
The Embedded I/O Company

TDRV010-S
VxWorks Device

Isolated 2x CAN

Version 2.0.x

User Manu

Issue 2.0.2

September 20

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-42
Driver

Bus

al

10

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TDRV010-SW-42 – VxWorks Device Driver Page 2 of 97

TDRV010-SW-42

VxWorks Device Driver

Isolated 2x CAN Bus

Supported Modules:
TPMC310
TPMC810

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2005-2010 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue October 12, 2005

1.0.1 Review November 8, 2005

1.1.0 Updated CAN Controller Speed Range and General Review May 30, 2006

1.1.1 Revision November 1, 2006

2.0.0 Support for VxBus and API description added November 16, 2009

2.0.1 Legacy vs. VxBus Driver modified March 26, 2010

2.0.2 tdrv010Init() function added September 22, 2010

TDRV010-SW-42 – VxWorks Device Driver Page 3 of 97

Table of Contents

1 INTRODUCTION... 5

2 INSTALLATION.. 6

2.1 Legacy vs. VxBus Driver ..7

2.2 VxBus Driver Installation ...7

2.2.1 Direct BSP Builds...8
2.3 Legacy Driver Installation ..9

2.3.1 Include device driver in Tornado IDE project ...9
2.3.2 Special installation for Intel x86 based targets ..9
2.3.3 System resource requirement ..10

3 API DOCUMENTATION ... 11

3.1 General Functions...11

3.1.1 tdrv010Open() ..11
3.1.2 tdrv010Close()..13

3.2 Device Access Functions...15

3.2.1 tdrv010Read() ..15
3.2.2 tdrv010ReadNoWait() ..19
3.2.3 tdrv010Write() ..22
3.2.4 tdrv010WriteNoWait()...26
3.2.5 tdrv010SetFilter() ...29
3.2.6 tdrv010SetBitTiming() ..32
3.2.7 tdrv010Start() ...34
3.2.8 tdrv010Stop() ...36
3.2.9 tdrv010FlushReceiveFifo() ...38
3.2.10 tdrv010GetControllerStatus()...39
3.2.11 tdrv010SelftestEnable() ...42
3.2.12 tdrv010SelftestDisable() ..44
3.2.13 tdrv010ListenOnlyEnable() ..46
3.2.14 tdrv010ListenOnlyDisable() ...48
3.2.15 tdrv010Setlimit()...50
3.2.16 tdrv010CanReset() ..52
3.2.17 tdrv010CanSel()...54
3.2.18 tdrv010CanInt() ..56

TDRV010-SW-42 – VxWorks Device Driver Page 4 of 97

4 LEGACY I/O SYSTEM FUNCTIONS.. 58

4.1 tdrv010Drv() ...58

4.2 tdrv010DevCreate() ...60

4.3 tdrv010PciInit() ..63

4.4 tdrv010Init()..64

5 BASIC I/O FUNCTIONS ... 66

5.1 open() ...66

5.2 close()...68

5.3 ioctl() ..70

5.3.1 FIO_TDRV010_READ ...72
5.3.2 FIO_TDRV010_WRITE..74
5.3.3 FIO_TDRV010_BITTIMING ...76
5.3.4 FIO_TDRV010_SETFILTER..78
5.3.5 FIO_TDRV010_BUSON...81
5.3.6 FIO_TDRV010_BUSOFF...83
5.3.7 FIO_TDRV010_FLUSH..84
5.3.8 FIO_TDRV010_CANSTATUS ...85
5.3.9 FIO_TDRV010_ENABLE_SELFTEST...87
5.3.10 FIO_TDRV010_DISABLE_SELFTEST ...89
5.3.11 FIO_TDRV010_ENABLE_LISTENONLY ..90
5.3.12 FIO_TDRV010_DISABLE_LISTENONLY ...92
5.3.13 FIO_TDRV010_SETLIMIT...93
5.3.14 FIO_TDRV010_CAN_RESET ...95
5.3.15 FIO_TDRV010_CAN_SEL...96
5.3.16 FIO_TDRV010_CAN_INT..97

TDRV010-SW-42 – VxWorks Device Driver Page 5 of 97

1 Introduction
The TDRV010-SW-42 VxWorks device driver software allows the operation of the TPMC310 and
TPMC810 PMC conforming to the VxWorks I/O system specification.

The TRDV010-SW-42 release contains independent driver sources for the old legacy (pre-VxBus) and
the new VxBus-enabled driver model. The VxBus-enabled driver is recommended for new
developments with later VxWorks 6.x release and mandatory for VxWorks SMP systems.

Both drivers, legacy and VxBus, share the same application programming interface (API) and device-
independent basic I/O interface with open(), close() and ioctl() functions. The basic I/O interface is only
for backward compatibility with existing applications and should not be used for new developments.

Both drivers invoke a mutual exclusion and binary semaphore mechanism to prevent simultaneous
requests by multiple tasks from interfering with each other.

To prevent the application program for losing data, incoming messages will be stored in a message
FIFO with a depth of 100 messages.

The TDRV010-SW-42 device driver supports the following features:

 Transmission and receive of Standard and Extended Identifiers
 Standard bit rates from 50 kbit up to 1.0 Mbit and user defined bit rates
 Message acceptance filtering
 Single-Shot transmission
 Listen only mode
 Message self reception
 Programmable error warning limit

The TDRV010-SW-42 supports the modules listed below:

TPMC310 Isolated 2x CAN (PMC, Conduction Cooled, Silent Mode Options)

TPMC810 Isolated 2x CAN (PMC)

To get more information about the features and use of the supported devices it is recommended to
read the manuals listed below.

TPMC310 and TPMC810 User manual

TPMC310 and TPMC810 Engineering Manual

SJA1000 CAN Controller Manual

VxWorks Device Driver Developer’s Guide

TDRV010-SW-42 – VxWorks Device Driver Page 6 of 97

2 Installation
Following files are located on the distribution media:

Directory path ‘TDRV010-SW-42’:

TDRV010-SW-42-2.0.2.pdf PDF copy of this manual
TDRV010-SW-42-VXBUS.zip Zip compressed archive with VxBus driver sources
TDRV010-SW-42-LEGACY.zip Zip compressed archive with legacy driver sources
ChangeLog.txt Release history
Release.txt Release information

The archive TDRV010-SW-42-VXBUS.zip contains the following files and directories:

Directory path ‘./tews/tdrv010’:

tdrv010drv.c TDRV010 device driver source
tdrv010def.h TDRV010 driver include file
tdrv010.h TDRV010 include file for driver and application
tdrv010api.c TDRV010 API file
sja1000.h CAN controller driver include file
Makefile Driver Makefile
40tdrv010.cdf Component description file for VxWorks development tools
tdrv010.dc Configuration stub file for direct BSP builds
tdrv010.dr Configuration stub file for direct BSP builds
include/tvxbHal.h Hardware dependent interface functions and definitions
apps/tdrv010exa.c Example application

The archive TDRV010-SW-42-LEGACY.zip contains the following files and directories:

Directory path ‘./tdrv010’:

tdrv010drv.c TDRV010 device driver source
tdrv010def.h TDRV010 driver include file
tdrv010.h TDRV010 include file for driver and application
tdrv010pci.c TDRV010 device driver source for x86 based systems
tdrv010api.c TDRV010 API file
tdrv010exa.c Example application
include/tdhal.h Hardware dependent interface functions and definitions
sja1000.h CAN controller driver include file

TDRV010-SW-42 – VxWorks Device Driver Page 7 of 97

2.1 Legacy vs. VxBus Driver

In later VxWorks 6.x releases, the old VxWorks 5.x legacy device driver model was replaced by
VxBus-enabled device drivers. Legacy device drivers are tightly coupled with the BSP and the board
hardware. The VxBus infrastructure hides all BSP and hardware differences under a well defined
interface, which improves the portability and reduces the configuration effort. A further advantage is
the improved performance of API calls by using the method interface and bypassing the VxWorks
basic I/O interface.

VxBus-enabled device drivers are the preferred driver interface for new developments.

The checklist below will help you to make a decision which driver model is suitable and possible for
your application:

Legacy Driver VxBus Driver

 VxWorks 5.x releases

 VxWorks 6.5 and earlier
releases

 VxWorks 6.x releases without
VxBus PCI bus support

 VxWorks 6.6 and later releases
with VxBus PCI bus

 SMP systems (only the VxBus
driver is SMP safe!)

2.2 VxBus Driver Installation

Because Wind River doesn’t provide a standard installation method for 3
rd

party VxBus device drivers
the installation procedure needs to be done manually.

In order to perform a manual installation extract all files from the archive TDRV010-SW-42-VXBUS.zip
to the typical 3

rd
party directory installDir/vxworks-6.x/target/3rdparty (whereas installDir must be

substituted by the VxWorks installation directory).

After successful installation the TDRV010 device driver is located in the vendor and driver-specific
directory installDir/vxworks-6.x/target/3rdparty/tews/tdrv010.

At this point the TDRV010 driver is not configurable and cannot be included with the kernel
configuration tool in a Wind River Workbench project. To make the driver configurable the driver library
for the desired processer (CPU) and build tool (TOOL) must be built in the following way:

(1) Open a VxWorks development shell (e.g. C:\WindRiver\wrenv.exe -p vxworks-6.7)

(2) Change into the driver installation directory
installDir/vxworks-6.x/target/3rdparty/tews/tdrv010

(3) Invoke the build command for the required processor and build tool
make CPU=cpuName TOOL=tool

For Windows hosts this may look like this:

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tdrv010

C:> make CPU=PENTIUM4 TOOL=diab

To compile SMP-enabled libraries, the argument VXBUILD=SMP must be added to the command line

C:> make CPU=PENTIUM4 TOOL=diab VXBUILD=SMP

TDRV010-SW-42 – VxWorks Device Driver Page 8 of 97

To integrate the TDRV010 driver with the VxWorks development tools (Workbench), the component
configuration file 40tdrv010.cdf must be copied to the directory installDir/vxworks-
6.x/target/config/comps/VxWorks.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tdrv010

C:> copy 40tdrv010.cdf \Windriver\vxworks-6.7\target\config\comps\vxWorks

In VxWorks 6.7 and newer releases the kernel configuration tool scans the CDF file automatically and
updates the CxrCat.txt cache file to provide component parameter information for the kernel
configuration tool as long as the timestamp of the copied CDF file is newer than the one of the
CxrCat.txt. If your copy command preserves the timestamp, force to update the timestamp by a utility,
such as touch.

