
The Embedded I/O Company

TDRV010-S
LynxOS Device

Isolated 2 x CAN

Version 1.0.x

User Manu
Issue 1.0.1

February 200

TEWS TECHNOLOGIES GmbH TEWS TEC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49 (0) 4101 4058 0
Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com

9190 Doub
Suite 127,
www.tews.
W-72
Driver
Bus

al

7

HNOLOGIES LLC
le Diamond Parkway,
Reno, NV 89521, USA
com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

TDRV010-SW-72 - LynxOS Device Driver Page 2 of 33

TDRV010-SW-72

Isolated 2 x CAN Bus

LynxOS Device Driver

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2006-2007 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue March 3, 2006

1.0.1 New Address TEWS LLC February 28, 2007

TDRV010-SW-72 - LynxOS Device Driver Page 3 of 33

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Device Driver Installation ...6
2.1.1 Static Installation .. 6

2.1.1.1 Build the driver object ...6
2.1.1.2 Create Device Information Declaration ..6
2.1.1.3 Modify the Device and Driver Configuration File .. 6
2.1.1.4 Rebuild the Kernel ..7

2.1.2 Dynamic Installation ...8
2.1.2.1 Build the driver object ...8
2.1.2.2 Create Device Information Declaration ..8
2.1.2.3 Uninstall dynamic loaded driver ...8

2.1.3 Device Information Definition File ..9
2.1.4 Configuration File: CONFIG.TBL...10

2.2 Receive Queue Configuration..10

3 TDRV010 DEVICE DRIVER PROGRAMMING... 11
3.1 open() ...11
3.2 close()...12
3.3 ioctl() ..13

3.3.1 TDRV010_READ ...15
3.3.2 TDRV010_WRITE..17
3.3.3 TDRV010_BITTIMING ...19
3.3.4 TDRV010_SETFILTER ..21
3.3.5 TDRV010_BUSON...23
3.3.6 TDRV010_BUSOFF...24
3.3.7 TDRV010_FLUSH..25
3.3.8 TDRV010_CANSTATUS..26
3.3.9 TDRV010_ENABLE_SELFTEST...28
3.3.10 TDRV010_DISABLE_SELFTEST ...29
3.3.11 TDRV010_ENABLE_LISTENONLY ..30
3.3.12 TDRV010_DISABLE_LISTENONLY ...31
3.3.13 TDRV010_SET_LIMIT...32

4 DEBUGGING AND DIAGNOSTIC .. 33

TDRV010-SW-72 - LynxOS Device Driver Page 4 of 33

1 Introduction
The TDRV010-SW-72 LynxOS device driver allows the operation of the TPMC810 and TPMC310
product family on LynxOS platforms with DRM based PCI interface.

The standard file (I/O) functions (open, close, ioctl) provide the basic interface for opening and closing
a file descriptor and for performing device I/O and configuration operations.

The TDRV010 device driver includes the following functions:

 Reading received messages from input FIFO
 Sending messages
 Set channel Bus On/Off
 Configure Listen-Only mode On/Off
 Configure Selftest mode On/Off
 Extended and Standard Identifiers
 Configure Bitrate from 20 kbit up to 1 Mbit and user defined bit rates
 Configure Receive Mask
 Flush receive FIFO
 Read CAN status

The TDRV010-SW-72 supports the modules listed below:

TPMC310 Isolated 2x CAN Bus (Conduction Cooled)
(64 pin connector for Back-IO)

PMC

TPMC810 Isolated 2x CAN Bus
(2x SUBD 9 pin connectors for Front-
Panel I/O)
(64 pin connector for Back-I/O)

PMC

To get more information about the features and use of TDRV010 devices it is recommended to read
the manuals listed below.

TPMC310/TPMC810 User manual

TPMC310/TPMC810 Engineering Manual

TDRV010-SW-72 - LynxOS Device Driver Page 5 of 33

2 Installation
Following files are located in the directory TDRV010-SW-72 on the distribution media:

TDRV010-SW-72-1.0.1.pdf This manual in PDF format
TDRV010-SW-72-SRC.tar Device Driver and Example sources
Release.txt Information about the Device Driver Release

The TAR archive TDRV010-SW-72-SRC.tar contains the following files and directories:

tdrv010.c Driver source code
tdrv010.h Definitions and data structures for driver and application
tdrv010def.h Definitions and data structures for the driver
sja1000.h Definitions for SJA1000 controller
tdrv010_info.c Device information definition
tdrv010_info.h Device information definition header
tdrv010.cfg Driver configuration file include
tdrv010.import Linker import file
Makefile Device driver make file
example/tdrv010exa.c Example application source
example/Makefile Example application make file

In order to perform a driver installation first extract the TAR file to a temporary directory, then follow
the steps below:

1. Create a new directory in the system drivers directory path /sys/drivers.xxx, where xxx represents
the BSP that supports the target hardware.

