

The Embedded I/O Company

TPMC815-S
LynxOS Device

ARCNET Contr

Version 1.0.x

User Manu
Issue 1.0
May 2004

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek / Germany
Phone: +49-(0)4101-4058-0 Fax: +49-(0)4101-4058-19
e-mail: info@tews.com www.tews.com

TEWS
1 E. Lib
Phone:
e-mail:
W-72
 Driver
oller

al

TECHNOLOGIES LLC
erty Street, Sixth Floor Reno, Nevada 89504 / USA
 +1 (775) 686 6077 Fax: +1 (775) 686 6024
 usasales@tews.com www.tews.com

mailto:info@tews.com
mailto:usasales@tews.com

TPMC815-SW-72
ARCNET Controller

LynxOS Device Driver

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2004 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0 First Issue May 5, 2004

TPMC815-SW-72 - LynxOS Device Driver Page 2 of 29

TPMC815-SW-72 - LynxOS Device Driver Page 3 of 29

Table of Content
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Device Driver Installation ...6
2.1.1 Static Installation ..6

2.1.1.1 Build the driver object ...6
2.1.1.2 Create Device Information Declaration ..6
2.1.1.3 Modify the Device and Driver Configuration File..6
2.1.1.4 Rebuild the Kernel ..7

2.1.2 Dynamic Installation ...8
2.1.2.1 Build the driver object ...8
2.1.2.2 Create Device Information Declaration ..8
2.1.2.3 Uninstall dynamic loaded driver ...8

2.1.3 Device Information Definition File ..9
2.1.4 Configuration File: CONFIG.TBL ...10

3 TPMC815 DEVICE DRIVER PROGRAMMING .. 11
3.1 open() ...11
3.2 close()...13
3.3 read() ..14
3.4 write() ...16
3.5 ioctl() ..18

3.5.1 TP815_C_ONLINE...19
3.5.2 TP815_C_OFFLINE...22
3.5.3 TP815_C_DIAG ...23
3.5.4 TP815_C_MAP ..24
3.5.5 TP815_C_FLUSH ..25
3.5.6 TP815_C_TXSTATUS ...26

4 DEBUGGING AND DIAGNOSTIC.. 27
5 ADDITIONAL ERROR CODES .. 29

TPMC815-SW-72 - LynxOS Device Driver Page 4 of 29

1 Introduction
The TPMC815-SW-72 LynxOS device driver allows the operation of a TPMC815 ARCNET controller
PMC on PowerPC platforms with DRM based PCI interface.

The standard file (I/O) functions (open, close, read, write, ioctl) provide the basic interface for opening
and closing a file descriptor and for performing device I/O and configuration operations.

The TPMC815 device driver includes the following functions:

! Receiving and Sending messages
! Setup ARCNET controller and getting online
! Getting Offline
! Flushing receive buffer
! Getting diagnostic value

To understand all features of this device driver, it is recommended to read the TPMC815 User Manual.

TPMC815-SW-72 - LynxOS Device Driver Page 5 of 29

2 Installation
The software is delivered on a PC formatted 3½" HD diskette.

The directory A:\TPMC815-SW-72 contains the following files:

TPMC815-SW-72.pdf This manual in PDF format
 TPMC815-SW-72.tar Device Driver and Example sources

The TAR archive TPMC815-SW-72.tar contains the following files and directories:

tpmc815.c Driver source code
tpmc815.h Definitions and data structures for driver and application
tpmc815def.h Definitions and data structures for the driver
arcnet.h Definitions of controller values
tpmc815_info.c Device information definition
tpmc815_info.h Device information definition header
tpmc815.cfg Driver configuration file include
tpmc815.import Linker import file
Makefile Device driver make file
example/example.c Example application source

In order to perform a driver installation first extract the TAR file to a temporary directory then copy the
following files to their target directories:

1. Create a new directory in the system drivers directory path /sys/drivers.xxx, where xxx represents
the BSP that supports the target hardware.