In earlier VxWorks releases the CxrCat.txt file may not be updated automatically. In this case, remove
or rename the original CxrCat.txt file and invoke the make command to force recreation of this file.

C:> cd \Windriver\vxworks-6.7\target\config\comps\vxWorks

C:> del CxrCat.txt

C:> make

After successful completion of all steps above and restart of the Wind River Workbench, the TDRV010
driver can be included in VxWorks projects by selecting the “TEWS TDRV010 Driver“ component in
the “hardware (default) - Device Drivers” folder with the kernel configuration tool.

2.2.1 Direct BSP Builds

In development scenarios with the direct BSP build method without using the Workbench or the vxprj
command-line utility, the TDRV010 configuration stub files must be copied to the directory
installDir/vxworks-6.x/target/config/comps/src/hwif. Afterwards the vxbUsrCmdLine.c file must be
updated by invoking the appropriate make command.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tdrv010

C:> copy tdrv010.dc \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> copy tdrv010.dr \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> cd \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> make vxbUsrCmdLine.c

TDRV010-SW-42 – VxWorks Device Driver Page 9 of 97

2.3 Legacy Driver Installation

2.3.1 Include device driver in Tornado IDE project

For Including the TDRV010-SW-42 device driver into a Tornado IDE project follow the steps below:

(1) Extract all files from the archive TDRV010-SW-42-LEGACY.zip to your project directory.

(2) Add the device drivers C-files to your project.
Make a right click to your project in the ‘Workspace’ window and use the ‘Add Files ...’ topic.
A file select box appears, and the driver files in the tdrv010 directory can be selected.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your Tornado User’s
Guide.

2.3.2 Special installation for Intel x86 based targets

The TDRV010 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU_FAMILY. If the content of this macro is equal to I80X86 special Intel x86 conforming code and
function calls will be included.

The second problem for Intel x86 based platforms can’t be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn’t map PCI memory spaces of devices
which are not used by the BSP, the required device memory spaces can’t be accessed.

To solve this problem a MMU mapping entry has to be added for the required TDRV010 PCI memory
spaces prior the MMU initialization (usrMmuInit()) is done.

The C source file tdrv010pci.c contains the function tdrv010PciInit(). This routine finds out all
TDRV010 devices and adds MMU mapping entries for all used PCI memory spaces. Please insert a
call to this function after the PCI initialization is done and prior to MMU initialization (usrMmuInit()).

The right place to call the function tdrv010PciInit() is at the end of the function sysHwInit() in sysLib.c
(it can be opened from the project Files window).

tdrv010PciInit();

Be sure that the function is called prior to MMU initialization otherwise the TDRV010 PCI spaces
remains unmapped and an access fault occurs during driver initialization.

Modifying the sysLib.c file will change the sysLib.c in the BSP path. Remember this for future
projects and recompilations.

TDRV010-SW-42 – VxWorks Device Driver Page 10 of 97

2.3.3 System resource requirement

The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement

Memory < 1 KB < 1 KB

Stack < 1 KB ---

Semaphores 2 1

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

TDRV010-SW-42 – VxWorks Device Driver Page 11 of 97

3 API Documentation

3.1 General Functions

3.1.1 tdrv010Open()

Name

tdrv010Open() – opens a device.

Synopsis

TDRV010_DEV tdrv010Open

(

char *DeviceName

);

Description

Before I/O can be performed to a device, a file descriptor must be opened by a call to this function.

Parameters

DeviceName

This parameter points to a null-terminated string that specifies the name of the device. The first
CAN channel on the first TDRV010 device is named “/tdrv010/0/0”, the second channel is
named “/tdrv010/0/1”. The first CAN channel on the second TDRV010 device is named
“/tdrv010/1/0” and so on.

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

/*

** open file descriptor to device

*/

pDev = tdrv010Open(“/tdrv010/0/0”);

if (pDev == NULL)

{

/* handle open error */

}

TDRV010-SW-42 – VxWorks Device Driver Page 12 of 97

RETURNS

A device descriptor pointer, or NULL if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TDRV010-SW-42 – VxWorks Device Driver Page 13 of 97

3.1.2 tdrv010Close()

Name

tdrv010Close() – closes a device.

Synopsis

STATUS tdrv010Close

(

TDRV010_DEV pDev

);

Description

This function closes previously opened devices.

Parameters

pDev

This value specifies the file descriptor pointer to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

/*

** close file descriptor to device

*/

result = tdrv010Close(pDev);

if (result == ERROR)

{

/* handle close error */

}

TDRV010-SW-42 – VxWorks Device Driver Page 14 of 97

RETURNS

OK, or ERROR if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TDRV010-SW-42 – VxWorks Device Driver Page 15 of 97

3.2 Device Access Functions

3.2.1 tdrv010Read()

Name

tdrv010Read() – Read a CAN message

Synopsis

STATUS tdrv010Read

(

TDRV010_DEV pDev,

int Timeout,

unsigned long *pIdentifier,

unsigned char *pIOFlags,

unsigned char *pStatus,

int *pLength,

unsigned char *pData

);

Description

This function reads a CAN message from the device driver receive queue. If no data is available, the
function block until the specified timeout has expired.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

Timeout

This parameter specifies the maximum time (in system ticks) the function will block and wait for
data if no data is available.

pIdentifier

This parameter is a pointer to an unsigned long (32bit) value where the CAN message identifier
is stored.

TDRV010-SW-42 – VxWorks Device Driver Page 16 of 97

pIOFlags

This parameter is a pointer to an unsigned char (8bit) value where CAN message attributes as a
set of bit flags are stored. The following attribute flags are possible:

Value Description

TDRV010_EXTENDED Set if the received message is an extended message
frame. Reset for standard message frames.

TDRV010_REMOTE_FRAME Set if the received message is a remote transmission
request (RTR) frame.

pStatus

This parameter is a pointer to an unsigned char (8bit) value where status information about
overrun conditions either in the CAN controller or intermediate software FIFO is stored. The
following values are possible:

Value Description

TDRV010_SUCCESS No messages lost

TDRV010_FIFO_OVERRUN One or more messages was overwritten in the receive
queue FIFO. This problem occurs if the FIFO is too small
for the application read interval.

TDRV010_MSGOBJ_OVERRUN One or more messages were overwritten in the CAN
controller message FIFO because the interrupt latency is
too large. Reduce the CAN bit rate or upgrade the
system speed.

pLength

This parameter is a pointer to an int value where the length of the received CAN message
(number of bytes) is stored. Possible values are 0..8.

pData

This parameter is a pointer to an unsigned char array where the received CAN message is
stored. This buffer receives up to 8 data bytes. pData[0] receives message Data 0, pData[1]
receives message Data 1 and so on.

TDRV010-SW-42 – VxWorks Device Driver Page 17 of 97

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

int Timeout;

unsigned long Identifier;

unsigned char IOFlags;

unsigned char Status;

int Length;

unsigned char Data[8];

/*

** Read a CAN message from the device.

** If no data is available, wait for 300 ticks for incoming messages.

*/

Timeout = 300;

result = tdrv010Read(pDev,

Timeout,

&Identifier,

&IOFlags,

&Status,

&Length,

&Data[0]);

if (result == ERROR)

{

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

TDRV010-SW-42 – VxWorks Device Driver Page 18 of 97

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_TIMEOUT Read was blocked and the allowed time has elapsed or
NO_WAIT was setup.

S_tdrv010Dev_ENETDOWN The controller is in bus OFF state and no message is
available in the receive queue.

Note, as long as CAN messages are available in the
receive queue FIFO, bus OFF conditions were not
reported by the read function. This means you can read all
CAN messages out of the receive queue FIFO during bus
OFF state without an error result.

TDRV010-SW-42 – VxWorks Device Driver Page 19 of 97

3.2.2 tdrv010ReadNoWait()

Name

tdrv010ReadNoWait() – Read a CAN message

Synopsis

STATUS tdrv010Read

(

TDRV010_DEV pDev,

unsigned long *pIdentifier,

unsigned char *pIOFlags,

unsigned char *pStatus,

int *pLength,

unsigned char *pData

);

Description

This function reads a CAN message from the device driver receive queue. This function returns
immediately if no data is available.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pIdentifier

This parameter is a pointer to an unsigned long (32bit) value where the CAN message identifier
is stored.

pIOFlags

This parameter is a pointer to an unsigned char (8bit) value where CAN message attributes as a
set of bit flags are stored. The following attribute flags are possible:

Value Description

TDRV010_EXTENDED Set if the received message is an extended message
frame. Reset for standard message frames.

TDRV010_REMOTE_FRAME Set if the received message is a remote transmission
request (RTR) frame.

TDRV010-SW-42 – VxWorks Device Driver Page 20 of 97

pStatus

This parameter is a pointer to an unsigned char (8bit) value where status information about
overrun conditions either in the CAN controller or intermediate software FIFO is stored. The
following values are possible:

Value Description

TDRV010_SUCCESS No messages lost

TDRV010_FIFO_OVERRUN One or more messages was overwritten in the receive
queue FIFO. This problem occurs if the FIFO is too small
for the application read interval.

