
The Embedded I/O Company

TDRV008-S
Linux Device D

3x 16bit I/O Ports, 512 Word

Version 1.0.x

User Manu
Issue 1.0.0

May 2008

TEWS TECHNOLOGIES GmbH TEWS TEC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49 (0) 4101 4058 0
Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com

9190 Doub
Suite 127,
www.tews.
W-82
river

FIFO, Handshake

al

HNOLOGIES LLC
le Diamond Parkway,
Reno, NV 89521, USA
com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

TDRV008-SW-82 - Linux Device Driver Page 2 of 22

TDRV008-SW-82

Linux Device Driver

3x 16bit I/O Ports, 512 Word FIFO, Handshake

Supported Modules:

TPMC682

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2008 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue May 26, 2008

TDRV008-SW-82 - Linux Device Driver Page 3 of 22

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Build and install the device driver...5
2.2 Uninstall the device driver ...6
2.3 Install device driver into the running kernel ..6
2.4 Remove device driver from the running kernel ...6
2.5 Change Major Device Number ...7

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 8
3.1 open() ...8
3.2 close()...10
3.3 ioctl() ..11

3.3.1 TDRV008_IOCX_READ ..13
3.3.2 TDRV008_IOCX_WRITE...15
3.3.3 TDRV008_IOCG_GETPORT...17
3.3.4 TDRV008_IOCS_SETPORT ...18
3.3.5 TDRV008_IOCS_CONFPORT ..19
3.3.6 TDRV008_IOC_FLUSHPORTS ..21

4 DIAGNOSTIC.. 22

TDRV008-SW-82 - Linux Device Driver Page 4 of 22

1 Introduction
The TDRV008-SW-82 Linux device driver allows the operation of the TDRV008 compatible devices
conforming to the Linux I/O system specification. This includes a device-independent basic I/O
interface with open(), close(),and ioctl() functions.

Special I/O operation that do not fit to the standard I/O calls will be performed by calling the ioctl()
function with a specific function code and an optional function dependent argument.

The TDRV008-SW-82 device driver supports the following features:

 write to the 8-bit GPO port 5
 read from the 8-bit GPI port 4
 configure ports (direction, mode and hardware timeout)
 buffered read and write of the 16-bit ports (0, 1 & 2) in pulsed or interlocked handshake mode
 hardware FIFO flush

The TDRV008-SW-82 supports the modules listed below:

TPMC682 Reconfigurable FPGA with
64 TTL I/O / 32 Differential I/O Lines

PMC

In this document all supported modules and devices will be called TDRV008. Specials for a
certain device will be advised.

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

TPMC682 (or compatible) User manual

TPMC682 (or compatible) Engineering Manual

TDRV008-SW-82 - Linux Device Driver Page 5 of 22

2 Installation
The directory TDRV008-SW-82 on the distribution media contains the following files:

TDRV008-SW-82-1.0.0.pdf This manual in PDF format
TDRV008-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
ChangeLog.txt Release history
Release.txt Information about the Device Driver Release

The GZIP compressed archive TDRV008-SW-82-SRC.tar.gz contains the following files and
directories:

tdrv008.c Driver source code
tdrv008def.h Driver include file
tdrv008.h Driver include file for application program
Makefile Device driver make file
makenode Script for device node creation
include/config.h Driver independent configuration header file
include/tpmodule.c Driver independent library
include/tpmodule.h Driver independent library header file
example/tdrv008exa.c Example application
example/Makefile Example application makefile

In order to perform an installation, extract all files of the archive TDRV008-SW-82.tar.gz to the desired
target directory. Additionally, copy tdrv008.h into your include path (/usr/include).

