TEWS &

The Embedded I/O Company TECHNOLOGIES

TDRV010-SW-82

Linux Device Driver
Isolated 2x CAN Bus

Version 1.0.x

User Manual

Issue 1.0.1
March 2009
TEWS TECHNOLOGIES GmbH TEWS TECHNOLOGIES LLC
Am Bahnhof 7 Phone: +49 (0) 4101 4058 0 9190 Double Diamond Parkway, Phone: +1 (775) 850 5830

25469 Halstenbek, Germany Fax: +49 (0) 4101 4058 19 Suite 127, Reno, NV 89521, USA Fax: +1 (775) 201 0347
www.tews.com e-mail: info@tews.com www.tews.com e-mail: usasales@tews.com

TEWS &<

TECHNOLOGIES

TDRV010-SW-82
))) This document contains information, which is
Linux Device Driver proprietary to TEWS TECHNOLOGIES GmbH. Any
Isolated 2x CAN BUS reproduction without written permission is forbidden.

Supported Modules: TEWS TECHNOLOGIES GmbH has made any
TPMC310 ' effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH

TPMC810 ; .
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.
©2007-2009 by TEWS TECHNOLOGIES GmbH
Issue Description Date
1.0.0 First Issue May 9, 2007
1.0.1 Bitrate values corrected March 9, 2009

TDRV010-SW-82 — Linux Device Driver Page 2 of 42

TEWS &<

TECHNOLOGIES

Table of Contents

1 TN RG] D] 6O I (O]) TP 4
2 N SR A AN 1 L0] TP 5
2.1 Build and iNStall the AEVICE AIIVEIi i e e e e e e e e e s e e e aaaaanas 5

2.2 UNINSTAI TN AEVICE ATIVET ..eeieeeeeeeee ettt e e et e e st e e e et e e e e s e e s st e e aebaaaas 6

2.3 Install the device driver in the runnNing KErnel ... 6

2.4 Remove device driver from the running Kernel ... 6

2.5 Change Major DeVICE NUMDETccciiiieiee e et e e e e e e s s e e e e s e s saee e e e e e s s s snnre e e e e e e s e e snnnrnneeeees 7

2.6 Receive QUEUE CONFIGQUIATION ... it e et e e e e e e e e b reeeeaaeas 7

3 DEVICE INPUT/OUTPUT FUNCTIONS ...ttt 8
G 700 o o 1= o (S 8

I T o [0 11 =T § TP RRPT TP 10

I TS I To 1] £ I) TP PPETPT 11

3.3.1 TDRVO10 IOCXREAD...... oottt e e e e et e e e e e e e sabraaeeeaeas 13

3.3.2 TDRVOI10 IOCSWRITE ..ottt ettt e e e e et e e e e e e e st b e e e e e e e e e satbeaeeeaeas 16

3.3.3 TDRVO10 IOCSBITTIMINGcuttiiiiieeiiiiiiiiiree e e s sesiee e e e e e e s s e e e e e s s snnnsaneeeeeeeennnennneeaes 19

3.3.4 TDRVO10 IOCSSETFILTER ...utttiiiiieiiiiiiieiieee e sttt e e e s s r e e e e e s s e e e e e e e e s snnananeeees 21

3.3.5 TDRVOL10 IOCBUSON ...occciiiiiiitiiieee e e ssitie et e e e e s s st e e e e e e s ssaaaae e e e e e e s s snnasaneeeeeeessnsennneeees 23

3.3.6 TDRVO10 IOCBUSOFFccoiittiiiieee ettt e e e e e e e e e e e e e s s e e e e e e e e e snnennneeees 24

3.3.7 TDRVOL0 IOCFLUSH ...coii ittt ettt ettt e e s s e e e e e e e s e e e e e e e s snnnananeeaens 25

3.3.8 TDRVO10 IOCGCANSTATUS ..ottt e e e e et e e e e e e e sabraaeeeaeas 26

3.3.9 TDRVO010 IOCENABLE _SELFTEST ...ttt 28

3.3.10 TDRVO010 IOCDISABLE _SELFTEST ...ttt 29

3.3.11 TDRVO010 IOCENABLE_LISTENONLY ..ottt ettt 30

3.3.12 TDRVO010 IOCDISABLE_LISTENONLYuttiiiiiiiiiicieie ettt 31

3.3.13 TDRVOI10 IOCSSETLIMIT ...ttt e ettt e e e e e e e b e e e e e e e e e ennaeees 32

3.3.14 TDRVO10 _IOCTCANRESETottt e e e s e e e e e e e nnnnnees 33

3.3.15 TDRVO10 _IOCTCANSEL ...ccciicetieeeee ettt ettt e e e e s st e e e e e e e s snnarae e e e e e s e nnnnnnees 35

3.3.16 TDRVO10 _TOCTCANINT otteei ettt e e e e e st e e e e e s s et e e e e e e s st ae e e e e e e s s snneraeeeeeessannnnnees 37

3.4 Step by Step Driver INItialiZatioN ... 39

4 D] 1A €1 L0 1 1 40

TDRV010-SW-82 — Linux Device Driver Page 3 of 42

TEWS &<

TECHNOLOGIES

1 Introduction

The TDRV010-SW-82 Linux device driver allows the operation of the TDRV010 2x CAN PMC devices
conforming to the Linux I/O system specification. This includes a device-independent basic I/O
interface with open(), close() and ioctl() functions.

Special I/O operation that do not fit to the standard 1/O calls will be performed by calling the ioctl()
function with a specific function code and an optional function dependent argument.

Supported features:

Transmission and reception of Standard and Extended Identifiers
Standard bit rates from 20 kbit up to 1 Mbit and user defined bit rates
Message acceptance filtering

Single-Shot transmission

Listen only mode

Message self reception

Programmable error warning limit

Creates devices with dynamically allocated or fixed major device numbers
DEVFS and SYSFS (UDEV) support for automatic device node creation

YVVVVYVVVYYY

The TDRV010-SW-82 device driver supports the modules listed below:

TPMC310 Isolated 2 x CAN Bus (PMC, Conduction Cooled)
TPMC810 Isolated 2 x CAN Bus (PMC)

In this document all supported modules and devices will be called TDRV010. Specials for
certain devices will be advised.