For example: /sys/drivers.pp_drm/tpmc815 or /sys/drivers.cpci_x86/tpmc815

2. Copy the following files to this directory:
- tpmc815.c
- tpmc815def.h
- tpmc815.import
- Makefile

3. Copy tpmc815.h to /usr/include/

4. Copy tpmc815_info.c to /sys/devices.xxx/ or /sys/devices if /sys/devices.xxx does not exist
(xxx represents the BSP).

5. Copy tpmc815_info.h to /sys/dheaders/

6. Copy tpmc815.cfg to /sys/cfg.xxx/, where xxx represents the BSP for the target platform

For example: /sys/cfg.ppc or /sys/cfg.x86

TPMC815-SW-72 - LynxOS Device Driver Page 6 of 29

2.1 Device Driver Installation
The two methods of driver installation are as follows:

! Static Installation
! Dynamic Installation (only native LynxOS systems)

2.1.1 Static Installation
With this method, the driver object code is linked with the kernel routines and is installed during
system start-up.

2.1.1.1 Build the driver object
1. Change to the directory /sys/drivers.xxx/tpmc815, where xxx represents the BSP that supports the

target hardware.

2. To update the library /sys/lib/libdrivers.a enter:

make install

2.1.1.2 Create Device Information Declaration
1. Change to the directory /sys/devices.xxx/ or /sys/devices if /sys/devices.xxx does not exist (xxx

represents the BSP).

2. Add the following dependencies to the Makefile

DEVICE_FILES_all = ... tpmc815_info.x

And at the end of the Makefile

tpmc815_info.o:$(DHEADERS)/tpmc815_info.h

3. To update the library /sys/lib/libdevices.a enter:

make install

2.1.1.3 Modify the Device and Driver Configuration File
In order to insert the driver object code into the kernel image, an appropriate entry in file CONFIG.TBL
must be created.

1. Change to the directory /sys/lynx.os/ respective /sys/bsp.xxx, where xxx represents the BSP that
supports the target hardware.

2. Create an entry at the end of the file CONFIG.TBL

Insert the following entry at the end of this file. Be sure that the necessary TEWS TECHNOLOGIES
IPAC carrier driver is included before this entry.

I:tpmc815.cfg

TPMC815-SW-72 - LynxOS Device Driver Page 7 of 29

2.1.1.4 Rebuild the Kernel
1. Change to the directory /sys/lynx.os/ (/sys/bsp.xxx)

2. Enter the following command to rebuild the kernel:

make install

3. Reboot the newly created operating system by the following command (not necessary for KDIs):

reboot –aN

The N flag instructs init to run mknod and create all the nodes mentioned in the new nodetab.

4. After reboot you should find the following new devices (depends on the device configuration):
/dev/tp815a, /dev/tp815b, /dev/tp815c, …

TPMC815-SW-72 - LynxOS Device Driver Page 8 of 29

2.1.2 Dynamic Installation
This method allows you to install the driver after the operating system is booted. The driver object
code is attached to the end of the kernel image and the operating system dynamically adds this driver
to its internal structures. The driver can also be removed dynamically.

2.1.2.1 Build the driver object
1. Change to the directory /sys/drivers.xxx/tpmc815, where xxx represents the BSP that supports the

target hardware.

2. To make the dynamic link-able driver enter :

make dldd

2.1.2.2 Create Device Information Declaration
1. Change to the directory /sys/drivers.xxx/tpmc815, where xxx represents the BSP that supports the

target hardware.

2. To create a device definition file for the major device (this works only on native system)

make t815info

3. To install the driver enter:

drinstall –c tpmc815.obj

If successful, drinstall returns a unique <driver-ID>

4. To install the major device enter:

devinstall –c –d <driver-ID> t815info

The <driver-ID> is returned by the drinstall command

5. To create nodes for the devices enter:

mknod /dev/tp815a c <major_no> 0

...

The <major_no> is returned by the devinstall command.

If all steps are successful completed the TPMC815 is ready to use.

2.1.2.3 Uninstall dynamic loaded driver
To uninstall the TPMC815 device enter the following commands:

devinstall –u –c <device-ID>
drinstall –u <driver-ID>

TPMC815-SW-72 - LynxOS Device Driver Page 9 of 29

2.1.3 Device Information Definition File
The device information definition contains information necessary to install the TPMC815 major device.

The implementation of the device information definition is done through a C structure, which is defined
in the header file tpmc815_info.h.

This structure contains the following parameter:

PCIBusNumber Contains the PCI bus number at which the TPMC815 is connected. Valid
bus numbers are in range from 0 to 255.

PCIDeviceNumber Contains the device number (slot) at which the TPMC815 is connected.
Valid device numbers are in range from 0 to 31.