TDRV010_MSGOBJ_OVERRUN One or more messages were overwritten in the CAN
controller message FIFO because the interrupt latency is
too large. Reduce the CAN bit rate or upgrade the
system speed.

pLength

This parameter is a pointer to an int value where the length of the received CAN message
(number of bytes) is stored. Possible values are 0..8.

pData

This parameter is a pointer to an unsigned char array where the received CAN message is
stored. This buffer receives up to 8 data bytes. pData[0] receives message Data 0, pData[1]
receives message Data 1 and so on.

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

unsigned long Identifier;

unsigned char IOFlags;

unsigned char Status;

int Length;

unsigned char Data[8];

/*

** Read a CAN message from the device

*/

result = tdrv010ReadNoWait(pDev,

&Identifier,

&IOFlags,

&Status,

&Length,

&Data[0]);

TDRV010-SW-42 – VxWorks Device Driver Page 21 of 97

if (result == ERROR)

{

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_TIMEOUT No CAN message available.

S_tdrv010Dev_ENETDOWN The controller is in bus OFF state and no message is
available in the receive queue.

Note, as long as CAN messages are available in the
receive queue FIFO, bus OFF conditions were not
reported by the read function. This means you can read all
CAN messages out of the receive queue FIFO during bus
OFF state without an error result.

TDRV010-SW-42 – VxWorks Device Driver Page 22 of 97

3.2.3 tdrv010Write()

Name

tdrv010Write() – Write a CAN message

Synopsis

STATUS tdrv010Write

(

TDRV010_DEV pDev,

int Timeout,

unsigned long Identifier,

unsigned char IOFlags,

int Length,

unsigned char *pData

);

Description

This function writes a CAN message to the CAN bus. The function waits for the message to be sent
until the specified timeout has expired.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

Timeout

Specifies the amount of time (in unit system ticks) the caller is willing to wait for execution of
write request. A value of WAIT_FOREVER means wait indefinitely. If Timeout is set to
NO_WAIT write will return immediately after initiating the write in the CAN controller.

Identifier

Contains the message identifier of the CAN message to write.

TDRV010-SW-42 – VxWorks Device Driver Page 23 of 97

IOFlags

Contains a set of bit flags, which define message attributes and controls the write operation. To
set more than one bit flag the predefined macros must be binary OR’ed.

Value Description

TDRV010_EXTENDED Transmit an extended message frame. If this macro isn't set
or the "dummy" macro TDRV010_STANDARD is set a
standard frame will be transmitted.

TDRV010_REMOTE_FRAME A remote transmission request (RTR bit is set) will be
transmitted.

TDRV010_SINGLE_SHOT No re-transmission will be performed if an error occurred or
the arbitration will be lost during transmission (single-shot
transmission).

TDRV010_SELF_RECEPTION The message will be transmitted and simultaneously
received if the acceptance filter is set to the corresponding
identifier.

Length

Contains the number of message data bytes (0...8).

pData

This buffer contains up to 8 data bytes. pData[0] contains message Data 0, pData[1] contains
message Data 1 and so on.

TDRV010-SW-42 – VxWorks Device Driver Page 24 of 97

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

int Timeout;

unsigned long Identifier;

unsigned char IOFlags;

int Length;

unsigned char Data[8];

/*

** Write an extended CAN message to the device.

*/

Identifier = 1234;

Timeout = 600;

IOFlags = TDRV010_EXTENDED | TDRV010_SINGLE_SHOT;

MsgLen = 2;

Data[0] = 0xaa;

Data[1] = 0x55;

result = tdrv010Write(pDev,

Timeout,

Identifier,

IOFlags,

Length,

&Data[0]);

if (result == ERROR)

{

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

TDRV010-SW-42 – VxWorks Device Driver Page 25 of 97

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_TIMEOUT The allowed time to finish the write request is elapsed.

S_tdrv010Dev_ENETDOWN The controller is in bus OFF state and unable to transmit
messages.

S_tdrv010Drv_EINVAL Illegal message length (valid range is 0...8).

S_tdrv010Drv_ECOMM Send failed in single shot mode.

TDRV010-SW-42 – VxWorks Device Driver Page 26 of 97

3.2.4 tdrv010WriteNoWait()

Name

tdrv010WriteNoWait() – Write a CAN message

Synopsis

STATUS tdrv010Write

(

TDRV010_DEV pDev,

unsigned long Identifier,

unsigned char IOFlags,

int Length,

unsigned char *pData

);

Description

This function writes a CAN message to the CAN bus. The function returns immediately after initiating
the write action in the CAN controller.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

Identifier

Contains the message identifier of the CAN message to write.

IOFlags

Contains a set of bit flags, which define message attributes and controls the write operation. To
set more than one bit flag the predefined macros must be binary OR’ed.

Value Description

TDRV010_EXTENDED Transmit an extended message frame. If this macro isn't set
or the "dummy" macro TDRV010_STANDARD is set a
standard frame will be transmitted.

TDRV010_REMOTE_FRAME A remote transmission request (RTR bit is set) will be
transmitted.

TDRV010_SINGLE_SHOT No re-transmission will be performed if an error occurred or
the arbitration will be lost during transmission (single-shot
transmission).

TDRV010-SW-42 – VxWorks Device Driver Page 27 of 97

TDRV010_SELF_RECEPTION The message will be transmitted and simultaneously
received if the acceptance filter is set to the corresponding
identifier.

Length

Contains the number of message data bytes (0...8).

pData

This buffer contains up to 8 data bytes. pData[0] contains message Data 0, pData[1] contains
message Data 1 and so on.

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

unsigned long Identifier;

unsigned char IOFlags;

int Length;

unsigned char Data[8];

/*

** Write an extended CAN message to the device.

*/

Identifier = 1234;

IOFlags = TDRV010_EXTENDED | TDRV010_SINGLE_SHOT;

MsgLen = 2;

Data[0] = 0xaa;

Data[1] = 0x55;

result = tdrv010WriteNoWait(pDev,

Identifier,

IOFlags,

Length,

&Data[0]);

if (result == ERROR)

{

/* handle error */

}

TDRV010-SW-42 – VxWorks Device Driver Page 28 of 97

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_TIMEOUT The allowed time to finish the write request is elapsed.

S_tdrv010Dev_ENETDOWN The controller is in bus OFF state and unable to transmit
messages.

S_tdrv010Drv_EINVAL Illegal message length (valid range is 0...8).

S_tdrv010Drv_ECOMM Send failed in single shot mode.

TDRV010-SW-42 – VxWorks Device Driver Page 29 of 97

3.2.5 tdrv010SetFilter()

Name

tdrv010SetFilter() – Configure Acceptance Filter

Synopsis

STATUS tdrv010SetFilter

(

TDRV010_DEV pDev,

int SingleFilter,

unsigned long AcceptanceCode,

unsigned long AcceptanceMask

);

Description

This function modifies the acceptance filter of the specified CAN controller device.

The acceptance filter compares the received identifier with the acceptance filter and decides whether
a message should be accepted or not. If a message passes the acceptance filter it is stored in the
receive FIFO.

The acceptance filter is defined by the acceptance code registers and the acceptance mask registers.
The bit patterns of messages to be received are defined in the acceptance code register.

The corresponding acceptance mask registers allow defining certain bit positions to be "don't care" (a
1 at a bit position means "don't care").

A detailed description of the acceptance filter and possible filter modes can be found in the
SJA1000 Product Specification Manual.

This function will be accepted only in reset mode (BUSOFF). Enter tdrv010Stop() first,
otherwise you will get an error S_tdrv010Drv_EACCES.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

SingleFilter

Set TRUE (1) for single filter mode.
Set FALSE (0) for dual filter mode.

TDRV010-SW-42 – VxWorks Device Driver Page 30 of 97

AcceptanceCode

The contents of this parameter will be written to acceptance code register of the controller.

AcceptanceMask

The contents of this parameter will be written to the acceptance mask register of the controller.

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

int SingleFilter;

unsigned long AcceptanceCode;

unsigned long AcceptanceMask;

/* Not relevant because all bits are "don't care" */

AcceptanceCode = 0x0;

/* Mark all bit position don't care */

AcceptanceMask = 0xffffffff;

/* Single Filter Mode */

SingleFilter = 1;

result = tdrv010SetFilter(pDev,

SingleFilter,

AcceptanceCode,

AcceptanceMask);

if (result == ERROR)

{

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

TDRV010-SW-42 – VxWorks Device Driver Page 31 of 97

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_EACCES Permission denied. The controller is currently in BUS ON
state. Please enter the BUS OFF state before changing
the bit timing.

All other returned error codes are system error conditions.

SEE ALSO

tdrv010exa.c for a programming example.

SJA1000 Product Specification Manual – 6.4.15 ACCEPTANCE FILTER

TDRV010-SW-42 – VxWorks Device Driver Page 32 of 97

3.2.6 tdrv010SetBitTiming()

Name

tdrv010SetBitTiming() – Modify CAN Bus transfer speed

Synopsis

STATUS tdrv010SetBitTiming

(

TDRV010_DEV pDev,

unsigned short TimingValue,

int UseThreeSamples

);

Description

This function modifies the bit timing registers of the CAN controller to setup a new CAN bus transfer
speed.

Use one sample point for faster bit rates and three sample points for slower bit rates to make
the CAN bus more immune against noise spikes.

This function will be accepted only in reset mode (BUSOFF). Enter tdrv010Stop() first,
otherwise you will get an error S_tdrv010Drv_EACCES.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

TimingValue

This parameter holds the new value for the bit timing register 0 (bit 0...7) and for the bit timing
register 1 (bit 8...15). Possible transfer rates are between 50 Kbit per second and 1 Mbit per
second. The include file 'tdrv010.h' contains predefined transfer rate symbols (TDRV010_5KBIT
... TDRV010_1MBIT).
For other transfer rates please follow the instructions of the SJA1000 Product Specification,
which is also part of the TPMC310 or TPMC810 engineering documentation.

UseThreeSamples

If this parameter is TRUE (1) the CAN bus is sampled three times per bit time instead of one.