For example: /sys/drivers.pp_drm/tdrv010 or /sys/drivers.cpci_x86/tdrv010

2. Copy the following files to this directory:
- tdrv010.c
- tdrv010def.h
- sja1000.h
- tdrv010.import
- Makefile

3. Copy tdrv010.h to /usr/include/

4. Copy tdrv010_info.c to /sys/devices.xxx/ or /sys/devices if /sys/devices.xxx does not exist (xxx
represents the BSP).

5. Copy tdrv010_info.h to /sys/dheaders/

6. Copy tdrv010.cfg to /sys/cfg.xxx/, where xxx represents the BSP for the target platform. For
example: /sys/cfg.ppc or /sys/cfg.x86

TDRV010-SW-72 - LynxOS Device Driver Page 6 of 33

2.1 Device Driver Installation
The two methods of driver installation are as follows:

 Static Installation
 Dynamic Installation (only native LynxOS systems)

2.1.1 Static Installation

With this method, the driver object code is linked with the kernel routines and is installed during
system start-up.

2.1.1.1 Build the driver object

1. Change to the directory /sys/drivers.xxx/tdrv010, where xxx represents the BSP that supports the
target hardware.

2. To update the library /sys/lib/libdrivers.a enter:

make install

2.1.1.2 Create Device Information Declaration

1. Change to the directory /sys/devices.xxx/ or /sys/devices if /sys/devices.xxx does not exist (xxx
represents the BSP).

2. Add the following dependencies to the Makefile

DEVICE_FILES_all = ... tdrv010_info.x

And at the end of the Makefile

tdrv010_info.o:$(DHEADERS)/tdrv010_info.h

3. To update the library /sys/lib/libdevices.a enter:

make install

2.1.1.3 Modify the Device and Driver Configuration File

In order to insert the driver object code into the kernel image, an appropriate entry in file CONFIG.TBL
must be created.

1. Change to the directory /sys/lynx.os/ respective /sys/bsp.xxx, where xxx represents the BSP that
supports the target hardware.

2. Create an entry at the end of the file CONFIG.TBL

Insert the following entry at the end of this file.

I:tdrv010.cfg

TDRV010-SW-72 - LynxOS Device Driver Page 7 of 33

2.1.1.4 Rebuild the Kernel

1. Change to the directory /sys/lynx.os/ (/sys/bsp.xxx)

2. Enter the following command to rebuild the kernel:

make install

3. Reboot the newly created operating system by the following command (not necessary for KDIs):

reboot –aN

The N flag instructs init to run mknod and create all the nodes mentioned in the new nodetab.

4. After reboot you should find the following new devices (depends on the device configuration):
/dev/tdrv010a1, /dev/tdrv010a2, …

TDRV010-SW-72 - LynxOS Device Driver Page 8 of 33

2.1.2 Dynamic Installation

This method allows you to install the driver after the operating system is booted. The driver object
code is attached to the end of the kernel image and the operating system dynamically adds this driver
to its internal structures. The driver can also be removed dynamically.

2.1.2.1 Build the driver object

1. Change to the directory /sys/drivers.xxx/tdrv010, where xxx represents the BSP that supports the
target hardware.

2. To make the dynamic link-able driver enter :

make dldd

2.1.2.2 Create Device Information Declaration

1. Change to the directory /sys/drivers.xxx/tdrv010, where xxx represents the BSP that supports the
target hardware.

2. To create a device definition file for the major device (this works only on native systems)

make t010info

3. To install the driver enter:

drinstall –c tdrv010.obj

If successful, drinstall returns a unique <driver-ID>

4. To install the major device enter:

devinstall –c –d <driver-ID> t010info

The <driver-ID> is returned by the drinstall command

5. To create nodes for both minor devices enter:

mknod /dev/tdrv010a1 c <major_no> 0

mknod /dev/tdrv010a2 c <major_no> 1

The <major_no> is returned by the devinstall command.

If all steps are successfully completed, the TDRV010 is ready to use.

2.1.2.3 Uninstall dynamic loaded driver

To uninstall the TDRV010 device enter the following commands:

devinstall –u –c <device-ID>
drinstall –u <driver-ID>

TDRV010-SW-72 - LynxOS Device Driver Page 9 of 33

2.1.3 Device Information Definition File

The device information definition contains information necessary to install the TDRV010 major device.