To get more information about the features and use of TDRV010 devices it is recommended to read
the manuals listed below.

TPMC310, TPMC810 User manual
TPMC310, TPMC810 Engineering Manual
SJA1000 CAN Controller Manual

TDRV010-SW-82 — Linux Device Driver Page 4 of 42

2 Installation

TEWS &<

TECHNOLOGIES

Following files are located on the distribution media:

Directory path ‘TDRV010-SW-82":

TDRVO010-SW-82-SRC.tar.gz
TDRV010-SW-82-1.0.1.pdf
ChangelLog.txt

Release.txt

GZIP compressed archive with driver source code
PDF copy of this manual

Release history

Release information

For installation the files have to be copied to the desired target directory.

The GZIP compressed archive TDRV010-SW-82-SRC.tar.gz contains the following files and

directories:
Directory path ‘./tdrv010/";

tdrv010.c
tdrv010def.h
tdrv010.h

sjal1000.h
include/tpxxxhwdep.c
include/tpxxxhwdep.h
include/tpmodule.c
include/tpmodule.h
include/config.h
Makefile

makenode
example/tdrv010exa.c
example/Makefile

Driver source code

Driver include file

Driver include file for application program
Driver include file (CAN Controller Spec.)
Hardware dependent library

Hardware dependent library header file
Driver independent library

Driver independent library header file
Driver independent library header file
Device driver make file

Script to create device nodes in the file system
Example application

Example application make file

In order to perform an installation, extract all files of the archive TDRV010-SW-82-SRC.tar.gz to the

desired target directory.

2.1 Build and install the device driver

e Login as root

e Change to the target directory

e To create and install the driver in the module directory /lib/modules/<version> enter:

make install

e Only after the first build we have to execute depmod to create a new dependency description
for loadable kernel modules. This dependency file is later used by modprobe to automatically
load dependent kernel modules.

depmod —aq

TDRV010-SW-82 — Linux Device Driver

Page 5 of 42

TEWS &<

TECHNOLOGIES

2.2 Uninstall the device driver

e Login as root
e Change to the target directory

e To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

e Update kernel module dependency description file

depmod —aq

2.3 Install the device driver in the running kernel

e To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tdrv010drv

o After the first build or if you are using dynamic major device allocation it is necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a dynamic device file system (devfs or sysfs with udev) then you have to
skip running the makenode script. Instead of creating device nodes from the script the driver
itself takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TDRV010 CAN Channel found. The
first TDRV010 CAN Channel can be accessed with device node /dev/tdrv010_0, the second with
/dev/tdrv010_1, the third with /dev/tdrv010_2 and so on.

The assignment of device nodes to physical TDRV010 modules depends on the search order of the
PCI bus driver. For more details on channel assignment see # cat /proc/tews-tdrv010.

2.4 Remove device driver from the running kernel

o To remove the device driver from the running kernel login as root and execute the following
command:

modprobe tdrv010drv —r

If your kernel has enabled a dynamic device file system like devfs or sysfs (udev), all /dev/tdrv010_x
nodes will be automatically removed from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the response
“tdrv010drv: Device or resource busy” and the driver will still remain in the system until you close all
opened files and execute modprobe —r again.

TDRV010-SW-82 — Linux Device Driver Page 6 of 42

TEWS &<

TECHNOLOGIES

2.5 Change Major Device Number

The TDRVO010 driver uses dynamic allocation of major device numbers by default. If this isn’'t suitable
for the application it is possible to define a major number for the driver. If the kernel has enabled devfs
the driver will not use the symbol TDRV010_MAJOR.

To change the major number edit the file tdrv010def.h, change the following symbol to an appropriate
value and enter make install to create a new driver.

TDRV010_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

Example:

#defi ne TDRVO10_MAJOR 122

Be sure that the desired major number isn’t used by other drivers. Please check /proc/devices
to see which numbers are free.

2.6 Receive Queue Configuration

Received CAN messages will be stored in a FIFO buffer. The depth of the FIFO can be adapted by
changing the following symbol in tdrv010def.h.

TDRV010 RX_FIFO_SIZE Defines the depth of the message FIFO buffer (default = 100). Valid
numbers are in range between 1 and MAXINT.

TDRV010-SW-82 — Linux Device Driver Page 7 of 42

3 Device Input/Output functions

This chapter describes the interface to the device driver I/O system.

3.1 open()

NAME

open() - open a file descriptor

SYNOPSIS

#include <fcntl.h>

int open (const char *filename, int flags)

DESCRIPTION

TEWS &<

TECHNOLOGIES

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise

OR of the appropriate parameters (using the | operator in C).

See also the GNU C Library documentation for more information about the open function and open

flags.

EXAMPLE

int fd;

fd = open(“/dev/tdrv010 0", O RDWR);

if (fd == -1)
{

/* handl e error condition */

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a

value of —1 is returned. The global variable errno contains the detailed error code.

TDRV010-SW-82 — Linux Device Driver

Page 8 of 42

TEWS &<

TECHNOLOGIES

ERRORS

E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description — Low-
Level Input/Output.

SEE ALSO

GNU C Library description — Low-Level Input/Output

TDRV010-SW-82 — Linux Device Driver Page 9 of 42

TEWS &<

TECHNOLOGIES

3.2 close()

NAME

close() — close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

i.l;.(Cl ose(fd) '=0)

{

/* handl e cl ose error conditions */
}
RETURNS

The normal return value from close is 0. In the case of an error, a value of —1 is returned. The global
variable errno contains the detailed error code.

ERRORS

E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description — Low-
Level Input/Output.