TDRV010-SW-42 – VxWorks Device Driver Page 33 of 97

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

int UseThreeSamples;

unsigned short TimingValue;

TimingValue = TDRV010_100KBIT;

UseThreeSamples = FALSE;

result = tdrv010SetBitTiming(pDev,

TimingValue,

UseThreeSamples);

if (result == ERROR)

{

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_EACCES Permission denied. The controller is currently in BUS ON
state. Please enter the BUS OFF state before changing
the bit timing.

All other returned error codes are system error conditions.

SEE ALSO

tdrv010exa.c for a programming example.

tdrv010.h for predefined bus timing constants.

SJA1000 Product Specification Manual – 6.5.1/2 BUS TIMING REGISTER.

TDRV010-SW-42 – VxWorks Device Driver Page 34 of 97

3.2.7 tdrv010Start()

Name

tdrv010Start() – Set CAN controller into BUSON state

Synopsis

STATUS tdrv010Start

(

TDRV010_DEV pDev

);

Description

This function sets the specified CAN controller into the BUSON state.

After an abnormal rate of occurrences of errors on the CAN bus or after driver startup, the CAN
controller enters the BUSOFF state. This control function resets the "reset mode" bit in the mode
register. The CAN controller begins the bus OFF recovery sequence and resets transmit and receive
error counters. If the CAN controller counts 128 packets of 11 consecutive recessive bits on the CAN
bus, the Bus Off state is exited.

Before the driver is able to communicate over the CAN bus after driver startup, this control
function must be executed.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

result = tdrv010Start(pDev);

if (result == ERROR)

{

/* handle error */

}

TDRV010-SW-42 – VxWorks Device Driver Page 35 of 97

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_ENETDOWN Unable to enter the Bus ON mode.

All other returned error codes are system error conditions.

SEE ALSO

tdrv010exa.c for a programming example.

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD).

TDRV010-SW-42 – VxWorks Device Driver Page 36 of 97

3.2.8 tdrv010Stop()

Name

tdrv010Stop() – Set CAN controller into BUSOFF state

Synopsis

STATUS tdrv010Stop

(

TDRV010_DEV pDev

);

Description

This function sets the specified CAN controller into the bus OFF state.

After execution of this control function the CAN controller is completely removed from the CAN bus
and cannot communicate until the control function tdrv010Start() is executed.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

result = tdrv010Stop(pDev);

if (result == ERROR)

{

/* handle error */

}

TDRV010-SW-42 – VxWorks Device Driver Page 37 of 97

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_ENETDOWN Unable to enter the Bus ON mode.

All other returned error codes are system error conditions.

SEE ALSO

tdrv010exa.c for a programming example.

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD).

TDRV010-SW-42 – VxWorks Device Driver Page 38 of 97

3.2.9 tdrv010FlushReceiveFifo()

Name

tdrv010FlushReceiveFifo() – Flush software receive FIFO

Synopsis

STATUS tdrv010FlushReceiveFifo

(

TDRV010_DEV pDev

);

Description

This function flushes the software FIFO buffer of received CAN messages.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

result = tdrv010FlushReceiveFifo(pDev);

if (result == ERROR)

{

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

TDRV010-SW-42 – VxWorks Device Driver Page 39 of 97

3.2.10 tdrv010GetControllerStatus()

Name

tdrv010GetControllerStatus() – Get CAN controller status information

Synopsis

STATUS tdrv010GetControllerStatus

(

TDRV010_DEV pDev,

TDRV010_STATUS *pCANStatus

);

Description

This function returns the actual contents of several CAN controller registers for diagnostic purposes.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pCANStatus

This parameter points to a TDRV010_STATUS buffer, which receives the CAN controller status:

typedef struct {

unsigned char ArbitrationLostCapture;

unsigned char ErrorCodeCapture;

unsigned char TxErrorCounter;

unsigned char RxErrorCounter;

unsigned char ErrorWarningLimit;

unsigned char StatusRegister;

unsigned char ModeRegister;

unsigned char RxMessageCounterMax;

unsigned char PLDControl;

} TDRV010_STATUS, *PTDRV010_STATUS;

ArbitrationLostCapture

Contents of the arbitration lost capture register. This register contains information about
the bit position of losing arbitration.

TDRV010-SW-42 – VxWorks Device Driver Page 40 of 97

ErrorCodeCapture

Contents of the error code capture register. This register contains information about the
type and location of errors on the bus.

TxErrorCounter

Contents of the TX error counter register. This register contains the current value of the
transmit error counter.

RxErrorCounter

Contents of the TX error counter register. This register contains the current value of the
receive error counter.

ErrorWarningLimit

Contents of the error warning limit register.

StatusRegister

Contents of the status register.

ModeRegister

Contents of the mode register.

RxMessageCounterMax

Contains the peak value of messages in the software receive FIFO. This internal counter
value will be reset to 0 after reading.

PLDControl

If it’s available this parameter retrieves the content of the PLD Control Register. For non
TPMC310 modules this parameter retrieves a value greater or equal 0x80 (means
invalid). On TPMC310 devices the retrieved value will describe exactly the content of
PLDControlReg[5:0].

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

TDRV010_STATUS CanStatus;

result = tdrv010GetControllerStatus(pDev, &CanStatus);

if (result == ERROR)

{

/* handle error */

}

TDRV010-SW-42 – VxWorks Device Driver Page 41 of 97

RETURN VALUE

OK if function succeeds or ERROR.

SEE ALSO

SJA1000 Product Specification Manual

TDRV010-SW-42 – VxWorks Device Driver Page 42 of 97

3.2.11 tdrv010SelftestEnable()

Name

tdrv010SelftestEnable() – Enable self test facility

Synopsis

STATUS tdrv010SelftestEnable

(

TDRV010_DEV pDev

);

Description

This function enables the self test facility of the SJA1000 CAN controller.

In this mode a full node test is possible without any other active node on the bus using the self
reception facility. The CAN controller will perform a successful transmission even if there is no
acknowledge received.

Also in self test mode the normal functionality is given, that means the CAN controller is able to
receive messages from other nodes and can transmit message to other nodes if any connected.

This function will be accepted only in reset mode (BUSOFF). Enter tdrv010Stop() first,
otherwise you will get an error (S_tdrv010Drv_EACCES).

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

TDRV010-SW-42 – VxWorks Device Driver Page 43 of 97

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

result = tdrv010SelftestEnable(pDev);

if (result == ERROR)

{

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_EACCES Permission denied. The controller is currently in BUS ON
state. Please enter the BUS OFF state first.

All other returned error codes are system error conditions.

SEE ALSO

tdrv010exa.c for a programming example.

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-42 – VxWorks Device Driver Page 44 of 97

3.2.12 tdrv010SelftestDisable()

Name

tdrv010SelftestDisable() – Disable self test facility

Synopsis

STATUS tdrv010SelftestDisable

(

TDRV010_DEV pDev

);

Description

This function disables the self test facility of the SJA1000 CAN controller, which was enabled before
with the function tdrv010SelftestEnable().

This function will be accepted only in reset mode (BUSOFF). Enter tdrv010Stop() first,
otherwise you will get an error (S_tdrv010Drv_EACCES).

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

result = tdrv010SelftestDisable(pDev);

if (result == ERROR)

{

/* handle error */

}

TDRV010-SW-42 – VxWorks Device Driver Page 45 of 97

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_EACCES Permission denied. The controller is currently in BUS ON
state. Please enter the BUS OFF state first.

All other returned error codes are system error conditions.

SEE ALSO

tdrv010exa.c for a programming example.

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-42 – VxWorks Device Driver Page 46 of 97

3.2.13 tdrv010ListenOnlyEnable()

Name

tdrv010ListenOnlyEnable() – Enable listen-only facility

Synopsis

STATUS tdrv010ListenOnlyEnable

(

TDRV010_DEV pDev

);

Description

This function enables the listen only facility of the SJA1000 CAN controller.

In this mode the CAN controller would give no acknowledge to the CAN-bus, even if a message is
received successfully. Message transmission is not possible. All other functions can be used like in
normal mode.

This mode can be used for software driver bit rate detection and 'hot-plugging'.

This function will be accepted only in reset mode (BUSOFF). Enter tdrv010Stop() first,
otherwise you will get an error (S_tdrv010Drv_EACCES).

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

result = tdrv010ListenOnlyEnable(pDev);

if (result == ERROR)

{

/* handle error */

}

TDRV010-SW-42 – VxWorks Device Driver Page 47 of 97

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_EACCES Permission denied. The controller is currently in BUS ON
state. Please enter the BUS OFF state first.

All other returned error codes are system error conditions.

SEE ALSO

tdrv010exa.c for a programming example.

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-42 – VxWorks Device Driver Page 48 of 97

3.2.14 tdrv010ListenOnlyDisable()

Name

tdrv010ListenOnlyDisable() – Disable listen-only facility

Synopsis

STATUS tdrv010ListenOnlyDisable

(

TDRV010_DEV pDev

);

Description

This function disables the self test facility of the SJA1000 CAN controller, which was enabled before
with the function FIO_TDRV010_ENABLE_SELFTEST.

This function will be accepted only in reset mode (BUSOFF). Enter tdrv010Stop() first,
otherwise you will get an error (S_tdrv010Drv_EACCES).

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

result = tdrv010ListenOnlyDisable(pDev);

if (result == ERROR)

{

/* handle error */

}

TDRV010-SW-42 – VxWorks Device Driver Page 49 of 97

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_EACCES Permission denied. The controller is currently in BUS ON
state. Please enter the BUS OFF state first.

All other returned error codes are system error conditions.

SEE ALSO

tdrv010exa.c for a programming example.

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-42 – VxWorks Device Driver Page 50 of 97

3.2.15 tdrv010Setlimit()

Name

tdrv010SetLimit() – Disable listen-only facility

Synopsis

STATUS tdrv010SetLimit

(

TDRV010_DEV pDev,

unsigned char ErrorLimit

);

Description

This function sets a new error warning limit in the corresponding CAN controller register. The default
value (after hardware reset) is 96.