The implementation of the device information definition is done through a C structure, which is defined
in the header file tdrv010_info.h.

This structure contains the following parameter:

PCIBusNumber Contains the PCI bus number at which the supported device is connected.
Valid bus numbers are in range from 0 to 255.

PCIDeviceNumber Contains the device number (slot) at which the supported device is
connected. Valid device numbers are in range from 0 to 31.

If both PCIBusNumber and PCIDeviceNumber are –1 then the driver will auto scan for
supported devices. The first device found in the scan order will be allocated by the driver for
this major device.

Already allocated devices can’t be allocated twice. This is important to know if there are more
than one TDRV010 major devices.

A device information definition is unique for every TDRV010 major device. The file tdrv010_info.c on
the distribution media contains two device information declarations, tdrv010a_info for the first major
device and tdrv010b_info for the second major device.

If the driver should support more than two major devices it is necessary to copy and paste an existing
declaration and rename it with a unique name, for example tdrv010c_info, tdrv010d_info and so on.

It is also necessary to modify the device and driver configuration file, respectively the
configuration include file tdrv010.cfg.

The following device declaration information uses the auto find method to detect a supported device
on the PCI bus.

TDRV010_INFO tdrv010a_info = {

-1, /* Auto find the device on any PCI bus */
-1,

};

TDRV010-SW-72 - LynxOS Device Driver Page 10 of 33

2.1.4 Configuration File: CONFIG.TBL

The device and driver configuration file CONFIG.TBL contains entries for device drivers and its major
and minor device declarations. Each time the system is rebuild, the config utility read this file and
produces a new set of driver and device configuration tables and a corresponding nodetab.

To install the TDRV010 driver and devices into the LynxOS system, the configuration include file
tdrv010.cfg must be included in the CONFIG.TBL (see also chapter 2.1.1.3).

The file tdrv010.cfg on the distribution disk contains the driver entry (C:tdrv010:\....) and two major
device entries (D:TDRV010 1:tdrv010a_info:: and D:TDRV010 2:tdrv010b_info::).

If the driver should support more than one major device, the following entries for major devices must
be enabled by removing the comment character (#). By copy and paste an existing major and minor
entries and renaming the new entries, it is possible to add any number of additional TDRV010
devices.

This example shows a driver entry with one major device and one minor device:

Format:
C:driver-name:open:close:read:write:select:control:install:uninstall
D:device-name:info-block-name:raw-partner-name
N:node-name:minor-dev

C:tdrv010:\
:tdrv010open:tdrv010close:::\
::tdrv010ioctl:tdrv010install:tdrv010uninstall

D:TDRV010 1:tdrv010a_info::
N:tdrv010a1:0
N:tdrv010a2:1
D:TDRV010 2:tdrv010b_info::
N:tdrv010b1:0
N:tdrv010b2:1

The configuration above creates the following nodes in the /dev directory.

/dev/tdrv010a1 /dev/tdrv010a2 /dev/tdrv010b1 /dev/tdrv010b2

2.2 Receive Queue Configuration
Received CAN messages will be stored in a FIFO buffer. The depth of the FIFO can be adapted by
changing the following symbols in tdrv010def.h.

TDRV010_RX_FIFO_SIZE Defines the depth of the message FIFO buffer (default = 100). Valid
numbers are in range between 1 and MAXINT.

TDRV010-SW-72 - LynxOS Device Driver Page 11 of 33

3 TDRV010 Device Driver Programming
LynxOS system calls are all available directly to any C program. They are implemented as ordinary
function calls to "glue" routines in the system library, which trap to the OS code.

Note that many system calls use data structures, which should be obtained in a program from
appropriate header files. Necessary header files are listed with the system call synopsis.

3.1 open()

NAME

open() - open a file

SYNOPSIS

#include <sys/file.h>
#include <sys/types.h>
#include <fcntl.h>

int open (char *path, int oflags[, mode_t mode])

DESCRIPTION

Opens a file (TDRV010 device) named in path for reading and writing. The value of oflags indicates
the intended use of the file. In case of a TDRV010 device oflags must be set to O_RDWR to open the
file for both reading and writing.

The mode argument is required only when a file is created. Because a TDRV010 device already
exists this argument is ignored.

EXAMPLE

int fd

fd = open ("/dev/tdrv010a1", O_RDWR);

RETURNS

open returns a file descriptor number if successful, or –1 on error.