SEE ALSO

GNU C Library description — Low-Level Input/Output

TDRV010-SW-82 — Linux Device Driver Page 10 of 42

TEWS &<

TECHNOLOGIES

3.3 ioctl()

NAME

ioctl() — device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in tdrv010.h:

Function Description
TDRV010_IOCXREAD Receive a CAN message
TDRV010_IOCSWRITE Send a CAN message
TDRV010_IOCSBITTIMING Setup a new bit timing
TDRV010_IOCSSETFILTER Setup acceptance filter
TDRV010_IOCBUSON Enter the bus on state
TDRV010_IOCBUSOFF Enter the bus off state
TDRV010_IOCFLUSH Flush one or all receive queues
TDRV010 IOCGCANSTATUS Returns CAN controller status information
TDRV010_IOCENABLE_SELFTEST Enable self test mode
TDRV010_IOCDISABLE_SELFTEST Disable self test mode

TDRV010 IOCENABLE_LISTENONLY Enable listen only mode
TDRV010_IOCDISABLE_LISTENONLY Disable listen only mode

TDRV010_IOCSSETLIMIT Set new error warning limit

TDRV010_IOCTCANRESET Set reset/operating mode (TPMC310 only)
TDRV010_IOCTCANSEL Set silent/operating mode (TPMC310 only)
TDRV010_IOCTCANINT Enable/disable interrupts (TPMC310 only)

See behind for more detailed information on each control code.

TDRV010-SW-82 — Linux Device Driver Page 11 of 42

TEWS &<

TECHNOLOGIES

To use these TDRV010 specific control codes the header file tdrv010.h must be included in the
application

RETURNS

On success, zero is returned. In the case of an error, a value of —1 is returned. The global variable
errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the
requested ioctl function is unknown. Please check
the argument request.

Other function dependant error codes will be described for each ioctl code separately. Note, the
TDRVO010 driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TDRV010-SW-82 — Linux Device Driver Page 12 of 42

3.3.1 TDRVO01l0_IOCXREAD

NAME

TDRV010_IOCXREAD — Read a CAN message

DESCRIPTION

TEWS &<

TECHNOLOGIES

This ioctl function reads a CAN message from the driver's receive queue. A pointer to the caller’s
message buffer (TDRV010_MSG_BUF) is passed by the parameter argp to the driver.

typedef struct

{
unsigned long Identifier;
unsigned char IOFlags;
unsigned char MsgLen;
unsigned char Data[8];
long Timeout;
unsigned char Status;

} TDRV010_MSG_BUF, *PTDRV010_MSG_BUF;

Identifier

Receives the message identifier of the read CAN message.

IOFlags

Receives CAN message attributes as a set of bit flags. The following attribute flags are

possible:

Value
TDRV010 EXTENDED

TDRV010_REMOTE_FRAME

MsgLen

Description

Set if the received message is an extended
message frame. Reset for standard message
frames.

Set if the received message is a remote
transmission request (RTR) frame.

Receives the number of message data bytes (0...8).

Data

This buffer receives up to 8 data bytes. Data[0] receives message data 0, Data[l] receives

message data 1 and so on.

Timeout

Specifies the amount of time (in system ticks) the caller is willing to wait for execution of this
function. A value of 0 means wait indefinitely.

TDRV010-SW-82 — Linux Device Driver

Page 13 of 42

TEWS &<

TECHNOLOGIES

Status

This parameter receives status information about overrun conditions either in the CAN controller
or intermediate software FIFO.

Value Description
TDRV010_SUCCESS No messages lost
TDRV010_FIFO_OVERRUN At least one message was overwritten in the

receive queue FIFO. This problem occurs if the
FIFO is too small for the application read interval.

TDRV010_MSGOBJ OVERRUN At least one message was overwritten in the CAN
controller's message object because the interrupt
latency is too large. Reduce the CAN bit rate or
upgrade the system speed.

EXAMPLE

#i nclude “tdrv010. h

i nt fd;
i nt result;
TDRV010_ MSG BUF nsgBuf ;

nsgBuf . Ti meout = 200;
result = ioctl(fd, TDRV0O10_I| OCXREAD, &nsgBuf);
if (result < 0) {

/* read operation failed. */

} else {
/* process recei ved CAN nessage */

RETURNS

On success this function returns the size of structure TDRV010_MSG_BUF. In the case of an error, a
value of —1 is returned. The global variable errno contains the detailed error code.

TDRV010-SW-82 — Linux Device Driver Page 14 of 42

TEWS &<

TECHNOLOGIES

ERRORS

EINVAL Invalid argument. This error code is returned if the
size of the message buffer is too small.

EFAULT Invalid pointer to the message buffer.

ECONNREFUSED The controller is in bus off state and no message is
available in the driver receive queue. Note, as long
as CAN messages are available in the receive
gueue FIFO, bus off conditions are not reported by
a read function. This means you can read all CAN
messages out of the receive queue FIFO during
bus off state without an error result.

EAGAIN Resource temporarily unavailable; the call might
work if you try again later. This error occurs only if
the device is opened with the flag O _NONBLOCK
set.

ETIME The allowed time to finish the read request has
elapsed.

EINTR Interrupted function call; an asynchronous signal
occurred and prevented completion of the call.
When this happens, you should try the call again.

SEE ALSO

GNU C Library description — Low-Level Input/Output

TDRV010-SW-82 — Linux Device Driver Page 15 of 42

3.3.2 TDRVO010_IOCSWRITE

NAME

TDRV010_IOCSWRITE — Write a CAN message

DESCRIPTION

TEWS &<

TECHNOLOGIES

This ioctl function writes a CAN message to the device specified by filedes. A pointer to the caller's
message buffer (TDRV010_MSG_BUF) is passed by the parameter argp to the driver.

typedef struct

{
unsigned long Identifier;
unsigned char IOFlags;
unsigned char MsgLen;
unsigned char Data[8];
long Timeout;
unsigned char Status;

} TDRV010_MSG_BUF, *PTDRV010_MSG_BUF;

Identifier

Contains the message identifier of the CAN message to write.

IOFLags

Contains a set of bit flags, which define message attributes and controls the write operation. To
set more than one bit flag the predefined macros may be binary ORed.