ModuleVariant Contains the module variant (-11/-21) for TPMC815 V1.0, ignored for V2.0.

If both PCIBusNumber and PCIDeviceNumber are –1 then the driver will auto scan for the
TPMC815 device. The first device found in the scan order will be allocated by the driver for this
major device.

Already allocated devices can’t be allocated twice. This is important to know if there are more
than one TMPC815 major devices.

A device information definition is unique for every TPMC815 major device. The file tpmc815_info.c on
the distribution disk contains two device information declarations, tp815a_info for the first major
device and tp815b_info for the second major device.

If the driver should support more than two major devices it is necessary to copy and paste an existing
declaration and rename it with unique name for example tp815c_info, tp815d_info and so on.

It is also necessary to modify the device and driver configuration file respectively the
configuration include file tpmc815.cfg.

The following device declaration information uses the auto find method to detect the TPMC815
module on PCI bus.

TP901_INFO tp815a_info = {

 -1, /* Auto find the TPMC815 on any PCI bus */
 -1,
 11, /* module variant “11” */

};

TPMC815-SW-72 - LynxOS Device Driver Page 10 of 29

2.1.4 Configuration File: CONFIG.TBL
The device and driver configuration file CONFIG.TBL contains entries for device drivers and its major
and minor device declarations. Each time the system is rebuild, the config utility read this file and
produces a new set of driver and device configuration tables and a corresponding nodetab.

To install the TPMC815 driver and devices into the LynxOS system, the configuration include file
tpmc815.cfg must be included in the CONFIG.TBL (see also 2.1.1.3).

The file tpmc815.cfg on the distribution disk contains the driver entry (C:tpmc815:\....) and a major
device entry (D:TPMC815 1:t815a_info::) with one minor device entry (“N: tp815a”).

If the driver should support more than one major device the following entries for major and minor
devices must be enabled by removing the comment character (#). By copy and paste an existing
major and minor entry and renaming the new entries, it is possible to add any number of additional
TPMC815 devices.

This example shows a driver entry with one major device and one minor device:

Format:
C:driver-name:open:close:read:write:select:control:install:uninstall
D:device-name:info-block-name:raw-partner-name
N:node-name:minor-dev

C:tpmc815:\
 :tp815open:tp815close:tp815read:tp815write:\
 ::tp815ioctl:tp815install:tp815uninstall
D:TPMC815 1:tp815a_info::
N:tp815a:0

The configuration above creates the following node in the /dev directory.

/dev/tp815a

TPMC815-SW-72 - LynxOS Device Driver Page 11 of 29

3 TPMC815 Device Driver Programming
LynxOS system calls are all available directly to any C program. They are implemented as ordinary
function calls to "glue" routines in the system library, which trap to the OS code.

Note that many system calls use data structures, which should be obtained in a program from
appropriate header files. Necessary header files are listed with the system call synopsis.

3.1 open()

NAME

open() - open a file

SYNOPSIS

#include <sys/file.h>
#include <sys/types.h>
#include <fcntl.h>

int open (char *path, int oflags[, mode_t mode])

DESCRIPTION

Opens a file (TPMC815 device) named in path for reading and writing. The value of oflags indicates
the intended use of the file. In case of a TPMC815 devices oflags must be set to O_RDWR to open
the file for both reading and writing.

The mode argument is required only when a file is created. Because a TPMC815 device already
exists this argument is ignored.

EXAMPLE

int fd

/* open the device named "/dev/tp815a" for I/O */
fd = open ("/dev/tp815a", O_RDWR);

TPMC815-SW-72 - LynxOS Device Driver Page 12 of 29

RETURNS

open returns a file descriptor number if successful, or –1 on error.

SEE ALSO

LynxOS System Call - open()

TPMC815-SW-72 - LynxOS Device Driver Page 13 of 29

3.2 close()

NAME

close() – close a file

SYNOPSIS

int close(int fd)

DESCRIPTION

This function closes an opened device.

EXAMPLE

int result;

...

/*
** close the device
*/
result = close(fd);

...