SEE ALSO

LynxOS System Call - open()

TDRV010-SW-72 - LynxOS Device Driver Page 12 of 33

3.2 close()

NAME

close() – close a file

SYNOPSIS

int close(int fd)

DESCRIPTION

This function closes an opened device.

EXAMPLE

int result;

result = close(fd);

RETURNS

close returns 0 (OK) if successful, or –1 on error

SEE ALSO

LynxOS System Call - close()

TDRV010-SW-72 - LynxOS Device Driver Page 13 of 33

3.3 ioctl()

NAME

ioctl() – I/O device control

SYNOPSIS

#include <ioctl.h>
#include <tdrv010.h>

int ioctl (int fd, int request, char *arg)

DESCRIPTION

ioctl provides a way of sending special commands to a device driver. The call sends the value of
request and the pointer arg to the device associated with the descriptor fd.

The following ioctl codes are supported by the driver and are defined in tdrv010.h:

Symbol Meaning

TDRV010_READ Read a CAN message
TDRV010_WRITE Write a CAN message

TDRV010_BITTIMING Setup bit-timing
TDRV010_SETFILTER Setup acceptance filter
TDRV010_BUSON Enter bus ON mode

TDRV010_BUSOFF Enter bus OFF mode

TDRV010_FLUSH Flush receive FIFO
TDRV010_CANSTATUS Read CAN status from controller

TDRV010_ENABLE_SELFTEST Enable self test mode
TDRV010_DISABLE_SELFTEST Disable self test mode
TDRV010_ENABLE_LISTENONLY Enable listen only mode

TDRV010_DISABLE_LISTENONLY Disable listen only mode

TDRV010_SETLIMIT Set warning limit

See behind for more detailed information on each control code.

TDRV010-SW-72 - LynxOS Device Driver Page 14 of 33

RETURNS

ioctl returns 0 if successful, or –1 on error.

On error, errno will contain a standard error code (see also LynxOS System Call – ioctl).

SEE ALSO

LynxOS System Call - ioctl().

tdrv010exa.c programming example

TDRV010-SW-72 - LynxOS Device Driver Page 15 of 33

3.3.1 TDRV010_READ

NAME

TDRV010_READ – Read a CAN message

DESCRIPTION

This function reads a CAN message from the device driver receive queue. A pointer to the callers
message buffer (TDRV010_MSG_BUF) must be passed by the parameter arg to the device.

The TDRV010_MSG_BUF structure has the following layout:

typedef struct {
unsigned long Identifier;
unsigned char IOFlags;
unsigned char MsgLen;
unsigned char Data[8];
long Timeout;
unsigned char Status;

} TDRV010_MSG_BUF;

Members

Identifier

Obtains the message identifier of the read CAN message.

IOFlags

Obtains CAN message attributes as a set of bit flags. The following attribute flags are possible:
TDRV010_EXTENDED Set if the received message is an extended message frame.

Reset for standard message frames.
TDRV010_REMOTE_FRAME Set if the received message is a remote transmission request

(RTR) frame.

MsgLen

Obtains the number of message data bytes (0...8).

Data[8]

This buffer receives up to 8 data bytes. Data[0] receives message Data 0, Data[1] receives
message Data 1 and so on.

Timeout
Specifies the amount of time (in ticks) the caller is willing to wait for execution of read.

TDRV010-SW-72 - LynxOS Device Driver Page 16 of 33

Status
Obtains status information about overrun conditions either in the CAN controller or intermediate
software FIFO.
TDRV010_SUCCESS No messages lost

TDRV010_FIFO_OVERRUN One or more messages were overwritten in the
receive queue FIFO. This problem occurs if the FIFO
is too small for the application read interval.

TDRV010_MSGOBJ_OVERRUN One or more messages were overwritten in the CAN
controller message FIFO because the interrupt
latency is too large. Reduce the CAN bit rate or
upgrade the system speed.

EXAMPLE

int fd;
int result;
TDRV010_MSG_BUF MsgBuf;

MsgBuf.Timeout = 1000; /* ticks */

result = ioctl(fd, TDRV010_READ, (char*)&MsgBuf);

if (result < 0) {
/* process read error */

}

ERRORS

EINTR The function was cancelled.
ENXIO Illegal minor device number

ETIMEDOUT The maximum allowed time to finish the read request is
exhausted.

ENETDOWN The controller is in bus OFF state and no message is available in
the specified receive queue.
Note, as long as CAN messages are available in the receive
queue FIFO, bus OFF conditions were not reported by a read
function. This means you can read all CAN messages out of the
receive queue FIFO during bus OFF state without an error result.