Value
TDRV010 EXTENDED

TDRV010_REMOTE_FRAME

TDRV010_SINGLE_SHOT

TDRV010_SELF_RECEPTION

MsgLen

Description

Transmit an extended message frame. If this macro
isn't set or the "dummy" macro
TDRVO010_STANDARD is set a standard frame will
be transmitted.

A remote transmission request (RTR bit is set) will
be transmitted.

No re-transmission will be performed if an error
occurred or the arbitration will be lost during
transmission (single-shot transmission).

The message will be transmitted and
simultaneously received if the acceptance filter is
set to the corresponding identifier.

Contains the number of message data bytes (0..8).

Data

This buffer contains up to 8 data bytes. Data[0] contains message data 0, Data[1l] contains

message data 1 and so on.

TDRV010-SW-82 — Linux Device Driver

Page 16 of 42

TEWS &<

TECHNOLOGIES

Timeout
Specifies the amount of time (in system ticks) the caller is willing to wait for execution of this
function.

Status
This parameter is unused for this control function.

EXAMPLE

#i nclude “tdrv010. h”

i nt fd;
i nt result;
TDRV0O10_ MSG BUF nmegBuf ;

/*
** Wite two data bytes with extended identifier 1234 to
* % the CANbus and wait nmax. 200 ticks for execution.

** The transnmitted frame will be received simultaneously.

*/

nmsgBuf .l dentifier = 1234;

nmsgBuf . Ti meout = 200;

nsgBuf . | OFl ags = TDRVO10_EXTENDED | TDRV010_SELF RECEPTI ON;
nsgBuf . MsgLen = 2;

nsgBuf . Dat a[0] = Oxaa;

nmsgBuf . Dat a[1] = 0x55;

result = ioctl(fd, TDRV0O10_ | OCSWRI TE, &nsgBuf);

if (result < 0) {
printf("\nWite failed --> Error = %.\n", errno);

TDRV010-SW-82 — Linux Device Driver Page 17 of 42

TEWS &<

TECHNOLOGIES

RETURNS

On success this function returns the size of structure TDRV010_MSG_BUF. In the case of an error, a
value of —1 is returned. The global variable errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the
size of the message buffer is too small.

EFAULT Invalid pointer to the message buffer.

ECONNREFUSED The controller is in bus off state and unable to
transmit messages.

EAGAIN Resource temporarily unavailable; the call might
work if you try again later. This error occurs only if
the device is opened with the flag O _NONBLOCK
set.

ETIME The allowed time to finish the write request is

elapsed. This occurs if currently no message object
is available or if the CAN bus is overloaded and the
priority of the message identifier is too low.

EINTR Interrupted function call; an asynchronous signal
occurred and prevented completion of the call.
When this happens, you should try the call again.

SEE ALSO

GNU C Library description — Low-Level Input/Output

TDRV010-SW-82 — Linux Device Driver Page 18 of 42

TEWS &<

TECHNOLOGIES

3.3.3 TDRVO010_|IOCSBITTIMING

NAME

TDRV010_IOCSBITTIMING - Setup new bit timing

DESCRIPTION

This ioctl function modifies the bit timing register of the CAN controller to setup a new CAN bus
transfer speed. A pointer to the caller's parameter buffer (TDRV010_TIMING) is passed by the
argument pointer argp to the driver.

Keep in mind to setup a valid bit timing value before changing into the Bus On state.

typedef struct
{
unsigned short TimingValue;
unsigned short ThreeSamples;
}JTDRV010_TIMING, *PTDRV010_TIMING;

TimingValue

This parameter holds the new value for the bit timing register 0 (bit 0...7) and for the bit timing
register 1 (bit 8...15). Possible transfer rates are between 5 Kbit per second and 1 Mbit per
second. The include file 'tdrv010.h' contains predefined transfer rate symbols (TDRV010_5KBIT
... TDRVO010_1MBIT).

For other transfer rates please follow the instructions of the SJA1000 Product Specification,
which is also part of the TDRV010 engineering Kits.

ThreeSamples
If this parameter is TRUE (1) the CAN bus is sampled three times per bit time instead of one.

Use one sample point for faster bit rates and three sample points for slower bit rate to make
the CAN bus more resistant against noise spikes.

TDRV010-SW-82 — Linux Device Driver Page 19 of 42

TEWS &<

TECHNOLOGIES

EXAMPLE

#i ncl ude “tdrv010. h”

i nt fd;
i nt result;
TDRVO10_TI M NG Bi t Ti m ngPar am

TDRVO10_100KBI T;
0; /* FALSE */

Bi t Ti m ngPar am Ti mi ngVal ue
Bi t Ti m ngPar am Thr eeSanpl es

result = ioctl(fd, TDRVO10_I| OCSBI TTIM NG (char*) &Bit Ti mi ngParam ;

if (result < 0) {
/* handl e ioctl error */

SEE ALSO

tdrv010.h for predefined bus timing constants

SJA1000 Product Specification Manual — 6.5.1/2 BUS TIMING REGISTER

TDRV010-SW-82 — Linux Device Driver Page 20 of 42

TEWS &<

TECHNOLOGIES

3.3.4 TDRVO10_|IOCSSETFILTER

NAME

TDRV010_IOCSSETFILTER - Setup acceptance filter

DESCRIPTION

This ioctl function modifies the acceptance filter of the specified CAN controller device.

The acceptance filter compares the received identifier with the acceptance filter and decides whether
a message should be accepted or not. If a message passes the acceptance filter it is stored in the
RXFIFO.

The acceptance filter is defined by the acceptance code registers and the acceptance mask registers.
The bit patterns of messages to be received are defined in the acceptance code register.

The corresponding acceptance mask registers allow defining certain bit positions to be "don't care"
(a1 at a bit position means "don't care").