2.1 Build and install the device driver
 Login as root

 Change to the target directory

 To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

 To update the device driver’s module dependencies, enter:

depmod -aq

TDRV008-SW-82 - Linux Device Driver Page 6 of 22

2.2 Uninstall the device driver
 Login as root

 Change to the target directory

 To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

2.3 Install device driver into the running kernel
 To load the device driver into the running kernel, login as root and execute the following

commands:

modprobe tdrv008drv

 After the first build or if you are using dynamic major device allocation it is necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a device file system (devfs or sysfs with udev) then you have to skip
running the makenode script. Instead of creating device nodes from the script the driver itself
takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TDRV008 device found. The first
TDRV008 device can be accessed with device node /dev/tdrv008_0, the second module with device
node /dev/tdrv008_1 and so on.

The assignment of device nodes to physical TDRV008 modules depends on the search order of the
PCI bus driver.

2.4 Remove device driver from the running kernel
 To remove the device driver from the running kernel login as root and execute the following

command:

modprobe –r tdrv008drv

If your kernel has enabled devfs or sysfs (udev), all /dev/tdrv008_x nodes will be automatically
removed from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tdrv008drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe –r again.

TDRV008-SW-82 - Linux Device Driver Page 7 of 22

2.5 Change Major Device Number
This paragraph is only for Linux kernels without DEVFS installed. The TDRV008 driver uses dynamic
allocation of major device numbers per default. If this isn’t suitable for the application it is possible to
define a major number for the driver.

To change the major number, edit the file tdrv008def.h, change the following symbol to appropriate
value and enter make install to create a new driver.

TDRV008_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

Example:

#define TDRV008_MAJOR 122

Be sure that the desired major number isn’t used by other drivers. Please check /proc/devices
to see which numbers are free.

TDRV008-SW-82 - Linux Device Driver Page 8 of 22

3 Device Input/Output functions
This chapter describes the interface to the device driver I/O system.

3.1 open()

NAME

open() opens a file descriptor.

SYNOPSIS

#include <fcntl.h>

int open (const char *filename, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask. Create the value by the bitwise OR
of the appropriate parameters (using the | operator in C). See also the GNU C Library documentation
for more information about the open function and open flags.

EXAMPLE

int fd;

fd = open(“/dev/tdrv008_0”, O_RDWR);
if (fd == -1)
{

/* handle error condition */
}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

TDRV008-SW-82 - Linux Device Driver Page 9 of 22

ERRORS

E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TDRV008-SW-82 - Linux Device Driver Page 10 of 22

3.2 close()

NAME

close() closes a file descriptor.

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) != 0) {
/* handle close error conditions */

}

RETURNS

The normal return value from close is 0. In case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TDRV008-SW-82 - Linux Device Driver Page 11 of 22

3.3 ioctl()

NAME

ioctl() device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in tdrv008.h:

Value Meaning

TDRV008_IOCX_READ Buffered read from a 16-bit handshake port

TDRV008_IOCX_WRITE Buffered write to a 16-bit handshake port

TDRV008_IOCG_GETPORT Get the state of the 8-bit GPI port #4

TDRV008_IOCS_SETPORT Set the state of the 8-bit GPO port #5

TDRV008_IOCS_CONFPORT Configure handshake port

TDRV008_IOC_FLUSHPORTS Flush FIFOs of all handshake ports

See below for more detailed information on each control code.

To use these TDRV008 specific control codes the header file tdrv008.h must be included in the
application.

RETURNS

On success, zero is returned. In case of an error, a value of –1 is returned. The global variable errno
contains the detailed error code.

TDRV008-SW-82 - Linux Device Driver Page 12 of 22

ERRORS

EINVAL Invalid argument. This error code is returned if the requested ioctl function is
unknown. Please check the argument request.