Other returned error codes are system error conditions.

TDRV010-SW-72 - LynxOS Device Driver Page 17 of 33

3.3.2 TDRV010_WRITE

NAME

TDRV010_WRITE – Write a CAN message

DESCRIPTION

This function writes a CAN message to the CAN bus. A pointer to the callers message buffer
(TDRV010_MSG_BUF) must be passed by the argument arg to the device.

The TDRV010_MSG_BUF structure has the following layout:

typedef struct {
unsigned long Identifier;
unsigned char IOFlags;
unsigned char MsgLen;
unsigned char Data[8];
long Timeout;
unsigned char Status;

} TDRV010_MSG_BUF;

Members

Identifier

Contains the message identifier of the CAN message to write.

IOFlags

Contains a set of bit flags, which define message attributes and controls the write operation. To
set more than one bit flag the predefined macros must be binary OR’ed.

TDRV010_EXTENDED Transmit an extended message frame. If this macro isn't set
or the "dummy" macro TDRV010_STANDARD is set a
standard frame will be transmitted.

TDRV010_REMOTE_FRAME A remote transmission request (RTR bit is set) will be
transmitted.

TDRV010_SINGLE_SHOT No re-transmission will be performed if an error occurred or
the arbitration will be lost during transmission (single-shot
transmission).

TDRV010_SELF_RECEPTION The message will be transmitted and simultaneously
received if the acceptance filter is set to the corresponding
identifier.

MsgLen
Contains the number of message data bytes (0...8).

TDRV010-SW-72 - LynxOS Device Driver Page 18 of 33

Data[8]
This buffer contains up to 8 data bytes. Data[0] contains message Data 0, Data[1] contains
message Data 1 and so on.

Timeout

Specifies the amount of time (in ticks) the caller is willing to wait for execution of write.

Status

Unused, set to 0.

EXAMPLE

int fd;
int result;
TDRV010_MSG_BUF MsgBuf;

MsgBuf.Identifier = 1234;
MsgBuf.Timeout = 200;
MsgBuf.IOFlags = TDRV010_EXTENDED | TDRV010_SELF_RECEPTION;
MsgBuf.MsgLen = 2;
MsgBuf.Data[0] = 0xaa;
MsgBuf.Data[1] = 0x55;

result = ioctl(fd, TDRV010_WRITE, (char*)&MsgBuf);

if (result < 0) {
/* process write error */

}

ERRORS

EINTR The function was cancelled.
ENXIO Illegal minor device number

ETIMEDOUT The allowed time to finish the write request is elapsed. This
occurs if the CAN bus is overloaded and the priority of the
message identifier is too low, no other node is online or the
controller enters the bus OFF state.

ENETDOWN The controller is in bus OFF state and unable to transmit
messages.

Other returned error codes are system error conditions.

TDRV010-SW-72 - LynxOS Device Driver Page 19 of 33

3.3.3 TDRV010_BITTIMING

NAME

TDRV010_BITTIMING – Setup bit timing

DESCRIPTION

This function modifies the bit timing registers of the CAN controller to setup a new CAN bus transfer
speed. A pointer to the callers parameter buffer (TDRV010_TIMING) must be passed by the argument
arg to the device.

Keep in mind to setup a valid bit timing value before changing into the Bus On state.

The TDRV010_TIMING structure has the following layout:

typedef struct {
unsigned short TimingValue;
unsigned short ThreeSamples;

} TDRV010_TIMING, *PTDRV010_TIMING;

TimingValue

This parameter holds the new value for the bit timing register 0 (bit 0...7) and for the bit timing
register 1 (bit 8...15). Possible transfer rates are between 20 kbit per second and 1 Mbit per
second. The include file 'tdrv010.h' contains predefined transfer rate symbols
(TDRV010_20KBIT ... TDRV010_1MBIT).
For other transfer rates please follow the instructions of the SJA1000 Product Specification,
which is also part of the engineering kit TPMC310-EK and TPMC810-EK.

ThreeSamples
If this parameter is TRUE (1) the CAN bus is sampled three times per bit time instead of one.

Use one sample point for faster bit rates and three sample points for slower bit rates to make
the CAN bus more immune against noise spikes.

This function will be accepted only in reset mode (bus OFF). Enter TDRV010_BUSOFF first,
otherwise you will get an error EACCES.