RETURNS

close returns 0 (OK) if successful, or –1 on error

SEE ALSO

LynxOS System Call - close()

TPMC815-SW-72 - LynxOS Device Driver Page 14 of 29

3.3 read()

NAME

read() - read from a file

SYNOPSIS

#include <tpmc815.h>

int read (int fd, char *buff, int count)

DESCRIPTION

This function attempts to read a message from the TPMC815 associated with the file descriptor fd into
a structure (TP815_MSG) pointed by buff. The argument count specifies the length of the buffer and
must be set to the length of the structure TP815_MSG.

The TP815_MSG structure has the following layout:

typedef struct
{
 unsigned char SID;
 unsigned char DID;
 unsigned short len; /* Message data length */
 unsigned char data[TP815_MAX_LONG_MSG];/* Message data */
 /* up to 253 bytes data for SHORT PACKET */
 /* up to 508 bytes data for LONG PACKET */
 unsigned long io_flags;
 int timeout;
} TP815_MSG;

SID
Returns the source ID. The source ID is the ID of the node, which has send the message.

DID
Returns the target ID. This ID must be the ID of the actual target.

len
Returns the length of the message.

data[]
This array contains the received ARCNET message.

TPMC815-SW-72 - LynxOS Device Driver Page 15 of 29

io_flags
This value is an ORed value of the following flags:

TP815_FLUSH Flush receive buffer and wait for the next message
receive.

timeout
Specifies the maximum time (in ticks) to wait for a message receive. If the time expires, the
driver will return with a timeout error.

EXAMPLE

int fd;
int result;
TP815_MSG readBuf;

/* Flush buffer and read message, timeout is 100 ticks */
readBuf.io_flags = TP815_FLUSH;
readBuf.timeout = 100;
result = read(fd, (char*)&readBuf, sizeof(readBuf));
if (result <= 0)
{
 // process error;
}

RETURNS

When read succeeds, the size of the read buffer (TP815_MSG) is returned. If read fails, -1 (SYSERR)
is returned.

On error, errno will contain a standard read error code (see also LynxOS System Call – read) or a
special error code (see also below Additional Error Codes)

SEE ALSO

LynxOS System Call - read()

TPMC815 example application

TPMC815-SW-72 - LynxOS Device Driver Page 16 of 29

3.4 write()

NAME

write() – write to a file

SYNOPSIS

#include <tpmc815.h>

int write (int fd, char *buff, int count)

DESCRIPTION

This function attempts to write a message with the TP8MC15 associated with the file descriptor fd from
a structure (TP815_MSG) pointed by buff. The argument count specifies the length of the buffer and
must be set to the length of the structure TP815_MSG.

The TP815_MSG structure has the following layout:

typedef struct
{
 unsigned char SID;
 unsigned char DID;
 unsigned short len; /* Message data length */
 unsigned char data[TP815_MAX_LONG_MSG];/* Message data */
 /* - 253 bytes data for SHORT PACKET */
 /* - 508 bytes data for LONG PACKET */
 unsigned long io_flags;
 int timeout;
} TP815_MSG;

SID
This parameter is unused.

DID
Specifies the target ID. The target ID selects the node the message should be sent to.

len
Specifies the length of the message

data[]
This array must contain the message that should be sent.

TPMC815-SW-72 - LynxOS Device Driver Page 17 of 29

io_flags
This value is an ORed value of the following flags:

T815_NOWAIT The function will return immediately and will not wait for
successful transmission.

timeout
Specifies the maximum time (in ticks) to wait for a successful message send. If the time expires,
the driver will return with a timeout error.

EXAMPLE

int fd;
int result;
TP815_MSG sndBuf;

/* Send a message to node 5, timeout is 100 ticks */
sndBuf.DID = 5;
sndBuf.timeout = 100;
sndBuf.io_flags = 0;
sndBuf.len = strlen(“Hello”);
memcpy(sndBuf.data, “Hello”, sndBuf.len);

result = write(fd, (char*)&sndBuf, sizeof(sndBuf));
if (result <= 0)
{
 // process error;
}...

RETURNS

When write succeeds, the size of the write buffer (TP815_MSG) is returned. If write fails, -1 (SYSERR)
is returned.

On error, errno will contain a standard read error code (see also LynxOS System Call – write) or a
special error code (see also below Additional Error Codes)

SEE ALSO

LynxOS System Call - write()

TPMC815 example application

TPMC815-SW-72 - LynxOS Device Driver Page 18 of 29

3.5 ioctl()

NAME

ioctl() – I/O device control

SYNOPSIS

#include <ioctl.h>
#include <tpmc815.h>

int ioctl (int fd, int request, char *arg)

DESCRIPTION

ioctl provides a way of sending special commands to a device driver. The call sends the value of
request and the pointer arg to the device associated with the descriptor fd.