A pointer to the caller's parameter buffer (TDRV010_FILTER) is passed by the parameter pointer argp
to the driver.

typedef struct

{
int SingleFilter;
unsigned long AcceptanceCode;
unsigned long AcceptanceMask;

} TDRVO10_FILTER, *PTDRVO10_FILTER,;

SingleFilter
Set TRUE (1) for single filter mode. Set FALSE (0) for dual filter mode.

AcceptanceCode
The content of this parameter will be written to acceptance code register of the controller.

AcceptanceMask
The content of this parameter will be written to the acceptance mask register of the controller.

A detailed description of the acceptance filter and possible filter modes can be found in the
SJA1000 Product Specification Manual.

TDRV010-SW-82 — Linux Device Driver Page 21 of 42

TEWS &<

TECHNOLOGIES

EXAMPLE

#i ncl ude “tdrv010. h”

i nt fd;
i nt result;
TDRV010_FI LTER AcceptFilter;

/[* Mark all bit position don't care */
Accept Filter. AcceptanceMask = Oxffffffff;

/* Not relevant because all bits are "don't care" */
Accept Fil ter. Accept anceCode = 0xO0;

/[* Single Filter Mode */
AcceptFilter.SingleFilter = 1; /* TRUE */

result = ioctl(fd, TDRV0O10_| OCSSETFI LTER, (char*)&AcceptFilter);

if (result < 0) {
/* handl e ioctl error */

SEE ALSO

SJA1000 Product Specification Manual — 6.4.15 ACCEPTANCE FILTER

TDRV010-SW-82 — Linux Device Driver Page 22 of 42

TEWS &<

TECHNOLOGIES

3.3.5 TDRV010_|OCBUSON

NAME

TDRV010_IOCBUSON - Enter the bus on state

DESCRIPTION

This ioctl function sets the specified CAN controller into the Bus On state.

After an abnormal rate of occurrences of errors on the CAN bus or after driver startup, the CAN
controller enters the Bus Off state. This control function resets the "reset mode" bit in the mode
register. The CAN controller begins the busoff recovery sequence and resets the transmit and receive
error counters. If the CAN controller counts 128 packets of 11 consecutive recessive bits on the CAN
bus, the Bus Off state is exited.

The optional argument can be omitted for this ioctl function.

Before the driver is able to communicate over the CAN bus after driver startup, this control
function must be executed.

EXAMPLE

#i ncl ude “tdrv010. h”

int fd;
int result;

result = ioctl(fd, TDRVO10_| OCBUSON);

if (result < 0) {
/* handle ioctl error */

SEE ALSO

SJA1000 Product Specification Manual — 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-82 — Linux Device Driver Page 23 of 42

TEWS &<

TECHNOLOGIES

3.3.6 TDRV010_IOCBUSOFF

NAME

TDRV010_IOCBUSOFF - Enter the bus off state

DESCRIPTION

This ioctl function sets the specified CAN controller into the Bus Off state.

After execution of this control function the CAN controller is completely removed from the CAN bus
and cannot communicate until the control function TDRV010_IOCBUSON is executed. Note: During a
pending write of another concurrent thread it is not possible to set the device bus off.

The optional argument pointer can be omitted for this ioctl function.

EXAMPLE

#i nclude “tdrv010. h”

int fd;
int result;

result = ioctl(fd, TDRVO10_| OCBUSOFF);

if (result < 0) {
/* handle ioctl error */

}
ERRORS
EBUSY Another concurrent thread is writing to the device.
Try it again later.
EIO Unable to enter the BUSOFF mode.
SEE ALSO

SJA1000 Product Specification Manual — 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-82 — Linux Device Driver Page 24 of 42

TEWS &<

TECHNOLOGIES

3.3.7 TDRV01l0_|OCFLUSH

NAME

TDRV010_IOCFLUSH - Flush the received message FIFO

DESCRIPTION

This ioctl function flushes the FIFO buffer of received messages.

The optional argument pointer can be omitted for this ioctl function.

EXAMPLE

#i nclude “tdrv010. h”

int fd;
int result;

result = ioctl(fd, TDRVO10_| OCFLUSH);

if (result < 0) {
/* handl e ioctl error */

TDRV010-SW-82 — Linux Device Driver Page 25 of 42

TEWS &<

TECHNOLOGIES

3.3.8 TDRVO010_|IOCGCANSTATUS

NAME

TDRV010_IOCGCANSTATUS - Returns CAN controller status information

DESCRIPTION

This ioctl function returns the actual contents of several CAN controller registers for diagnostic
purposes. A pointer to the caller’s status buffer (TDRV010_STATUS) is passed by the parameter argp.

typedef struct

{
unsigned char ArbitrationLostCapture;
unsigned char ErrorCodeCapture;
unsigned char TxErrorCounter;
unsigned char RxErrorCounter;
unsigned char ErrorWarningLimit;
unsigned char StatusReqgister;
unsigned char ModeRegister;
unsigned char RxMessageCounterMax;
int ModuleType;

} TDRVO10_STATUS, *PTDRVO010_STATUS;

ArbitrationLostCapture
This parameter receives content of the arbitration lost capture register. This register contains
information about the bit position of losing arbitration.

ErrorCodeCapture
This parameter receives content of the error code capture register. This register contains
information about the type and location of errors on the bus.

TxErrorCounter
This parameter receives content of the TX error counter register. This register contains the
current value of the transmit error counter.

RxErrorCounter
This parameter receives content of the RX error counter register. This register contains the
current value of the receive error counter.

ErrorWarningLimit
This parameter receives content of the error warning limit register.

StatusRegister
This parameter receives content of the status register.

TDRV010-SW-82 — Linux Device Driver Page 26 of 42

TEWS &<

TECHNOLOGIES

ModeRegister
This parameter receives the content of the mode register.

RxMessageCounterMax
Contains the peak value of messages in the RXFIFO. This internal counter value will be reset to
0 after reading.

ModuleType
This parameter returns “310” for TPMC310 and “810” for TPMC810 CAN controller carrier

boards. For detailed channel location information see /proc/tews-tdrv010 file system entry,
which is part of the driver diagnostic.