TDRV010-SW-72 - LynxOS Device Driver Page 20 of 33

EXAMPLE

int fd;
int result;
TDRV010_TIMING BitTimingParam;

BitTimingParam.TimingValue = TDRV010_100KBIT;
BitTimingParam.ThreeSamples = FALSE;

result = ioctl(fd, TDRV010_TIMING, (char*)&BitTimingParam);

if (result < 0) {
/* handle ioctl error */

}

ERRORS

EACCES Permission denied. The controller is currently in bus ON state.
Please enter the bus OFF state before changing the bit timing.

Other returned error codes are system error conditions.

TDRV010-SW-72 - LynxOS Device Driver Page 21 of 33

3.3.4 TDRV010_SETFILTER

NAME

TDRV010_SETFILTER – Setup acceptance filter

DESCRIPTION

This function modifies the acceptance filter of the specified CAN controller device.

The acceptance filter compares the received identifier with the acceptance filter and decides whether
a message should be accepted or not. If a message passes the acceptance filter it is stored in the
receive FIFO.

The acceptance filter is defined by the acceptance code registers and the acceptance mask registers.
The bit patterns of messages to be received are defined in the acceptance code register.

The corresponding acceptance mask registers allow defining certain bit positions to be "don't care" (a
1 at a bit position means "don't care").

A pointer to the callers parameter buffer (TDRV010_FILTER) must be passed by the argument arg to
the device.

The TDRV010_FILTER structure has the following layout:

typedef struct {
int SingleFilter;
unsigned long AcceptanceCode;
unsigned long AcceptanceMask;

} TDRV010_FILTER, *PTDRV010_FILTER;

SingleFilter
Set TRUE (1) for single filter mode.
Set FALSE (0) for dual filter mode.

AcceptanceCode

The contents of this parameter will be written to acceptance code register of the controller.

AcceptanceMask

The contents of this parameter will be written to the acceptance mask register of the controller.

A detailed description of the acceptance filter and possible filter modes can be found in the
SJA1000 Product Specification Manual.

This function will be accepted only in reset mode (bus OFF). Enter TDRV010_BUSOFF first,
otherwise you will get an error EACCES.

TDRV010-SW-72 - LynxOS Device Driver Page 22 of 33

EXAMPLE

int fd;
int result;
TDRV010_FILTER AcceptFilter;

/* Not relevant because all bits are "don't care" */
AcceptFilter.AcceptanceCode = 0x0;

/* Mark all bit positions don't care */
AcceptFilter.AcceptanceMask = 0xffffffff;

/* Single Filter Mode */
AcceptFilter.SingleFilter = TRUE;

result = ioctl(fd, TDRV010_SETFILTER, (char*)&AcceptFilter);

if (result < 0) {
/* handle ioctl error */

}

ERRORS

EACCES Permission denied. The controller is currently in bus ON state.
Please enter the bus OFF state first.

Other returned error codes are system error conditions.

TDRV010-SW-72 - LynxOS Device Driver Page 23 of 33

3.3.5 TDRV010_BUSON

NAME

TDRV010_BUSON – Enter the bus ON state

DESCRIPTION

This function sets the CAN controller into the bus ON state.

After an abnormal rate of occurrences of errors on the CAN bus or after driver startup, the CAN
controller enters the bus OFF state. This control function resets the "reset mode" bit in the mode
register. The CAN controller begins the bus OFF recovery sequence and resets both transmit and
receive error counters. If the CAN controller counts 128 packets of 11 consecutive recessive bits on
the CAN bus, the bus OFF state is exited.

Before the driver is able to communicate over the CAN bus after driver startup, this control
function must be executed.

EXAMPLE

int fd;
int result;

result = ioctl(fd, TDRV010_BUSON, NULL);

if (result < 0) {
/* handle ioctl error */

}

ERRORS

ENETDOWN Unable to enter the bus ON mode.
Other returned error codes are system error conditions.

TDRV010-SW-72 - LynxOS Device Driver Page 24 of 33

3.3.6 TDRV010_BUSOFF

NAME

TDRV010_BUSOFF – Enter the bus OFF state

DESCRIPTION

This function sets the specified CAN controller into the bus OFF state.

After execution of this control function the CAN controller is completely removed from the CAN bus
and cannot communicate until the control function TDRV010_BUSON is executed.

EXAMPLE

int fd;
int result;

result = ioctl(fd, TDRV010_BUSOFF, NULL);

if (result < 0) {
/* handle ioctl error */

}

ERRORS

EIO Unable to enter the bus OFF mode.
Other returned error codes are system error conditions.

TDRV010-SW-72 - LynxOS Device Driver Page 25 of 33

3.3.7 TDRV010_FLUSH

NAME

TDRV010_FLUSH – Flush the message receive FIFO

DESCRIPTION

This function flushes the FIFO buffer of received messages.