The following ioctl codes are supported by the driver and are defined in TPMC815.h:

Symbol Meaning
TP815_C_ONLINE Configure node and set node online
TP815_C_OFFLINE remove node from net
TP815_C_DIAG return diagnostic value
TP815_C_MAP build a network map
TP815_C_FLUSH flush receive buffer
TP815_C_TXSTATUS return state of the last write request

See behind for more detailed information on each control code.

RETURNS

ioctl returns 0 if successful, or –1 on error.

On error, errno will contain a standard read error code (see also LynxOS System Call – ioctl) or a
special error code (see also below Additional Error Codes)

SEE ALSO

LynxOS System Call - ioctl().

TPMC815-SW-72 - LynxOS Device Driver Page 19 of 29

3.5.1 TP815_C_ONLINE

NAME

TP815_C_ONLINE – Configure node end set node online

DESCRIPTION

With this ioctl function the selected node will be setup and set online to the connected arcnet.

A pointer to the configuration structure (TP815_CONFIG) is passed by the parameter arg to the driver.

The TP815_CONFIG structure has the following layout:

typedef struct
{
 unsigned long io_flags;
 unsigned char node_id; /* used if io_flag 'NODE_ID' is set */
 unsigned char network_timeout; /* this parameter controlls the Response, */
 /* idle and Recon Times of our node in [us] */
 /* Value Resp Idle Reconfig */
 /* 0 1130 1237 1680 */
 /* 1 563 624 1680 */
 /* 2 285 316 1680 */
 /* 3 78 86 840 */
 unsigned char speed; /* this parameter determine the network speed */
 /* Value Network Speed */
 /* TP815_5000KBPS 5 Mbps */
 /* TP815_2500KBPS 2.5 Mbps */
 /* TP815_1250KBPS 1.25 Mbps */
 /* TP815_625KBPS 625 Kbps */
 /* TP815_312KBPS 312.5 Kbps */
} TP815_CONFIG;

io_flags
This parameter is an ORed value of following flags:

TP815_BROADCAST Configure the controller to accept broadcast messages
from the network.

TP815_LONGPACKET Configure the controller to receive both short and long
packets. If not set only short packets can be received.

TP815_NODE_ID Use node ID specified in TP815_CONFIG. If not set,
determine the node ID by reading the hardware DIP
switch.

TPMC815-SW-72 - LynxOS Device Driver Page 20 of 29

node_id
Specifies the node address on the network for this node. This node ID is only used if the I/O flag
TP815_NODE is set. Valid values are 0 to 255.

network_timeout
Specifies the Response, Idle and Recon Times of the ARCNET controller. All nodes should be
configured with the same timeout value for proper network operation. Valid values are shown in
the following table:

For TPMC815-11 / -21:

Value Response Time Idle Time Reconfig Time
0 596.8 µs 656 µs 840 ms
1 298.4 µs 328 µs 840 ms
2 74.7 µs 82 µs 840 ms
3 37.35 µs 41 µs 420 ms

speed
Determines the network speed by setting the clock prescaler to one of five possible values:

Name Network Speed Moduletypes
TP815_312KBPS 312.5 Kbps -11 / -21
TP815_625KBPS 625 Kbps -11 / -21
TP815_1250KBPS 1.25 Mbps -11 / -21
TP815_2500KBPS 2.5 Mbps -11 / -21
TP815_5000KBPS 5 Mbps -11 / -21

TPMC815-SW-72 - LynxOS Device Driver Page 21 of 29

EXAMPLE

int fd;
int result;
T815_CONF cfgBuf;

/* Set node online (node: 5, 1.25 MBit, accept long packages, */
/* Response Time: 37.35 */

cfgBuf.io_flags = TP815_NODE_ID | TP815_LONGPACKET;
cfgBuf.node_id = 5;
cfgBuf.speed = TP815_1250KBPS;
cfgBuf.network_timeout = 3;

result = ioctl(fd, TP815_C_ONLINE, (char*)&cfgBuf);
if (result != OK)
{
 // process error;
}

TPMC815-SW-72 - LynxOS Device Driver Page 22 of 29

3.5.2 TP815_C_OFFLINE

NAME

TP815_C_OFFLINE – Removes the node from the net

DESCRIPTION

With this ioctl function the selected node will be removed from the net and set offline.