This function will be accepted only in reset mode (BUSOFF). Enter tdrv010Stop() first,
otherwise you will get an error (S_tdrv010Drv_EACCES).

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

ErrorLimit

This parameter specifies the new error warning limit.

TDRV010-SW-42 – VxWorks Device Driver Page 51 of 97

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

/*

** Set Error Warning Limit to 20

*/

result = tdrv010SetLimit(pDev, 20);

if (result == ERROR)

{

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_EACCES Permission denied. The controller is currently in BUS ON
state. Please enter the BUS OFF state first.

All other returned error codes are system error conditions.

SEE ALSO

tdrv010exa.c for a programming example.

SJA1000 Product Specification Manual – 6.4.10 ERROR WARNING LIMIT REGISTER (EWLR)

TDRV010-SW-42 – VxWorks Device Driver Page 52 of 97

3.2.16 tdrv010CanReset()

Name

tdrv010CanReset() – Set CAN controller into reset or operating mode

Synopsis

STATUS tdrv010CanReset

(

TDRV010_DEV pDev,

unsigned char CanReset

);

Description

This function sets the certain CAN controller in reset or operating mode. After driver startup, the CAN
controllers are configured to operating mode.

This function is only available for TPMC310 devices.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

CanReset

This parameter specifies the controller operating mode.

Value Description

TDRV010_CANRESET_RESET Set the certain CAN channel into reset mode

TDRV010_CANRESET_OPERATING Set the certain CAN channel into operating mode

TDRV010-SW-42 – VxWorks Device Driver Page 53 of 97

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

/*

** Set Controller into operating mode

*/

result = tdrv010CanReset(pDev, TDRV010_CANRESET_OPERATING);

if (result == ERROR)

{

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_ICMD Function not supported by the device.

All other returned error codes are system error conditions.

SEE ALSO

TPMC310 User Manual

TDRV010-SW-42 – VxWorks Device Driver Page 54 of 97

3.2.17 tdrv010CanSel()

Name

tdrv010CanSel() – Set CAN transceiver into silent or operating mode

Synopsis

STATUS tdrv010CanSel

(

TDRV010_DEV pDev,

unsigned char CanSel

);

Description

This function sets the certain CAN transceivers into silent or operating mode. After driver startup, the
CAN transceivers are configured to operating mode.

This function is only available for TPMC310 devices.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

CanSel

This parameter specifies the controller operating mode.

Value Description

TDRV010_CANSEL_SILENT Set the certain CAN channel into silent mode

TDRV010_CANSEL_OPERATING Set the certain CAN channel into operating mode

TDRV010-SW-42 – VxWorks Device Driver Page 55 of 97

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

/*

** Set Transceiver into operating mode

*/

result = tdrv010CanSel(pDev, TDRV010_CANSEL_OPERATING);

if (result == ERROR)

{

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_ICMD Function not supported by the device.

All other returned error codes are system error conditions.

SEE ALSO

TPMC310 User Manual

TDRV010-SW-42 – VxWorks Device Driver Page 56 of 97

3.2.18 tdrv010CanInt()

Name

tdrv010CanInt() – Enable or disable CAN controller interrupts

Synopsis

STATUS tdrv010CanInt

(

TDRV010_DEV pDev,

unsigned char CanInt

);

Description

This function enables or disables certain CAN controller interrupts. After driver startup, the CAN
controller interrupts are enabled.

This function is only available for TPMC310 devices.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

CanInt

This parameter specifies the controller operating mode.

Value Description

TDRV010_CANINT_ENABLE Enable interrupt of a certain CAN channel

TDRV010_CANINT_DISABLE Disable interrupt of a certain CAN channel

TDRV010-SW-42 – VxWorks Device Driver Page 57 of 97

Example

#include “tdrv010.h”

TDRV010_DEV pDev;

STATUS result;

/*

** Enable CAN controller interrupts

*/

result = tdrv010CanInt(pDev, TDRV010_CANINT_ENABLE);

if (result == ERROR)

{

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_ICMD Function not supported by device.

All other returned error codes are system error conditions.

SEE ALSO

TPMC310 User Manual

TDRV010-SW-42 – VxWorks Device Driver Page 58 of 97

4 Legacy I/O system functions
This chapter describes the legacy driver-level interface to the I/O system. The purpose of these
functions is to install the driver in the I/O system, add and initialize devices.

The legacy I/O system functions are only relevant for the legacy TDRV010 driver. For the
VxBus-enabled TDRV010 driver, the driver will be installed automatically in the I/O system and
devices will be created as needed for detected CAN channels.

4.1 tdrv010Drv()

NAME

tdrv010Drv() - installs the TDRV010 driver in the I/O system

SYNOPSIS

#include “tdrv010.h”

STATUS tdrv010Drv(void)

DESCRIPTION

This function searches and initializes TDRV010 supported devices on the PCI bus and installs the
TDRV010 driver in the I/O system.

The call of this function is the first thing the user has to do before adding any device to the
system or performing any I/O request.

EXAMPLE

#include "tdrv010.h”

/*-------------------

Initialize Driver

-------------------*/

status = tdrv010Drv();

if (status == ERROR)

{

/* Error handling */

}

TDRV010-SW-42 – VxWorks Device Driver Page 59 of 97

RETURNS

OK, or ERROR if the function fails an error code will be stored in errno.

ERROR CODES

Error codes are only set by system functions. The error codes are stored in errno and can be read with
the function errnoGet().

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

S_tdrv010Drv_NOMEM Unable to allocate memory for device control block

S_tdrv010Drv_EIO Unable to enter the CAN controllers reset mode, controller
seems to be faulty

S_tdrv010Drv_NXIO Found no TDRV010 supported devices found on the PCI
bus

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TDRV010-SW-42 – VxWorks Device Driver Page 60 of 97

4.2 tdrv010DevCreate()

NAME

tdrv010DevCreate() – Add a TDRV010 device to the VxWorks system

SYNOPSIS

#include “tdrv010.h”

STATUS tdrv010DevCreate
(

char *name,
int devIdx,
int funcType,
void *pParam

)

DESCRIPTION

This routine adds the selected device to the VxWorks system. The device hardware will be setup and
prepared for use.

This function must be called before performing any I/O request to this device.

TDRV010-SW-42 – VxWorks Device Driver Page 61 of 97

PARAMETER

name

This string specifies the name of the device that will be used to identify the device, for example
for open() calls. The first CAN channel on the first TDRV010 device should be named
“/tdrv010/0/0”, the second channel should be named “/tdrv010/0/1”. The first CAN channel on
the second TDRV010 device should be named “/tdrv010/1/0” and so on.

devIdx

This index number specifies the device to add to the system.
The index number depends on the search priority of the modules. The modules will be searched
in the following order:

- TPMC310-10 (CAN1, CAN2)
- TPMC810-10 (CAN1, CAN2)

If modules of the same type are installed the channel numbers will be advised in the order the
VxWorks pciFindDevice() function will find the devices.

Example: A system with one TPMC310-10 and one TPMC810-10 installed will assign the
following device indexes:

Module Device Index

TPMC310-10 (CAN 1) 0

TPMC310-10 (CAN 2) 1

TPMC810-10 (CAN 1) 2

TPMC810-10 (CAN 2) 3

funcType

This parameter is unused and should be set to 0.

pParam

This parameter is unused and should be set to NULL.

TDRV010-SW-42 – VxWorks Device Driver Page 62 of 97

EXAMPLE

#include "tdrv010.h”

STATUS result;

/*---

Create the device "/tdrv010/0/0" for the first CAN device

---*/

result = tdrv010DevCreate("/tdrv010/0/0",

0,

0,

NULL);

if (result == OK)

{

/* Device successfully created */

}

else

{

/* Error occurred when creating the device */

}

RETURNS

OK, or ERROR if the function fails an error code will be stored in errno.

ERROR CODES

Error codes are only set by system functions. The error codes are stored in errno and can be read with
the function errnoGet().

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

S_tdrv010Drv_NODRV The device driver was not initialized by tdrv010Drv()

S_tdrv010Drv_NXIO Found no device matching given devIdx

S_tdrv010Drv_DUPDEV Device node already created

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TDRV010-SW-42 – VxWorks Device Driver Page 63 of 97

4.3 tdrv010PciInit()

NAME

tdrv010PciInit() – Generic PCI device initialization

SYNOPSIS

void tdrv010PciInit()

DESCRIPTION

This function is required only for Intel x86 VxWorks platforms. The purpose is to setup the MMU
mapping for all required TPMC310 and TPMC810 PCI spaces (base address registers) and to enable
the TDRV010 supported device for access.

The global variable tdrv010Status obtains the result of the device initialization and can be polled later
by the application before the driver will be installed.

Value Meaning

> 0 Initialization successful completed. The value of tdrv010Status is equal to the
number of mapped PCI spaces

0 No TDRV010 device found

< 0 Initialization failed. The value of (tdrv010Status & 0xFF) is equal to the number of
mapped spaces until the error occurs.

Possible cause: Too few entries for dynamic mappings in sysPhysMemDesc[].

Remedy: Add dummy entries as necessary (syslib.c).

EXAMPLE

extern void tdrv010PciInit();

…

tdrv010PciInit();

TDRV010-SW-42 – VxWorks Device Driver Page 64 of 97

4.4 tdrv010Init()

NAME

tdrv010Init() – initialize TDRV010 driver and devices

SYNOPSIS

#include “tdrv010.h”

STATUS tdrv010Init(void)

DESCRIPTION

This function is used by the TDRV010 example application to install the driver and to add all available
devices to the VxWorks system.

See also 3.1.1 tdrv010Open() for the device naming convention for legacy devices.

After calling this function it is not necessary to call tdrv010Drv() and tdrv010DevCreate()
explicitly.

