig (s)

0 0 0 596.8 656 840

1 0 1 298.4 328 840

2 1 0 74.7 82 840

3 1 1 37.35 41 420

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 21 of 25

For slower data rates, an internal clock divider scales down the clock frequency. Thus all
timeout values are scaled up as shown in the following table:

Data Rate
Timeout scaling factor
(multiply by)

5 Mbps 1

2.5 Mbps 2

1.25 Mbps 4

625 Kbps 8

312.5 Kbps 16

Speed

This parameter determines the network speed by setting the clock prescaler. The following
speed values are predefined:

Symbol Network Speed

TDRV007_5000KBPS 5 Mbps

TDRV007_2500KBPS 2.5 Mbps

TDRV007_1250KBPS 1.25 Mbps

TDRV007_625KBPS 625 Kbps

TDRV007_312KBPS 312.5 Kbps

DeviceWriteTimeout

Specifies the timeout in seconds for all following IOCTL_TDRV007_WRITE control functions.

DeviceReadTimeout

Specifies the timeout in seconds for all following IOCTL_TDRV007_READ control functions.

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 22 of 25

Example

#include “tdrv007.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TDRV007_CONFIG Config;

//
// Setup node 123 to accept broadcast messages and long
// packets with a network speed of 2.5 Mbps
//
Config.Broadcast = TRUE;
Config.LongPacket = TRUE;
Config.NodeID = 123;
Config.NetworkTimeout = 0;
Config.Speed = TDRV007_2500KBPS;
Config.DeviceWriteTimeout = 2;
Config.DeviceReadTimeout = 2;

success = DeviceIoControl (
hDevice, // device handle
IOCTL_TDRV007_ONLINE, // control code
&Config, // input buffer
sizeof(TDRV007_CONFIG),
NULL, // output buffer
0,
&NumBytes, // number of bytes transferred
NULL

);

if(!success) {
// Process DeviceIoControl() error

}

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 23 of 25

Error Codes

ERROR_INSUFFICIENT_BUFFER The input buffer is too small for the configuration
structure. Please check the parameter
nInBufferSize of the DeviceIoControl () function
call.

ERROR_INVALID_PARAMETER Some configuration parameter (NodeID,
NetworkTimeout, Speed) are out of range.

ERROR_NETWORK_UNREACHABLE Unable to enter the network

STATUS_DUPLICATE_OBJECTID Illegal or duplicate node ID

ERROR_NOT_READY The device driver can’t recognize the module
variant automatically. This could occur due to an
error of the PLX9050 PCI interface chip for certain
memory configurations. Please use the special
device I/O control function
IOCTL_TDRV007_SET_VARIANT to setup module
variant manually.

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 24 of 25

3.1.3.8 IOCTL_TDRV007_SET_VARIANT

This TDRV007 control function setup the TPCM815 variant code, if automatic recognition doesn’t work
(IOCTL_TDRV007_ONLINE returns ERROR_NOT_READY). This could occur due to an error of the
PLX9050 PCI interface chip for certain memory configurations.

This device I/O control function is only relevant for TPMC815 V1.0 modules. Newer TPMC815
modules (Revision 2.0 or higher) or THP815 modules contain the variant information in the
always readable PCI header. For these modules this I/O control function can be ignored.

A pointer to an unsigned char variable, which contains the variant code, is passed by the parameter
lpInBuffer to the driver. Possible variant codes are defined in tdrv007.h. Use TPMC815_11 for a
TPMC815-11 with traditional isolated hybrid interface or TPMC815_21 for a TPCM815-21 with isolated
RS485 differential driver interface.

Example

#include “tdrv007.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
UCHAR variant;

variant = TPMC815_21;

success = DeviceIoControl (
hDevice, // device handle
IOCTL_TDRV007_SET_VARIANT, // control code
&variant, // input buffer
sizeof(UCHAR),
NULL, // output buffer
0,
&NumBytes, // number of bytes transferred
NULL

);
if(!success) {

// Process DeviceIoControl() error
}

TDRV007-SW-65 – Windows 2000/XP Device Driver Page 25 of 25

Error Codes

ERROR_INSUFFICIENT_BUFFER The node map does not fit into the passed buffer.
Please check the parameter nOutBufferSize of the
DeviceIoControl () function call.

ERROR_INVALID_PARAMETER Invalid module variant code. Valid are 11 for a
TPMC815-11 and 21 for a TPCM815-21.

ERROR_ACCESS_DENIED The module variant was detected automatically, so it
cannot be changed.

All other returned error codes are system error conditions.

	Introduction
	Installation
	Software Installation
	Windows 2000 / XP
	Confirming Windows 2000 / XP Installation

	Device Driver Programming
	Files and I/O Functions
	Opening a Device
	Closing a Device
	Device I/O Control Functions
	IOCTL_TDRV007_READ, IOCTL_TDRV007_READ_NOWAIT
	IOCTL_TDRV007_WRITE
	IOCTL_TDRV007_DIAG
	IOCTL_TDRV007_MAP
	IOCTL_TDRV007_FLUSH
	IOCTL_TDRV007_OFFLINE
	IOCTL_TDRV007_ONLINE
	IOCTL_TDRV007_SET_VARIANT