No parameter needed, the parameter arg must be set to NULL

EXAMPLE

int fd;
int result;

result = ioctl(fd, TP815_C_OFFLINE, NULL);
if (result != OK)
{
 // process error;
}

TPMC815-SW-72 - LynxOS Device Driver Page 23 of 29

3.5.3 TP815_C_DIAG

NAME

TP815_C_DIAG – Read the number node reconfigurations

DESCRIPTION

This ioctl function will return the number of node reconfiguration occurred since the last read or start of
initialization of the device.

A pointer to an unsigned int value is passed by the parameter arg to the driver, where the number of
reconfigurations will be returned.

EXAMPLE

int fd;
int result;
unsigned int numRecon;

result = ioctl(fd, TP815_C_DIAG, (char*)&numRecon);
if (result != OK)
{
 // process error;
}

TPMC815-SW-72 - LynxOS Device Driver Page 24 of 29

3.5.4 TP815_C_MAP

NAME

TP815_C_MAP – Build a network map

DESCRIPTION

With this ioctl function a network map can be build, which identifies active nodes on the net.

A pointer to an array of 32 byte is passed by the parameter arg to the driver. Nodes which are set
online will be marked with a set bit in the array. The node assignment look like the following.

The first byte of the array (index 0) returns the states of the nodes 0 to 7. Bit 0 represents node 0,
node 1 can be checked with bit 1 and so on. The second byte of the array (index 1) returns the states
of node 8 to 15 and so on.

Example:

map[0] = 0x02 node 1 is online, nodes 2 .. 7 are offline

map[1] = 0x03 nodes 8, 9 are online, nodes 10 .. 15 are offline

map[2] = 0x80 node 23 is online, nodes 16 .. 22 are offline

map[3] = 0x00 nodes 24 .. 31 are offline

... ...

map[31] = 0x00 nodes 248 .. 255 are offline

EXAMPLE

int fd;
int result;
unsigned char map[32];

result = ioctl(fd, TP815_C_MAP, (char*)&map[0]);
if (result != OK)
{
 // process error;
}

TPMC815-SW-72 - LynxOS Device Driver Page 25 of 29

3.5.5 TP815_C_FLUSH

NAME

TP815_C_FLUSH – Flush the receive buffer

DESCRIPTION

With this ioctl function the selected node will flush its receive buffer.

No parameter needed, the parameter arg must be set to NULL

EXAMPLE

int fd;
int result;

result = ioctl(fd, TP815_C_FLUSH, NULL);
if (result != OK)
{
 // process error;
}

TPMC815-SW-72 - LynxOS Device Driver Page 26 of 29

3.5.6 TP815_C_TXSTATUS

NAME

TP815_C_TXSTATUS – Returns the state of the last write command

DESCRIPTION

With this ioctl function returns the state of the last write command. This command is useful for
messages that are written with the TP815_NOWAIT option.

A pointer to an unsigned int value is passed by the parameter arg to the driver, where the status of the
last write operation will be returned.

Possible values for txstatus are:

OK transfer ok

EBUSY transfer in progress

ENOTACKN no acknowledge signal received

ETIMEDOUT timeout during transfer

EXAMPLE

int fd;
int result;
unsigned int txstatus;

result = ioctl(fd, TP815_C_TXSTATUS, (char*)&txstatus);
if (result != OK)
{
 // process error;
}

TPMC815-SW-72 - LynxOS Device Driver Page 27 of 29

4 Debugging and Diagnostic
This driver was successfully tested on a Motorola MVME2300 board and on an Intel x86 native
system. It was developed on a Windows Cross Environment for LynxOS V4.0.0.

If the driver will not work properly please enable debug outputs by defining the symbols DEBUG,
DEBUG_TPMC, DEBUG_PCI and DEBUG_INT.

The debug output should appear on the console. If not please check the symbol KKPF_PORT in
uparam.h. This symbol should be configured to a valid COM port (e.g. SKDB_COM1).

The debug output displays the device information data for the current major device, and a memory
dump of the PCI base address registers like this.