EXAMPLE

#include "tdrv010.h”

STATUS result;

result = tdrv010Init();

if (result == ERROR)

{

/* Error handling */

}

TDRV010-SW-42 – VxWorks Device Driver Page 65 of 97

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

Error codes are only set by system functions. The error codes are stored in errno and can be read with
the function errnoGet().

See 4.1 and 4.2 for a description of possible error codes.

TDRV010-SW-42 – VxWorks Device Driver Page 66 of 97

5 Basic I/O Functions
The VxWorks basic I/O interface functions are useable with the TDRV010 legacy and VxBus-enabled
driver in a uniform manner.

5.1 open()

NAME

open() - open a device or file.

SYNOPSIS

int open
(

const char *name,
int flags,
int mode

)

DESCRIPTION

Before I/O can be performed to the TDRV010 supported devices, a file descriptor must be opened by
invoking the basic I/O function open().

PARAMETER

name

Specifies the device which shall be opened.

flags

Not used

mode

Not used

TDRV010-SW-42 – VxWorks Device Driver Page 67 of 97

EXAMPLE

int fd;

/*--

Open the device named "/tdrv010/0/0" for I/O

--*/

fd = open("/tdrv010/0/0", 0, 0);

if (fd == ERROR)

{

/* Handle error */

}

RETURNS

A device descriptor number, or ERROR if the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - open()

TDRV010-SW-42 – VxWorks Device Driver Page 68 of 97

5.2 close()

NAME

close() – close a device or file

SYNOPSIS

int close (int fd)

DESCRIPTION

This function closes opened devices.

PARAMETER

fd

This file descriptor specifies the device to be closed. The file descriptor has been returned by
the open() function.

EXAMPLE

int fd;

int retval;

/*---- close the device ----*/

retval = close(fd);

if (retval == ERROR)

{

/* Handle error */

}

RETURNS

OK, or ERROR if the function fails, an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

TDRV010-SW-42 – VxWorks Device Driver Page 69 of 97

SEE ALSO

ioLib, basic I/O routine - close()

TDRV010-SW-42 – VxWorks Device Driver Page 70 of 97

5.3 ioctl()

NAME

ioctl() - performs an I/O control function.

SYNOPSIS

#include “tdrv010.h”

int ioctl
(

int fd,
int request,
int arg

)

DESCRIPTION

Special I/O operation that do not fit to the standard basic VxWorks I/O calls (read, write) will be
performed by calling the ioctl() function.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

request

This argument specifies the function that shall be executed. Following functions are defined:

Function Description

FIO_TDRV010_READ Read a CAN message

FIO_TDRV010_WRITE Write a CAN message

FIO_TDRV010_BITTIMING Set CAN bus speed

FIO_TDRV010_SETFILTER Setup message filtering

FIO_TDRV010_BUSON Set the device bus active

FIO_TDRV010_BUSOFF Set the device bus passive

FIO_TDRV010_FLUSH Flush the message queues

FIO_TDRV010_CANSTATUS Retrieve CAN controller status register content

FIO_TDRV010_ENABLE_SELFTEST Enable controller self test

FIO_TDRV010_DISABLE_SELFTEST Disable controller self test

FIO_TDRV010_ENABLE_LISTENONLY Enable listen only mode

FIO_TDRV010_DISABLE_LISTENONLY Disable listen only mode

TDRV010-SW-42 – VxWorks Device Driver Page 71 of 97

FIO_TDRV010_SETLIMIT Set error warning limit

FIO_TDRV010_CAN_RESET Set reset/operating mode (TPMC310 only)

FIO_TDRV010_CAN_SEL Set silent/operating mode (TPMC310 only)

FIO_TDRV010_CAN_INT Enable/disable interrupts (TPMC310 only)

arg

This parameter depends on the selected function (request). How to use this parameter is
described below with the function.

RETURNS

Function dependent value (described with the function) or ERROR if the function fails an error code
will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_ICMD Invalid IOCTL command. FIO_TDRV010_CAN_RESET,
…CAN_SEL and …CAN_INT ioctl commands are only
supported on TPMC310 modules or the certain ioctl
command is unknown in general.

SEE ALSO

ioLib, basic I/O routine - ioctl()

TDRV010-SW-42 – VxWorks Device Driver Page 72 of 97

5.3.1 FIO_TDRV010_READ

The read function reads a CAN message from the device driver receive queue. A pointer to the callers
message buffer (TDRV010_MSG_BUF) must be passed by the parameter arg to the device.

typedef struct {

unsigned long Identifier;

unsigned char IOFlags;

unsigned char MsgLen;

unsigned char Data[8];

unsigned long Timeout;

unsigned char Status;

} TDRV010_MSG_BUF, *PTDRV010_MSG_BUF;

Identifier

Obtains the message identifier of the read CAN message.

IOFlags

Obtains CAN message attributes as a set of bit flags. The following attribute flags are possible:

Flag Description

TDRV010_EXTENDED Set if the received message is an extended message frame.
Reset for standard message frames.

TDRV010_REMOTE_FRAME Set if the received message is a remote transmission request
(RTR) frame.

MsgLen

Obtains the number of message data bytes (0...8).

Data[8]

This buffer receives up to 8 data bytes. Data[0] receives message Data 0, Data[1] receives
message Data 1 and so on.

Timeout

Specifies the amount of time (in unit ticks) the caller is willing to wait for execution of read
request. A value of WAIT_FOREVER means wait indefinitely. If Timeout is set to NO_WAIT
read will return immediately with error if the device is blocked by other read requests or no
message is available.

Status

Obtains overrun conditions either in the CAN controller or intermediate software FIFO.

Value Description

TDRV010_SUCCESS No messages lost

TDRV010_FIFO_OVERRUN One or more messages was overwritten in the
receive queue FIFO. This problem occurs if the FIFO
is too small for the application read interval.

TDRV010_MSGOBJ_OVERRUN One or more messages were overwritten in the CAN
controller message FIFO because the interrupt
latency is too large. Reduce the CAN bit rate or
upgrade the system speed.

TDRV010-SW-42 – VxWorks Device Driver Page 73 of 97

EXAMPLE

#include “tdrv010.h”

int fd;

int result;

TDRV010_MSG_BUF MsgBuf;

MsgBuf.Timeout = 300;

result = ioctl(fd, FIO_TDRV010_READ, (int)&MsgBuf);

if (result == ERROR) {

/* process error */

}

RETURN VALUE

Number of databytes read if function succeeds, or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_TIMEOUT Read was blocked and the allowed time has elapsed or
NO_WAIT was setup.

S_tdrv010Dev_ENETDOWN The controller is in bus OFF state and no message is
available in the receive queue.

Note, as long as CAN messages are available in the
receive queue FIFO, bus OFF conditions were not
reported by the read function. This means you can read all
CAN messages out of the receive queue FIFO during bus
OFF state without an error result.

TDRV010-SW-42 – VxWorks Device Driver Page 74 of 97

5.3.2 FIO_TDRV010_WRITE

The write function writes a CAN message to the CAN bus. A pointer to the callers message buffer
(TDRV010_MSG_BUF) must be passed by the argument arg to the device.

typedef struct {

unsigned long Identifier;

unsigned char IOFlags;

unsigned char MsgLen;

unsigned char Data[8];

unsigned long Timeout;

unsigned char Status;

} TDRV010_MSG_BUF, *PTDRV010_MSG_BUF;

Identifier

Contains the message identifier of the CAN message to write.

IOFlags

Contains a set of bit flags, which define message attributes and controls the write operation. To
set more than one bit flag the predefined macros must be binary OR’ed.

Value Description

TDRV010_EXTENDED Transmit an extended message frame. If this macro isn't set
or the "dummy" macro TDRV010_STANDARD is set a
standard frame will be transmitted.

TDRV010_REMOTE_FRAME A remote transmission request (RTR bit is set) will be
transmitted.

TDRV010_SINGLE_SHOT No re-transmission will be performed if an error occurred or
the arbitration will be lost during transmission (single-shot
transmission).

TDRV010_SELF_RECEPTION The message will be transmitted and simultaneously
received if the acceptance filter is set to the corresponding
identifier.

MsgLen

Contains the number of message data bytes (0...8).

Data[8]

This buffer contains up to 8 data bytes. Data[0] contains message Data 0, Data[1] contains
message Data 1 and so on.

Timeout

Specifies the amount of time (in unit ticks) the caller is willing to wait for execution of write
request. A value of WAIT_FOREVER means wait indefinitely. If Timeout is set to NO_WAIT
write will return immediately after initiating the write in the CAN controller.

Status

Unused set to 0.

TDRV010-SW-42 – VxWorks Device Driver Page 75 of 97

EXAMPLE

#include “tdrv010.h”

int fd;

int result;

TDRV010_MSG_BUF MsgBuf;

MsgBuf.Identifier = 1234;

MsgBuf.Timeout = 600;

MsgBuf.IOFlags = TDRV010_EXTENDED | TDRV010_SINGLE_SHOT;

MsgBuf.MsgLen = 2;

MsgBuf.Data[0] = 0xaa;

MsgBuf.Data[1] = 0x55;

result = ioctl(fd, FIO_TDRV010_WRITE, (int)&MsgBuf);

if (nBytes == ERROR) {

/* process error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_TIMEOUT The allowed time to finish the write request is elapsed.

S_tdrv010Dev_ENETDOWN The controller is in bus OFF state and unable to transmit
messages.

S_tdrv010Drv_EINVAL Illegal message length (valid range is 0...8).

S_tdrv010Drv_ECOMM Send failed in single shot mode.

TDRV010-SW-42 – VxWorks Device Driver Page 76 of 97

5.3.3 FIO_TDRV010_BITTIMING

This function modifies the bit timing registers of the CAN controller to setup a new CAN bus transfer
speed. A pointer to the callers parameter buffer (TDRV010_TIMING) must be passed by the argument
arg to the device.