EXAMPLE

#i nclude “tdrv010. h”

i nt fd;
i nt result;
TDRV010_STATUS CanSt at us;

result = ioctl(fd, TDRV0O10_| OCGCANSTATUS, (char*)&CansStatus);

if (result < 0) {
/* handl e ioctl error */

SEE ALSO

SJA1000 Product Specification Manual

TDRV010-SW-82 — Linux Device Driver Page 27 of 42

TEWS &<

TECHNOLOGIES

3.3.9 TDRVO010_IOCENABLE_SELFTEST

NAME

TDRV010_IOCENABLE_SELFTEST - Enable self test mode

DESCRIPTION

This ioctl function enables the self test facility of the SJA1000 CAN controller.

In this mode a full node test is possible without any other active node on the bus using the self
reception facility. The CAN controller will perform a successful transmission even if there is no
acknowledge received.

Also in self test mode the normal functionality is given, that means the CAN controller is able to
receive messages from other nodes and can transmit message to other nodes if any connected.

The optional argument pointer can be omitted for this ioctl function.

This ioctl command will be accepted only in reset mode (BUSOFF). Enter
TDRV010_IOCBUSOFF first otherwise you will get an error (EACCES).

EXAMPLE

#i nclude “tdrv010. h”

int fd;
int result;

result = ioctl(fd, TDRVO10_I| OCENABLE_SELFTEST);

if (result < 0) {
/* handl e ioctl error */

}
ERRORS
EACCES The CAN controller is in operating mode. This
mode can be changed only in reset mode.
SEE ALSO

SJA1000 Product Specification Manual — 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-82 — Linux Device Driver Page 28 of 42

TEWS &<

TECHNOLOGIES

3.3.10 TDRVO01l0_|IOCDISABLE_SELFTEST

NAME

TDRV010_IOCDISABLE_SELFTEST - Disable self test mode

DESCRIPTION

This ioctl function disables the self test facility of the SJA1000 CAN controller, which was before
enabled with the ioctl command TDRV010 IOCENABLE_SELFTEST.

The optional argument pointer can be omitted for this function.

This ioctl command will be accepted only in reset mode (BUSOFF). Enter
TDRV010_IOCBUSOFF first otherwise you will get an error (EACCES).

EXAMPLE

#i ncl ude “tdrv010. h”

int fd;

int result;

result = ioctl(fd, TDRVO10 | OCDI SABLE SELFTEST);

if (result < 0) {
/* handl e ioctl error */

}
ERRORS
EACCES The CAN controller is in operating mode. This
mode can be changed only in reset mode.
SEE ALSO

SJA1000 Product Specification Manual — 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-82 — Linux Device Driver Page 29 of 42

TEWS &<

TECHNOLOGIES

3.3.11 TDRVO010_|IOCENABLE_LISTENONLY

NAME

TDRV010_IOCENABLE_LISTENONLY - Enable listen only mode

DESCRIPTION

This ioctl function enables the listen only facility of the SJA1000 CAN controller.

In this mode the CAN controller would give no acknowledge to the CAN-bus, even if a message is
received successfully. Message transmission is not possible. All other functions can be used like in
normal mode.

This mode can be used for software driver bit rate detection and 'hot-plugging'.

The optional argument pointer can be omitted for this ioctl function.

This ioctl command will be accepted only in reset mode (BUSOFF). Enter
TDRV010_IOCBUSOFF first otherwise you will get an error (EACCES).

EXAMPLE

#i nclude “tdrv010. h”

int fd;
int result;

result = ioctl(fd, TDRVO10_| OCENABLE_LI STENONLY);

if (result < 0) {
/* handl e ioctl error */

}
ERRORS
EACCES The CAN controller is in operating mode. This
mode can be changed only in reset mode.
SEE ALSO

SJA1000 Product Specification Manual — 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-82 — Linux Device Driver Page 30 of 42

TEWS &<

TECHNOLOGIES

3.3.12 TDRVO010_|OCDISABLE_LISTENONLY

NAME

TDRV010_IOCDISABLE_LISTENONLY - Disable listen only mode

DESCRIPTION

This ioctl function disables the listen only facility of the SJA1000 CAN controller, which was enabled
before with the ioctl command TDRV010 IOCENABLE_LISTENONLY.

The optional argument pointer can be omitted in this ioctl function.

This ioctl command will be accepted only in reset mode (BUSOFF). Enter
TDRV010_IOCBUSOFF first otherwise you will get an error (EACCES).

EXAMPLE

#i ncl ude “tdrv010. h”

int fd;
int result;

result = ioctl(fd, TDRVO10_DI SABLE LI STENONLY);

if (result < 0) {
/* handl e ioctl error */

}
ERRORS
EACCES The CAN controller is in operating mode. This
mode can be changed only in reset mode.
SEE ALSO

SJA1000 Product Specification Manual — 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-82 — Linux Device Driver Page 31 of 42

TEWS &<

TECHNOLOGIES

3.3.13 TDRVO010_|OCSSETLIMIT

NAME

TDRV010_IOCSSETLIMIT - Set new error warning limit

DESCRIPTION

This ioctl function sets a new error warning limit in the corresponding CAN controller register. The
default value (after hardware reset) is 96.

The new error warning limit will be set in an unsigned char variable. A pointer to this variable is passed
by the argument pointer argp to the driver.

This ioctl command will be accepted only in reset mode (BUSOFF). Enter
TDRV010_IOCBUSOFF first otherwise you will get an error (EACCES).