Other function dependant error codes will be described for each ioctl code separately. Note, the
TDRV008 device driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TDRV008-SW-82 - Linux Device Driver Page 13 of 22

3.3.1 TDRV008_IOCX_READ

NAME

TDRV008_IOCX_READ Buffered read from a 16-bit handshake port

DESCRIPTION

This ioctl function reads 16-bit values from the FIFO of a given port. If data isn’t available when calling
this function a timeout is used to implement a blocking read. A pointer to the caller’s data buffer
(TDRV008_RW_BUFFER) is passed to the device driver by the argument argp.

typedef struct
{

int portNo;
unsigned long flags;
int timeout;
int bufferSize;
int validWords;
unsigned short data[TDRV008_FIFOSIZE];

} TDRV008_RW_BUFFER, *PTDRV008_RW_BUFFER;

portNo

This parameter holds the port number to read from. Valid values are 0, 1 and 2.

flags

This parameter decides about non-blocking and blocking read requests. For non-blocking
operation set flags to TDRV008_F_RW_NOWAIT. To initialize a blocking read request set flags
to zero.

timeout

This parameter defines the read timeout with a given resolution of one system tick.

bufferSize

This parameter defines the maximum count of 16 bit words to read.

validWords

This in and out parameter holds the count of data words actually read. After read requests
completion maybe not all data words given by bufferSize were received in the given time. For
this purpose validWords is used for the read request result. If it is set to a value greater than 0
when starting the read request and blocking read is used then validWords is meant as an offset
to the first element of the data buffer. So successive read requests that are partially completed
can use the same I/O buffer until final read request completion.

data

This field parameter is used as data storage. It has a fixed size of TDRV008_FIFOSIZE (512)
words to match the hardware fifo size.

TDRV008-SW-82 - Linux Device Driver Page 14 of 22

EXAMPLE

#include “tdrv008.h”

int fd;
int result, i;
TDRV008_RW_BUFFER rwBuf;

rwBuf.portNo = 1; // read from port 1
rwBuf.flags = 0; // blocking read
rwBuf.timeout = 5; // wait at least 5 seconds
rwBuf.bufferSize = 177; // we want to receive 177 words
rwBuf.validWords = 0; // no data received yet
/* rwBuf.data[] will be filled with incoming data words */

result = ioctl(fd, TDRV008_IOCX_READ, &rwBuf);

if (result < 0) {
/* handle ioctl error */

} else {
// Process data, rwBuf.validWords is the real read result
for (i = 0; i < rwBuf.validWords; i++)
{

printf(“@0x%04X: 0x%02X”, i, rwBuf.data[i]);
}
…

}

ERRORS

EINVAL Invalid arguments in structure.

EACCES Invalid port direction: Port is configured to output.

EBUSY The port is already busy.

ETIME Timeout occurred.

EFAULT Error while copying data to or from user space.
Other returned error codes are system error conditions.

TDRV008-SW-82 - Linux Device Driver Page 15 of 22

3.3.2 TDRV008_IOCX_WRITE

NAME

TDRV008_IOCX_WRITE Buffered write to a 16-bit handshake port

DESCRIPTION

This ioctl function writes 16-bit values to the specified buffered output port. A pointer to the caller’s
data buffer (TDRV008_RW_BUFFER) is passed to the device driver by the argument argp.

typedef struct
{

int portNo;
unsigned long flags;
int timeout;
int bufferSize;
int validWords;
unsigned short data[TDRV008_FIFOSIZE];

} TDRV008_RW_BUFFER, *PTDRV008_RW_BUFFER;

portNo

This parameter holds the port number of the handshake port to write to. Valid values are 0, 1
and 2.

flags

This parameter is not used for this function.

timeout

This parameter defines the write timeout with a given resolution of one system tick.

bufferSize

This parameter defines the count of words to write to the hardware FIFO of the certain
handshake port.

validWords

This in and out parameter holds the count of data words actually written. In the case of a full
FIFO the write process can’t send more data words to the certain port and will block for timeout
seconds. For this purpose validWords is used for the write request result. If it is set to a value
greater than 0 when starting the write request then validWords is meant as an offset to the first
element of the data buffer. Successive write requests that are partially completed can use the
same I/O buffer until final write request completion.

data

This field parameter is used as data source during the handshake transmission. It has a fixed
maximum size of TDRV008_FIFOSIZE (512) words to match the hardware FIFO size.