Keep in mind to setup a valid bit timing value before changing into the Bus On state.

typedef struct {

unsigned short TimingValue;

unsigned short ThreeSamples;

} TDRV010_TIMING, *PTDRV010_TIMING;

TimingValue

This parameter holds the new value for the bit timing register 0 (bit 0...7) and for the bit timing
register 1 (bit 8...15). Possible transfer rates are between 50 Kbit per second and 1 Mbit per
second. The include file 'tdrv010.h' contains predefined transfer rate symbols (TDRV010_5KBIT
... TDRV010_1MBIT).
For other transfer rates please follow the instructions of the SJA1000 Product Specification,
which is also part of the TPMC310 or TPMC810 engineering documentation.

ThreeSamples

If this parameter is TRUE (1) the CAN bus is sampled three times per bit time instead of one.

Use one sample point for faster bit rates and three sample points for slower bit rates to make
the CAN bus more immune against noise spikes.

This function will be accepted only in reset mode (BUSOFF). Enter FIO_TDRV010_BUSOFF first
otherwise you will get an error S_tdrv010Drv_EACCES.

EXAMPLE

#include “tdrv010.h”

int fd;

STATUS retval;

TDRV010_TIMING BitTimingParam;

BitTimingParam.TimingValue = TDRV010_100KBIT;

BitTimingParam.ThreeSamples = FALSE;

retval = ioctl(fd, FIO_TDRV010_BITTIMING, (int)&BitTimingParam);

if (retval == ERROR) {

/* process error */

}

TDRV010-SW-42 – VxWorks Device Driver Page 77 of 97

RETURNS

OK if successful or ERROR otherwise.

Error codes are provided by the global variable errno or delivered by the function errnoGet().

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_EACCES Permission denied. The controller is currently in BUS ON
state. Please enter the BUS OFF state before changing
the bit timing.

All other returned error codes are system error conditions.

SEE ALSO

tdrv010.h for predefined bus timing constants.

SJA1000 Product Specification Manual – 6.5.1/2 BUS TIMING REGISTER.

TDRV010-SW-42 – VxWorks Device Driver Page 78 of 97

5.3.4 FIO_TDRV010_SETFILTER

This function modifies the acceptance filter of the specified CAN controller device.

The acceptance filter compares the received identifier with the acceptance filter and decides whether
a message should be accepted or not. If a message passes the acceptance filter it is stored in the
receive FIFO.

The acceptance filter is defined by the acceptance code registers and the acceptance mask registers.
The bit patterns of messages to be received are defined in the acceptance code register.

The corresponding acceptance mask registers allow defining certain bit positions to be "don't care" (a
1 at a bit position means "don't care").

A pointer to the callers parameter buffer (TDRV010_FILTER) must be passed by the argument arg to
the device.

typedef struct {

int SingleFilter;

unsigned long AcceptanceCode;

unsigned long AcceptanceMask;

} TDRV010_FILTER, *PTDRV010_FILTER;

SingleFilter

Set TRUE (1) for single filter mode.
Set FALSE (0) for dual filter mode.

AcceptanceCode

The contents of this parameter will be written to acceptance code register of the controller.

AcceptanceMask

The contents of this parameter will be written to the acceptance mask register of the controller.

A detailed description of the acceptance filter and possible filter modes can be found in the
SJA1000 Product Specification Manual.

This function will be accepted only in reset mode (BUSOFF). Enter FIO_TDRV010_BUSOFF first
otherwise you will get an error S_tdrv010Drv_EACCES.

TDRV010-SW-42 – VxWorks Device Driver Page 79 of 97

EXAMPLE

#include “tdrv010.h”

int fd;

STATUS retval;

TDRV010_FILTER AcceptFilter;

/* Not relevant because all bits are "don't care" */

AcceptFilter.AcceptanceCode = 0x0;

/* Mark all bit position don't care */

AcceptFilter.AcceptanceMask = 0xffffffff;

/* Single Filter Mode */

AcceptFilter.SingleFilter = 1;

retval = ioctl(fd, FIO_TDRV010_SETFILTER, (int)&AcceptFilter);

if (retval == ERROR) {

/* process error */

}

RETURNS

OK if successful or ERROR otherwise. Error codes are provided by the global variable errno or
delivered by the function errnoGet().

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_EACCES Permission denied. The controller is currently in BUS ON
state. Please enter the BUS OFF state before changing
the bit timing.

All other returned error codes are system error conditions.

TDRV010-SW-42 – VxWorks Device Driver Page 80 of 97

SEE ALSO

SJA1000 Product Specification Manual – 6.4.15 ACCEPTANCE FILTER

TDRV010-SW-42 – VxWorks Device Driver Page 81 of 97

5.3.5 FIO_TDRV010_BUSON

This function sets the specified CAN controller into the bus ON state.

After an abnormal rate of occurrences of errors on the CAN bus or after driver startup, the CAN
controller enters the Bus OFF state. This control function resets the "reset mode" bit in the mode
register. The CAN controller begins the bus OFF recovery sequence and resets the transmit and
receive error counters. If the CAN controller counts 128 packets of 11 consecutive recessive bits on
the CAN bus, the Bus Off state is exited.

Before the driver is able to communicate over the CAN bus after driver startup, this control
function must be executed.

EXAMPLE

#include “tdrv010.h”

int fd;

STATUS retval;

retval = ioctl(fd, FIO_TDRV010_BUSON, 0);

if (retval == ERROR) {

/* process error */

}

RETURNS

OK if successful or ERROR otherwise.

Error codes are provided by the global variable errno or delivered by the function errnoGet().

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_ENETDOWN Unable to enter the Bus ON mode.

All other returned error codes are system error conditions.

TDRV010-SW-42 – VxWorks Device Driver Page 82 of 97

SEE ALSO

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD).

TDRV010-SW-42 – VxWorks Device Driver Page 83 of 97

5.3.6 FIO_TDRV010_BUSOFF

This function sets the specified CAN controller into the bus OFF state.

After execution of this control function the CAN controller is completely removed from the CAN bus
and cannot communicate until the control function FIO_TDRV010_BUSON is executed.

EXAMPLE

#include “tdrv010.h”

int fd;

STATUS retval;

retval = ioctl(fd, FIO_TDRV010_BUSOFF, 0);

if (retval == ERROR) {

/* process error */

}

RETURNS

OK if successful or ERROR otherwise.

Error codes are provided by the global variable errno or delivered by the function errnoGet().

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_EIO Unable to enter the bus OFF mode.

All other returned error codes are system error conditions.

SEE ALSO

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD).

TDRV010-SW-42 – VxWorks Device Driver Page 84 of 97

5.3.7 FIO_TDRV010_FLUSH

This function flushes the software FIFO buffer of received CAN messages.

EXAMPLE

#include “tdrv010.h”

int fd;

STATUS retval;

retval = ioctl(fd, FIO_TDRV010_FLUSH, 0);

if (retval == ERROR) {

/* process error */

}

RETURNS

OK if successful or ERROR otherwise.

TDRV010-SW-42 – VxWorks Device Driver Page 85 of 97

5.3.8 FIO_TDRV010_CANSTATUS

This function returns the actual contents of several CAN controller registers for diagnostic purposes.

A pointer to the callers status buffer (TDRV010_STATUS) must be passed by the argument arg to the
device.

typedef struct {

unsigned char ArbitrationLostCapture;

unsigned char ErrorCodeCapture;

unsigned char TxErrorCounter;

unsigned char RxErrorCounter;

unsigned char ErrorWarningLimit;

unsigned char StatusRegister;

unsigned char ModeRegister;

unsigned char RxMessageCounterMax;

unsigned char PLDControl;

} TDRV010_STATUS, *PTDRV010_STATUS;

ArbitrationLostCapture

Contents of the arbitration lost capture register. This register contains information about the bit
position of losing arbitration.

ErrorCodeCapture

Contents of the error code capture register. This register contains information about the type
and location of errors on the bus.

TxErrorCounter

Contents of the TX error counter register. This register contains the current value of the transmit
error counter.

RxErrorCounter

Contents of the TX error counter register. This register contains the current value of the receive
error counter.

ErrorWarningLimit

Contents of the error warning limit register.

StatusRegister

Contents of the status register.

ModeRegister

Contents of the mode register.

RxMessageCounterMax

Contains the peak value of messages in the software receive FIFO. This internal counter value
will be reset to 0 after reading.

TDRV010-SW-42 – VxWorks Device Driver Page 86 of 97

PLDControl

If it’s available this parameter retrieves the content of the PLD Control Register. For non
TPMC310 modules this parameter retrieves a value greater or equal 0x80 (means invalid). On
TPMC310 devices the retrieved value will describe exactly the content of PLDControlReg[5:0].

EXAMPLE

#include “tdrv010.h”

int fd;

STATUS retval;

TDRV010_STATUS CanStatus;

retval = ioctl(fd, FIO_TDRV010_CANSTATUS, (int)&CanStatus);

if (retval == ERROR) {

/* process error */

}

RETURNS

OK if successful or ERROR otherwise.

SEE ALSO

SJA1000 Product Specification Manual

TDRV010-SW-42 – VxWorks Device Driver Page 87 of 97

5.3.9 FIO_TDRV010_ENABLE_SELFTEST

This function enables the self test facility of the SJA1000 CAN controller.

In this mode a full node test is possible without any other active node on the bus using the self
reception facility. The CAN controller will perform a successful transmission even if there is no
acknowledge received.

Also in self test mode the normal functionality is given, that means the CAN controller is able to
receive messages from other nodes and can transmit message to other nodes if any connected.

This function will be accepted only in reset mode (BUSOFF). Enter FIO_TDRV010_BUSOFF first
otherwise you will get an error (S_tdrv010Drv_EACCES).