EXAMPLE

int fd;
int result;

result = ioctl(fd, TDRV010_FLUSH, NULL);

if (result < 0) {
/* handle ioctl error */

}

ERRORS

No driver specific errors will be returned.

TDRV010-SW-72 - LynxOS Device Driver Page 26 of 33

3.3.8 TDRV010_CANSTATUS

NAME

TDRV010_CANSTATUS – Read CAN controller status information

DESCRIPTION

This function returns the actual contents of several CAN controller registers for diagnostic purposes.

A pointer to the callers status buffer (TDRV010_STATUS) must be passed by the argument arg to the
driver.

The TDRV010_STATUS structure has the following layout:

typedef struct {
unsigned char ArbitrationLostCapture;
unsigned char ErrorCodeCapture;
unsigned char TxErrorCounter;
unsigned char RxErrorCounter;
unsigned char ErrorWarningLimit;
unsigned char StatusRegister;
unsigned char ModeRegister;
unsigned char RxMessageCounterMax;

} TDRV010_STATUS, *PTDRV010_STATUS;

ArbitrationLostCapture
Contents of the arbitration lost capture register. This register contains information about the bit
position of losing arbitration.

ErrorCodeCapture

Contents of the error code capture register. This register contains information about the type
and location of errors on the bus.

TxErrorCounter
Contents of the TX error counter register. This register contains the current value of the transmit
error counter.

RxErrorCounter

Contents of the RX error counter register. This register contains the current value of the receive
error counter.

ErrorWarningLimit
Contents of the error warning limit register.

StatusRegister
Contents of the status register.

TDRV010-SW-72 - LynxOS Device Driver Page 27 of 33

ModeRegister
Contents of the mode register.

RxMessageCounterMax
Contains the peak value of messages in the software receive FIFO. This internal counter value
will be reset to 0 after reading.

EXAMPLE

int fd;
int result;
TDRV010_STATUS CanStatus;

result = ioctl(fd, TDRV010_STATUS, (char*)&CanStatus);

if (result < 0) {
/* handle ioctl error */

}

ERRORS

No driver specific errors will be returned.

TDRV010-SW-72 - LynxOS Device Driver Page 28 of 33

3.3.9 TDRV010_ENABLE_SELFTEST

NAME

TDRV010_ ENABLE_SELFTEST – Enable self test mode

DESCRIPTION

This function enables the self test facility of the SJA1000 CAN controller.

In this mode a full node test is possible without any other active node on the bus using the self
reception facility. The CAN controller will perform a successful transmission even if there is no
acknowledge received.

Also in self test mode the normal functionality is given, that means the CAN controller is able to
receive messages from other nodes and can transmit message to other nodes if any connected.

This function will be accepted only in reset mode (bus OFF). Enter TDRV010_BUSOFF first,
otherwise you will get an error EACCES.

EXAMPLE

int fd;
int result;

result = ioctl(fd, TDRV010_ENABLE_SELFTEST, NULL);

if (result < 0) {
/* handle ioctl error */

}

ERRORS

EACCES Permission denied. The controller is currently in bus ON state.
Please enter the bus OFF state first.

Other returned error codes are system error conditions.

TDRV010-SW-72 - LynxOS Device Driver Page 29 of 33

3.3.10 TDRV010_DISABLE_SELFTEST

NAME

TDRV010_ DISBALE_SELFTEST – Disable self test mode

DESCRIPTION

This function disables the self test facility of the SJA1000 CAN controller, which was enabled before
with the function TDRV010_ENABLE_SELFTEST.

The optional argument pointer can be NULL.

This function will be accepted only in reset mode (bus OFF). Enter TDRV010_BUSOFF first,
otherwise you will get an error EACCES.

EXAMPLE

int fd;
int result;

result = ioctl(fd, TDRV010_DISABLE_SELFTEST, NULL);

if (result < 0) {
/* handle ioctl error */

}

ERRORS

EACCES Permission denied. The controller is currently in bus ON state.
Please enter the bus OFF state first.

Other returned error codes are system error conditions.

TDRV010-SW-72 - LynxOS Device Driver Page 30 of 33

3.3.11 TDRV010_ENABLE_LISTENONLY

NAME

TDRV010_ENABLE_LISTENONLY – Enable listen only mode

DESCRIPTION

This function enables the listen only facility of the SJA1000 CAN controller.