TDRV008-SW-82 - Linux Device Driver Page 16 of 22

EXAMPLE

#include “tdrv008.h”

int fd;
int result, i;
TDRV008_RW_BUFFER rwBuf;

rwBuf.portNo = 0; // write to port 0
rwBuf.timeout = 200; // wait at least 200 ticks
rwBuf.bufferSize = 411; // we want to send 411 words
rwBuf.validWords = 0; // start with element 0

for (i = 0; i < rwBuf.bufferSize; i++)
{

rwBuf.data[i] = ...; // user data
}

result = ioctl(fd, TDRV008_IOCX_WRITE, &rwBuf);

if (result < 0) {
/* handle ioctl error */

} else {
// Process data, rwBuf.validWords is the real write result
…

}

ERRORS

EINVAL Invalid arguments in structure.

EACCES Invalid port direction: Port is configured to input.

EBUSY The port is already busy.

ETIME Timeout occurred.

EFAULT Error while copying data to or from user space.
Other returned error codes are system error conditions.

TDRV008-SW-82 - Linux Device Driver Page 17 of 22

3.3.3 TDRV008_IOCG_GETPORT

NAME

TDRV008_IOCG_GETPORT Get the state of the 8-bit GPI port #4

DESCRIPTION

This TDRV008 control function reads the state of the free input lines of the 8 bit general purpose
port 4. Only the upper 5 bit of the value are valid the lower 3 bits will always be set to 0. A pointer to
an unsigned char value is passed to the driver by the argument argp.

EXAMPLE

#include “tdrv008.h”

int fd;
int result;
unsigned char PortState;

result = ioctl(fd, TDRV008_IOCG_GETPORT, &PortState);

if (result < 0) {
/* handle ioctl error */

} else {
printf(“Port4 (bit7..3): %02Xh\n”, PortState);

}

ERRORS

EFAULT Error while copying data to user space.
Other returned error codes are system error conditions.

TDRV008-SW-82 - Linux Device Driver Page 18 of 22

3.3.4 TDRV008_IOCS_SETPORT

NAME

TDRV008_IOCS_SETPORT Set the state of the 8-bit GPO port #5

DESCRIPTION

This TDRV008 control function sets the state of the free output lines of the general purpose port 5.
Only the upper 5 bit of the value are valid the lower 3 bits are ignored. A pointer to an unsigned char
value is passed to the driver by the argument argp.

EXAMPLE

#include “tdrv008.h”

int fd;
int result;
unsigned char PortState;

PortState = 0x42; // bits 0..2 are ignored -> so 0x40 will be written

result = ioctl(fd, TDRV008_IOCS_SETPORT, &PortState);

if (result < 0) {
/* handle ioctl error */

}

ERRORS

EFAULT Error while copying data to user space.
Other returned error codes are system error conditions.

TDRV008-SW-82 - Linux Device Driver Page 19 of 22

3.3.5 TDRV008_IOCS_CONFPORT

NAME

TDRV008_IOCS_CONFPORT Configure handshake port

DESCRIPTION

This TDRV008 control function configures a specified handshake port. A pointer to the caller’s data
buffer (TDRV008_CONF_BUFFER) is passed to the device driver by the argument argp.

typedef struct
{

int portNo;
unsigned long flags;
int enaOutput;
unsigned short fifoTimeout;
unsigned short fifoThreshold;

} TDRV008_ CONF_BUFFER, *PTDRV008_ CONF_BUFFER;

portNo

This parameter specifies the handshake port. Valid values are 0, 1 and 2.

flags

This parameter specifies the output handshake mode. (Refer to the User Manual of your
module for a detailed description of the output handshake modes). Following values are valid.