Bus = 0 Dev = 16 Func = 0
[00] = 032F1498
[04] = 02800000
[08] = 02800000
[0C] = 00000008
[10] = 02042000
[14] = 0000C001
[18] = 0000D001
[1C] = 02043000
[20] = 00000000
[24] = 00000000
[28] = 00000000
[2C] = 000B1498
[30] = 00000000
[34] = 00000040
[38] = 00000000
[3C] = 00000109
PCI Base Address 0 (PCI_RESID_BAR0)

B8142000 : F1 FF FF 0F 00 FF FF 0F 00 00 00 00 00 00 00 00
B8142010 : 00 00 00 00 01 00 00 00 01 00 00 00 00 00 00 00
B8142020 : 00 00 00 00 00 00 00 00 E0 E0 01 54 E0 E0 01 54
B8142030 : 00 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00
B8142040 : 0C 00 00 00 00 00 00 00 00 00 00 00 41 00 30 00
B8142050 : 00 00 78 18 6D 9B 24 02 00 00 00 00 00 00 00 00
B8142060 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
B8142070 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
PCI Base Address 1 (PCI_RESID_BAR1)

B0108000 : F1 FF FF 0F 00 FF FF 0F 00 00 00 00 00 00 00 00
B0108010 : 00 00 00 00 01 00 00 00 01 00 00 00 00 00 00 00
B0108020 : 00 00 00 00 00 00 00 00 E0 E0 01 54 E0 E0 01 54
B0108030 : 00 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00
B0108040 : 0C 00 00 00 00 00 00 00 00 00 00 00 41 00 30 00
B0108050 : 00 00 78 18 6D 9B 24 02 00 00 00 00 00 00 00 00
B0108060 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
B0108070 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

TPMC815-SW-72 - LynxOS Device Driver Page 28 of 29

PCI Base Address 2 (PCI_RESID_BAR2)

B0109000 : 03 00 45 00 80 00 18 00 01 01 01 01 01 01 01 01
B0109010 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
B0109020 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
B0109030 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
B0109040 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
B0109050 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
B0109060 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
B0109070 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
PCI Base Address 3 (PCI_RESID_BAR3)

B8143000 : F1 00 45 01 05 00 18 00 01 01 01 01 01 01 01 01
B8143010 : F1 00 45 02 00 00 18 00 01 01 01 01 01 01 01 01
B8143020 : F1 00 45 03 BA 00 18 00 01 01 01 01 01 01 01 01
B8143030 : F1 00 45 04 50 00 18 00 01 01 01 01 01 01 01 01
B8143040 : F1 00 45 05 2A 00 18 00 01 01 01 01 01 01 01 01
B8143050 : F1 00 45 06 6D 00 18 00 01 01 01 01 01 01 01 01
B8143060 : F1 00 45 07 A1 00 18 00 01 01 01 01 01 01 01 01
B8143070 : F1 00 45 08 6D 00 18 00 01 01 01 01 01 01 01 01
Found a TPMC815-11 V2.0 (HW-NodeID=0x01) BusNo=0 DevNo=16
RegSpace=0xB0109000 MemSpace=0xB8143000

The debug output above is only an example. Debug output on other systems may be different
for addresses and data in some locations.

TPMC815-SW-72 - LynxOS Device Driver Page 29 of 29

5 Additional Error Codes
Error Value Description

ENOTREADY 801 node is not online
ENOTACKN 802 No ACK from receiver after transmission
EBADPACKETSIZE 803 illegal packet size
EBADSPEED 804 invalid bit-rate selected
EQFULL 805 The Queue for incoming messages is full
EDUPID 806 illegal (duplicate) node id

	Introduction
	Installation
	Device Driver Installation
	Static Installation
	Build the driver object
	Create Device Information Declaration
	Modify the Device and Driver Configuration File
	Rebuild the Kernel

	Dynamic Installation
	Build the driver object
	Create Device Information Declaration
	Uninstall dynamic loaded driver

	Device Information Definition File
	Configuration File: CONFIG.TBL

	TPMC815 Device Driver Programming
	open()
	close()
	read()
	write()
	ioctl()
	TP815_C_ONLINE
	TP815_C_OFFLINE
	TP815_C_DIAG
	TP815_C_MAP
	TP815_C_FLUSH
	TP815_C_TXSTATUS

	Debugging and Diagnostic
	Additional Error Codes