In this mode the CAN controller would give no acknowledge to the CAN-bus, even if a message is
received successfully. Message transmission is not possible. All other functions can be used like in
normal mode.

This mode can be used for software driver bit rate detection and 'hot-plugging'.

This function will be accepted only in reset mode (bus OFF). Enter TDRV010_BUSOFF first,
otherwise you will get an error EACCES.

EXAMPLE

int fd;
int result;

result = ioctl(fd, TDRV010_ENABLE_LISTENONLY, NULL);

if (result < 0) {
/* handle ioctl error */

}

ERRORS

EACCES Permission denied. The controller is currently in bus ON state.
Please enter the bus OFF state first.

Other returned error codes are system error conditions.

TDRV010-SW-72 - LynxOS Device Driver Page 31 of 33

3.3.12 TDRV010_DISABLE_LISTENONLY

NAME

TDRV010_DISABLE_LISTENONLY – Disable listen only mode

DESCRIPTION

This function disables the self test facility of the SJA1000 CAN controller, which was enabled before
with the function TDRV010_ENABLE_LISTENONLY.

This function will be accepted only in reset mode (bus OFF). Enter TDRV010_BUSOFF first,
otherwise you will get an error EACCES.

EXAMPLE

int fd;
int result;

result = ioctl(fd, TDRV010_DISABLE_LISTENONLY, NULL);

if (result < 0) {
/* handle ioctl error */

}

ERRORS

EACCES Permission denied. The controller is currently in bus ON state.
Please enter the bus OFF state first.

Other returned error codes are system error conditions.

TDRV010-SW-72 - LynxOS Device Driver Page 32 of 33

3.3.13 TDRV010_SET_LIMIT

NAME

TDRV010_SET_LIMIT – Set new error warning limit

DESCRIPTION

This function sets a new error warning limit in the corresponding CAN controller register. The default
value (after hardware reset) is 96.

The new error warning limit will be set in an unsigned char variable. A pointer to this variable is passed
by the argument arg to the driver.

This function will be accepted only in reset mode (bus OFF). Enter TDRV010_BUSOFF first,
otherwise you will get an error EACCES.

EXAMPLE

int fd;
int result;
unsigned char ErrorLimit ;

ErrorLimit = 20;
result = ioctl(fd, TDRV010_SET_LIMIT, (char*)&ErrorLimit);

if (result < 0) {
/* handle ioctl error */

}

ERRORS

EACCES Permission denied. The controller is currently in bus ON state.
Please enter the bus OFF state first.

Other returned error codes are system error conditions.

TDRV010-SW-72 - LynxOS Device Driver Page 33 of 33

4 Debugging and Diagnostic
If the driver will not work properly, please enable debug outputs by defining the symbols DEBUG,
DEBUG_TPMC, and DEBUG_PCI in file tdrv010.c.

The debug output should appear on the console. If not, please check the symbol KKPF_PORT in
uparam.h. This symbol should be configured to a valid COM port (e.g. SKDB_COM1).

The debug output displays the device information data for the current major device like this.

TDRV010 Device Driver Install
Bus = 1 Dev = 2 Func = 0
[00] = 01361498
[04] = 02800000
[08] = 02800000
[0C] = 00000000
[10] = 84000000
[14] = 00804001
[18] = 84001000
[1C] = 84002000
[20] = 00000000
[24] = 00000000
[28] = 00000000
[2C] = 000A1498
[30] = 00000000
[34] = 00000040
[38] = 00000000
[3C] = 0000010B

The debug output above is only an example. Debug output on other systems may be different
for addresses and data in some locations.

	Introduction
	Installation
	Device Driver Installation
	Static Installation
	Build the driver object
	Create Device Information Declaration
	Modify the Device and Driver Configuration File
	Rebuild the Kernel

	Dynamic Installation
	Build the driver object
	Create Device Information Declaration
	Uninstall dynamic loaded driver

	Device Information Definition File
	Configuration File: CONFIG.TBL

	Receive Queue Configuration

	TDRV010 Device Driver Programming
	open()
	close()
	ioctl()
	TDRV010_READ
	TDRV010_WRITE
	TDRV010_BITTIMING
	TDRV010_SETFILTER
	TDRV010_BUSON
	TDRV010_BUSOFF
	TDRV010_FLUSH
	TDRV010_CANSTATUS
	TDRV010_ENABLE_SELFTEST
	TDRV010_DISABLE_SELFTEST
	TDRV010_ENABLE_LISTENONLY
	TDRV010_DISABLE_LISTENONLY
	TDRV010_SET_LIMIT

	Debugging and Diagnostic