Value Description

TDRV008_F_CONF_HOUT_HSNONE No output handshake

TDRV008_F_CONF_HOUT_HSINTERLOCKED Interlocked output handshake

TDRV008_F_CONF_HOUT_HSPULSED Pulsed output handshake

enaOutput

This parameter defines the direction of the port. If this parameter is set TRUE (1) the port will be
configured as an output port, if it is specified FALSE (0) the port will be configured as input.

fifoTimeout

This parameter specifies the hardware FIFO timeout value. The value will be directly written to
the module (Register TCPRx - refer to the User Manual of your module for more information).
This value is only used for input ports.

fifoThreshold

This parameter specifies the FIFO threshold value. This value will be directly written to the
module (Register FIFO_FTRx - refer to the User Manual of your module for more information).
Valid values 1 to 512.

TDRV008-SW-82 - Linux Device Driver Page 20 of 22

EXAMPLE

#include “tdrv008.h”

int fd;
int result;
TDRV008_CONF_BUFFER confBuf;

/* Setup handshake port 0 */
/* - output */
/* - interlocked output handshake */
/* - threshold: 256 */
confBuf.portNo = 0;
confBuf.flags = TDRV008_F_CONF_HOUT_HSINTERLOCKED;
confBuf.enaOutput = TRUE;
confBuf.fifoTimeout = 0; /* not used */
confBuf.fifoThreshold = 256;

result = ioctl(fd, TDRV008_IOCS_CONFPORT, &confBuf);

if (result < 0) {
* handle ioctl error */

}

ERRORS

EFAULT Error while copying data to user space.

EINVAL Invalid parameter specified.

EBUSY The port is busy with data transfer.
Other returned error codes are system error conditions.

TDRV008-SW-82 - Linux Device Driver Page 21 of 22

3.3.6 TDRV008_IOC_FLUSHPORTS

NAME

TDRV008_IOC_FLUSHPORTS Flush FIFOs of all handshake ports.

DESCRIPTION

This TDRV008 control function flushes the FIFOs of all handshake ports (0, 1, and 2). This may be
useful after configuration. No additional parameter is used for this function, so the optional argument
can be omitted.

EXAMPLE

#include “tdrv008.h”

int fd;
int result;

result = ioctl(fd, TDRV008_IOC_FLUSHPORTS);

if (result < 0) {
/* handle ioctl error */

}

ERRORS

There are no function specific errors. Returned error codes are system error conditions.

TDRV008-SW-82 - Linux Device Driver Page 22 of 22

4 Diagnostic
If the TDRV008 does not work properly it is helpful to get some status information from the driver
respective kernel.

To get debug output from the driver enable the following symbols in “tdrv008.c” by replacing “#undef”
with “#define”, recompile and reinstall the driver:

#define DEBUG_TDRV08

The Linux /proc file system provides additional information about kernel, resources, drivers, devices
and so on. The following screen dumps display information of a correct running TDRV008 driver (see
also the proc man pages).

tail –f /var/log/messages /* before modprobing the driver */
kernel: TEWS TECHNOLOGIES - TDRV008 Device Driver: version 1.0.x (<date>)
kernel:
kernel: TDRV008: Probe new device (vendor=0x1498, device=0x02AA)
udev[5947]: creating device node '/dev/tdrv008_0'
...

cat /proc/devices
Character devices:

1 mem
2 pty
. . .

136 pts
162 raw
254 tdrv008drv

cat /proc/iomem
00000000-0009fbff : System RAM

. . .
ff5fe400-ff5fe40f : 0000:02:09.0

ff5fe400-ff5fe40f : TDRV008
ff5fe800-ff5fe83f : 0000:02:09.0

ff5fe800-ff5fe83f : TDRV008
. . .

	Introduction
	Installation
	Build and install the device driver
	Uninstall the device driver
	Install device driver into the running kernel
	Remove device driver from the running kernel
	Change Major Device Number

	Device Input/Output functions
	open()
	close()
	ioctl()
	TDRV008_IOCX_READ
	TDRV008_IOCX_WRITE
	TDRV008_IOCG_GETPORT
	TDRV008_IOCS_SETPORT
	TDRV008_IOCS_CONFPORT
	TDRV008_IOC_FLUSHPORTS

	Diagnostic