EXAMPLE

#i ncl ude “tdrv010. h”

i nt fd;

i nt result;
unsigned char limt;
limt = 200;

result = ioctl(fd, TDRVO10_| OCSSETLIM T, (char*)& imt);

if (result < 0) {
/* handl e ioctl error */

}
ERRORS
EACCES The CAN controller is in operating mode. This
mode can be changed only in reset mode.
SEE ALSO

SJA1000 Product Specification Manual — 6.4.3 MODE REGISTER (MOD)

TDRV010-SW-82 — Linux Device Driver Page 32 of 42

TEWS &<

TECHNOLOGIES

3.3.14 TDRVO1l0_IOCTCANRESET

NAME

TDRV010_IOCTCANRESET - Set reset/operating mode (TPMC310 only)

DESCRIPTION

This ioctl function sets the certain CAN controller in reset or operating mode. The function specific
control parameter argp specifies the new configuration. This function is only available for TPMC310
devices.

argp

0 to set the certain CAN channel in reset mode
1 to set the certain CAN channel in operating mode

EXAMPLE

#i ncl ude “tdrv010. h”

int fd;

int result;
2

Execute ioctl () function
Set the controller in reset node

result = ioctl(fd, TDRVO10 | OCTCANRESET, (char *)O0);

/* for operating node*/

/* result = ioctl(fd, TDRVO10_ | OCTCANRESET, (char *)1); */
if (result >= 0)

{
/* function succeeded */
}
el se
{
/* handl e the error */
}

TDRV010-SW-82 — Linux Device Driver Page 33 of 42

TEWS &<

TECHNOLOGIES

ERRORS
EINVAL Unsupported ioctl command. This ioctl command is
for TPMC310 devices only.
EIO Unable to enter the BUSOFF mode during
initialization.
SEE ALSO

TPMC310 User Manual

TDRV010-SW-82 — Linux Device Driver Page 34 of 42

TEWS &<

TECHNOLOGIES

3.3.15 TDRVO010_IOCTCANSEL

NAME

TDRV010_IOCTCANSEL - Set silent/operating mode (TPMC310 only)

DESCRIPTION

This ioctl function sets the certain CAN controller in silent or operating mode. The function specific
control parameter argp specifies the new configuration. This function is only available for TPMC310
devices.

argp

0 to set the certain CAN channel in silent mode
1 to set the certain CAN channel in operating mode

EXAMPLE

#i ncl ude “tdrv010. h”

int fd;
int result;
2

Execute ioctl () function
Set the certain CAN controller in silent node

result = ioctl(fd, TDRVO10_ | OCTCANSEL, (char *)O0);

/* for operating node */

/* result = ioctl(fd, TDRVO10_I|I OCTCANSEL, (char *)1); */
if (result >= 0)

{
/* function succeeded */
}
el se
{
/* handl e the error */
}

TDRV010-SW-82 — Linux Device Driver Page 35 of 42

TEWS &<

TECHNOLOGIES

ERRORS
EINVAL Unsupported ioctl command. This ioctl command is
for TPMC310 devices only.
SEE ALSO

TPMC310 User Manual

TDRV010-SW-82 — Linux Device Driver Page 36 of 42

TEWS &<

TECHNOLOGIES

3.3.16 TDRVO10_IOCTCANINT

NAME

TDRV010_IOCTCANINT — Enable/disable interrupts (TPMC310 only)

DESCRIPTION

This I/O control function enables or disables the certain CAN controller interrupts. The function specific
control parameter argp specifies the new configuration. This function is only available for TPMC310
devices.

argp

0 to disable the certain CAN channel interrupt
1 to enable the certain CAN channel interrupt

EXAMPLE

#i ncl ude “tdrv010. h”

int fd;
int result;
22

Execute ioctl () function
Disable the interrupts of the certain CAN controller

result = ioctl(fd, TDRVO10_| OCTCANI NT, (char *)O0);

/* to enable interrupts */

/[* result = ioctl(fd, TDRVO10_I OCTCANI NT, (char *)1); */
if (result >= 0)

{
/* function succeeded */
}
el se
{
/* handle the error */
}

TDRV010-SW-82 — Linux Device Driver Page 37 of 42

TEWS &<

TECHNOLOGIES

ERRORS
EINVAL Unsupported ioctl command. This ioctl command is
for TPMC310 devices only.
SEE ALSO

TPMC310 User Manual

TDRV010-SW-82 — Linux Device Driver Page 38 of 42

TEWS &<

TECHNOLOGIES

3.4 Step by Step Driver Initialization

The following code example illustrates all necessary steps to initialize a CAN device for
communication.

/*

** (1.) Setup CAN bus bit tining

*/

Bi t Ti m ngPar am Ti mi ngVal ue = TDRV010_100KBI T;

Bi t Ti m ngPar am ThreeSanpl es = 0; /* FALSE */

result = ioctl(fd, TDRVO10_I| OCSBI TTIM NG (char*) &Bit Ti mi ngParam ;

/*

** (2.) Setup acceptance filter masks
*/

Accept Fi |l ter. Accept anceCode = 0xO;

Accept Fil ter. Accept anceMask = OxFFFFFFFF;
AcceptFilter.SingleFilter = 1;

result = ioctl(fd, TDRV0O10_| OCSSETFI LTER, (char*)&AcceptFilter);

/*
** (3.) Enter Bus On State
*/

result = ioctl(fd, TDRVO10_| OCBUSON);

Now you should be able to send and receive CAN messages with appropriate calls to
TDRV010_IOCSWRITE and TDRV010_IOCXREAD ioctl functions.

TDRV010-SW-82 — Linux Device Driver Page 39 of 42

TEWS &<

TECHNOLOGIES

4 Diagnostic

If the TDRVO010 does not work properly it is helpful to get some status information from the driver
respective kernel. To get debug output from the driver enable the following symbols in ‘tdrv010.c’ by
replacing “#undef” with “#define”:

#defi ne DEBUG TDRV010

#defi ne DEBUG _TDRV010_I NTR

The Linux /proc file system provides information about kernel, resources, driver, devices and so on.
The following screen dumps display information of a correct running TDRV010 driver (see also the
proc man pages).

tail —f /var/log/ nessages /* before nodprobing the TDRVO10 driver */

May 9 09:03:30 linuxsnmp2 kernel: TEWS TECHNOLOA ES - TDRV010 | sol ated 2x
CAN Bus - version 1.0.x (<Rel ease Date>)

May 9 09:03:30 linuxsnp2 kernel: TDRV0O10: Probe new device
(vendor =0x1498, devi ce=0x0136, type=310)