EXAMPLE

#include “tdrv010.h”

int fd;

STATUS retval;

retval = ioctl(fd, FIO_TDRV010_ENABLE_SELFTEST, 0);

if (retval == ERROR) {

/* process error */

}

RETURNS

OK if successful or ERROR otherwise. Error codes are provided by the global variable errno or
delivered by the function errnoGet().

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_EACCES Permission denied. The controller is currently in BUS ON
state. Please enter the BUS OFF state before changing
the bit timing.

All other returned error codes are system error conditions.

TDRV010-SW-42 – VxWorks Device Driver Page 88 of 97

SEE ALSO

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-42 – VxWorks Device Driver Page 89 of 97

5.3.10 FIO_TDRV010_DISABLE_SELFTEST

This function disables the self test facility of the SJA1000 CAN controller, which was enabled before
with the function FIO_TDRV010_ENABLE_SELFTEST.

This function will be accepted only in reset mode (BUSOFF). Enter FIO_TDRV010_BUSOFF first
otherwise you will get an error (S_tdrv010Drv_EACCES).

EXAMPLE

#include “tdrv010.h”

int fd;

STATUS retval;

retval = ioctl(fd, FIO_TDRV010_DISABLE_SELFTEST, 0);

if (retval == ERROR) {

/* process error */

}

RETURNS

OK if successful or ERROR otherwise.

Error codes are provided by the global variable errno or delivered by the function errnoGet().

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_EACCES Permission denied. The controller is currently in BUS ON
state. Please enter the BUS OFF state before changing
the bit timing.

All other returned error codes are system error conditions.

SEE ALSO

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-42 – VxWorks Device Driver Page 90 of 97

5.3.11 FIO_TDRV010_ENABLE_LISTENONLY

This function enables the listen only facility of the SJA1000 CAN controller.

In this mode the CAN controller would give no acknowledge to the CAN-bus, even if a message is
received successfully. Message transmission is not possible. All other functions can be used like in
normal mode.

This mode can be used for software driver bit rate detection and 'hot-plugging'.

This function will be accepted only in reset mode (BUSOFF). Enter FIO_TDRV010_BUSOFF first
otherwise you will get an error (S_tdrv010Drv_EACCES).

EXAMPLE

#include “tdrv010.h”

int fd;

STATUS retval;

retval = ioctl(fd, FIO_TDRV010_ENABLE_LISTENONLY, 0);

if (retval == ERROR) {

/* process error */

}

RETURNS

OK if successful or ERROR otherwise.

Error codes are provided by the global variable errno or delivered by the function errnoGet().

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_EACCES Permission denied. The controller is currently in BUS ON
state. Please enter the BUS OFF state before changing
the bit timing.

All other returned error codes are system error conditions.

TDRV010-SW-42 – VxWorks Device Driver Page 91 of 97

SEE ALSO

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-42 – VxWorks Device Driver Page 92 of 97

5.3.12 FIO_TDRV010_DISABLE_LISTENONLY

This function disables the self test facility of the SJA1000 CAN controller, which was enabled before
with the function FIO_TDRV010_ENABLE_SELFTEST.

This function will be accepted only in reset mode (BUSOFF). Enter FIO_TDRV010_BUSOFF first
otherwise you will get an error (S_tdrv010Drv_EACCES).

EXAMPLE

#include “tdrv010.h”

int fd;

STATUS retval;

retval = ioctl(fd, FIO_TDRV010_DISABLE_LISTENONLY, 0);

if (retval == ERROR) {

/* process error */

}

RETURNS

OK if successful or ERROR otherwise.

Error codes are provided by the global variable errno or delivered by the function errnoGet().

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_EACCES Permission denied. The controller is currently in BUS ON
state. Please enter the BUS OFF state before changing
the bit timing.

All other returned error codes are system error conditions.

SEE ALSO

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-42 – VxWorks Device Driver Page 93 of 97

5.3.13 FIO_TDRV010_SETLIMIT

This function sets a new error warning limit in the corresponding CAN controller register. The default
value (after hardware reset) is 96.

The new error warning limit will be set in an unsigned char variable. A pointer to this variable is passed
by the argument arg to the driver.

This function will be accepted only in reset mode (BUSOFF). Enter FIO_TDRV010_BUSOFF first
otherwise you will get an error (S_tdrv010Drv_EACCES).

EXAMPLE

#include “tdrv010.h”

int fd;

STATUS retval;

unsigned char ErrorLimit

ErrorLimit = 20;

retval = ioctl(fd, FIO_TDRV010_SETLIMIT, (int)&ErrorLimit);

if (retval == ERROR) {

/* process error */

}

RETURNS

OK if successful or ERROR otherwise. Error codes are provided by the global variable errno or
delivered by the function errnoGet().

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_EACCES Permission denied. The controller is currently in BUS ON
state. Please enter the BUS OFF state before changing
the bit timing.

All other returned error codes are system error conditions.

TDRV010-SW-42 – VxWorks Device Driver Page 94 of 97

SEE ALSO

SJA1000 Product Specification Manual – 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-42 – VxWorks Device Driver Page 95 of 97

5.3.14 FIO_TDRV010_CAN_RESET

This I/O control function sets the certain CAN controller in reset or operating mode. The function
specific control parameter arg specifies the new configuration. This function is only available for
TPMC310 devices.

arg

0 to set the certain CAN channel in reset mode
1 to set the certain CAN channel in operating mode

EXAMPLE

#include “tdrv010.h”

int fd;

unsigned long retval;

/*----------------------------------

Execute ioctl() function

Set the controller in reset mode

--------------------------------*/

retval = ioctl(fd, FIO_TDRV010_CAN_RESET, 0);

if (retval != ERROR)

{

/* function succeeded */

}

else

{

/* handle the error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_ICMD Function not supported by device.

All other returned error codes are system error conditions.

TDRV010-SW-42 – VxWorks Device Driver Page 96 of 97

5.3.15 FIO_TDRV010_CAN_SEL

This I/O control function sets the certain CAN controller in silent or operating mode. The function
specific control parameter arg specifies the new configuration. This function is only available for
TPMC310 devices.

arg

0 to set the certain CAN channel in silent mode
1 to set the certain CAN channel in operating mode

EXAMPLE

#include “tdrv010.h”

int fd;

unsigned long retval;

/*---

Execute ioctl() function

Set the certain CAN controller in silent mode

---*/

retval = ioctl(fd, FIO_TDRV010_CAN_SEL, 0);

if (retval != ERROR)

{

/* function succeeded */

}

else

{

/* handle the error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_ICMD Function not supported by device.

All other returned error codes are system error conditions.

TDRV010-SW-42 – VxWorks Device Driver Page 97 of 97

5.3.16 FIO_TDRV010_CAN_INT

This I/O control function enables or disables the certain CAN controller interrupts. The function specific
control parameter arg specifies the new configuration. This function is only available for TPMC310
devices.

arg

0 to enable the certain CAN channel interrupt
1 to disable the certain CAN channel interrupt

EXAMPLE

#include “tdrv010.h”

int fd;

unsigned long retval;

/*--

Execute ioctl() function

Disable the interrupts of the certain CAN controller

--*/

retval = ioctl(fd, FIO_TDRV010_CAN_INT, 0);

if (retval != ERROR)

{

/* function succeeded */

}

else

{

/* handle the error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

S_tdrv010Drv_ICMD Function not supported by device.

All other returned error codes are system error conditions.

	1	Introduction
	2	Installation
	2.1	Legacy vs. VxBus Driver
	2.2	VxBus Driver Installation
	2.2.1	Direct BSP Builds

	2.3	Legacy Driver Installation
	2.3.1	Include device driver in Tornado IDE project
	2.3.2	Special installation for Intel x86 based targets
	2.3.3	System resource requirement

	3	API Documentation
	3.1	General Functions
	3.1.1	tdrv010Open()
	3.1.2	tdrv010Close()

	3.2	Device Access Functions
	3.2.1	tdrv010Read()
	3.2.2	tdrv010ReadNoWait()
	3.2.3	tdrv010Write()
	3.2.4	tdrv010WriteNoWait()
	3.2.5	tdrv010SetFilter()
	3.2.6	tdrv010SetBitTiming()
	3.2.7	tdrv010Start()
	3.2.8	tdrv010Stop()
	3.2.9	tdrv010FlushReceiveFifo()
	3.2.10	tdrv010GetControllerStatus()
	3.2.11	tdrv010SelftestEnable()
	3.2.12	tdrv010SelftestDisable()
	3.2.13	tdrv010ListenOnlyEnable()
	3.2.14	tdrv010ListenOnlyDisable()
	3.2.15	tdrv010Setlimit()
	3.2.16	tdrv010CanReset()
	3.2.17	tdrv010CanSel()
	3.2.18	tdrv010CanInt()

	4	Legacy I/O system functions
	4.1	tdrv010Drv()
	4.2	tdrv010DevCreate()
	4.3	tdrv010PciInit()
	4.4	tdrv010Init()

	5	Basic I/O Functions
	5.1	open()
	5.2	close()
	5.3	ioctl()
	5.3.1	FIO_TDRV010_READ
	5.3.2	FIO_TDRV010_WRITE
	5.3.3	FIO_TDRV010_BITTIMING
	5.3.4	FIO_TDRV010_SETFILTER
	5.3.5	FIO_TDRV010_BUSON
	5.3.6	FIO_TDRV010_BUSOFF
	5.3.7	FIO_TDRV010_FLUSH
	5.3.8	FIO_TDRV010_CANSTATUS
	5.3.9	FIO_TDRV010_ENABLE_SELFTEST
	5.3.10	FIO_TDRV010_DISABLE_SELFTEST
	5.3.11	FIO_TDRV010_ENABLE_LISTENONLY
	5.3.12	FIO_TDRV010_DISABLE_LISTENONLY
	5.3.13	FIO_TDRV010_SETLIMIT
	5.3.14	FIO_TDRV010_CAN_RESET
	5.3.15	FIO_TDRV010_CAN_SEL
	5.3.16	FIO_TDRV010_CAN_INT