May 9 09:03:30 linuxsnp2 kernel: TDRV0O10: Probe new device
(vendor =0x1498, devi ce=0x032A, type=810)

[* if SYSFS + UDEV is present */

May 9 09:03:30 |inuxsnp2 udev[3674]: creating device node '/dev/tdrv010 0
May 9 09:03: 30 Iinuxsnp2 udev[3676]: creating device node '/dev/tdrv010_1'
May 9 09:03: 30 Iinuxsnp2 udev[3688]: creating device node '/dev/tdrv010_2'
May 9 09:03:30 |inuxsnp2 udev[3689]: creating device node '/dev/tdrv010_3'

/* after nodprobing the TDRVO10 driver */

cat /proc/tews-tdrv010 /* advanced CAN channel status information */

TEWS TECHNCOLOGQ ES - TDRVO10 |solated 2x CAN Bus - version 1.0.0 (2007-05-
09)

Supported nodul es: TPMC310, TPMC810

Regi stered SJA1000 CAN controller channels:

/dev/tdrv010_0 (phy: TPMC310 #0, nod: 01 stat:3C rec:00 tec:00 alc:00 ecc:00
ew : 60, RxFIFQ rd:0,w:O0, pk#0:])

[dev/tdrv010_1 (phy: TPMC310 #1, nod: 01 stat:3C rec:00 tec:00 alc:00 ecc:00
ew : 60, RxFIFQ rd:0,w:O0, pk#0:])

[dev/tdrv010_2 (phy: TPMC810 #0, nod: 01 stat:3C rec:00 tec:00 alc:00 ecc:00
ew : 60, RxFIFQ rd:0,w:O0, pk#0:])

[dev/tdrv010_3 (phy: TPMC810 #1, nod: 01 stat:3C rec:00 tec:00 alc:00 ecc:00
ew : 60, RxFIFQ rd:0,w:O0, pk#0:])

/*

carrier + #channel
node regi ster

phy
nod

TDRV010-SW-82 — Linux Device Driver Page 40 of 42

TEWS &<

TECHNOLOGIES

stat = status register
rec = receive error counter

tec = transnmit error counter
alc = arbitration | ost capture
ecc = error code capture

ewl = actual error warning lim't

RxFI FO
rd = FIFO read pointer
w = FIFO wite pointer
pk = FI FO nessage counter peak val ue

*/

cat [/ proc/pci
... /* TPMC310 */
Bus 2, device 8, function O:
Class 0280: PCl device 1498:0136 (rev 0).
| RQ 177.
Non- prefetchabl e 32 bit nmenory at Oxff5fed400 [Oxff5fed7f].
I/ O at 0xa800 [0xa87f].
Non- prefetchabl e 32 bit menory at Oxff5fe000 [Oxff5fe00f].
Non- prefetchabl e 32 bit menory at Oxff5fdc00 [Oxff5fddff].
...* TPMCB10 */
Bus 2, device 9, function O:
Cl ass 0280: PCl device 1498:032a (rev 0).
| RQ 169.
Non- prefetchabl e 32 bit nmenory at Oxff5fec00 [Oxff5fec7f].
I/ O at 0xa880 [0Oxa8ff].
Non- prefetchabl e 32 bit nmenory at Oxff5fe800 [Oxff5fedff].

TDRV010-SW-82 — Linux Device Driver Page 41 of 42

cat /proc/interrupts

TEWS &<

TECHNOLOGIES

CPU0 CPUL
0: 5860733 5901379 1O APIC-edge tiner
1 2099 1872 |1 O API C-edge 8042
2: 0 0 XT-PIC cascade
8: 0 1 1O0APICedge rtc
9: 2 0 IOAPIClevel acpi
12: 50793 50084 10O APl C-edge 8042
14: 155677 148926 | O API C-edge ide0
169: 712307 709746 10 API C-|level radeon@Cl:1:0:0, TDRVO10
177: 0 2 10O APICIlevel uhci_hcd, AMD AMDB111, TDRVO10
185: 25775 31 IO APICIlevel uhci_hcd, ethO
193: 0 1 I1OAPICIlevel libata, ehci_hcd, ., TDRVO10
NM : 0 0
LOC: 11763048 11763049
ERR: 0
M S: 0
cat /proc/ionem
/* TPMC310 */
ff 5f dc0O- f f 5f ddf f 0000: 02: 08.0
ff 5f dc0O- f f 5f ddf f TDRVO10CAN
f f 5f e000- f f 5f e00f 0000: 02: 08.0
f f 5f e000- f f 5f e00f TDRVO10PLD
f f 5f e400- f f 5f e47f 0000: 02: 08.0
/* TPMC810 */
f f 5f e800- f f 5f e9f f 0000: 02: 09.0
f f 5f e800- f f 5f eOf f TDRVO10CAN

TDRV010-SW-82 — Linux Device Driver

Page 42 of 42

	Introduction
	Installation
	Build and install the device driver
	Uninstall the device driver
	Install the device driver in the running kernel
	Remove device driver from the running kernel
	Change Major Device Number
	Receive Queue Configuration

	Device Input/Output functions
	open()
	close()
	ioctl()
	TDRV010_IOCXREAD
	TDRV010_IOCSWRITE
	TDRV010_IOCSBITTIMING
	TDRV010_IOCSSETFILTER
	TDRV010_IOCBUSON
	TDRV010_IOCBUSOFF
	TDRV010_IOCFLUSH
	TDRV010_IOCGCANSTATUS
	TDRV010_IOCENABLE_SELFTEST
	TDRV010_IOCDISABLE_SELFTEST
	TDRV010_IOCENABLE_LISTENONLY
	TDRV010_IOCDISABLE_LISTENONLY
	TDRV010_IOCSSETLIMIT
	TDRV010_IOCTCANRESET
	TDRV010_IOCTCANSEL
	TDRV010_IOCTCANINT

	Step by Step Driver Initialization

	Diagnostic

