
The Embedded I/O Company

TDRV011-S
Linux Device D

Extended CAN

Version 1.0.x

User Manu

Issue 1.0.4

September 20

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-82
river

Bus

al

10

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TDRV011-SW-82 - Linux Device Driver Page 2 of 39

TDRV011-SW-82

Linux Device Driver

Extended CAN Bus

Supported Modules:
TPMC316
TPMC816
TPMC901

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2007-2010 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue May 3, 2007

1.0.1 File list and installation section modified March 4, 2008

1.0.2 General revision January 22, 2009

1.0.3 Address TEWS LLC removed November 26, 2009

1.0.4 General revision September 17, 2010

TDRV011-SW-82 - Linux Device Driver Page 3 of 39

Table of Contents

1 INTRODUCTION... 4

2 INSTALLATION.. 5

2.1 Build and install the device driver...5

2.2 Uninstall the device driver ...6

2.3 Install the device driver in the running kernel ...6

2.4 Remove device driver from the running kernel ...6

2.5 Change Major Device Number ...7

2.6 Receive Queue Configuration..7

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 8

3.1 open() ...8

3.2 close()...10

3.3 ioctl() ..11

3.3.1 TDRV011_IOCXREAD...13
3.3.2 TDRV011_IOCSWRITE...16
3.3.3 TDRV011_IOCSBITTIMING ..19
3.3.4 TDRV011_IOCSSETFILTER ...21
3.3.5 TDRV011_IOCGGETFILTER ..23
3.3.6 TDRV011_IOCBUSON ..25
3.3.7 TDRV011_IOCBUSOFF ..26
3.3.8 TDRV011_IOCFLUSH ...27
3.3.9 TDRV011_IOCGCANSTATUS ..28
3.3.10 TDRV011_IOCSDEFRXBUF...29
3.3.11 TDRV011_IOCSDEFRMTBUF..31
3.3.12 TDRV011_IOCSUPDATEBUF ..33
3.3.13 TDRV011_IOCTRELEASEBUF ..35

4 DIAGNOSTIC.. 37

TDRV011-SW-82 - Linux Device Driver Page 4 of 39

1 Introduction
The TDRV011-SW-82 Linux device driver allows the operation of the TDRV011 Extended CAN PMC
devices conforming to the Linux I/O system specification. This includes a device-independent basic
I/O interface with open(), close() and ioctl() functions.

Special I/O operation that do not fit to the standard I/O calls will be performed by calling the ioctl()
function with a specific function code and an optional function dependent argument.

The TDRV011-SW-82 device driver supports the following features:

 Transmission and reception of Standard and Extended CAN Messages
 Up to 15 receive message queues with user defined size
 Variable allocation of receive message objects to receive queues
 Separate task queues for each receive queue and transmission buffer message object
 Standard bit rates from 20 kbit up to 1.0 Mbit and user defined bit rates
 Message acceptance filtering
 Definition of receive and remote buffer message objects
 Designed as Linux kernel module with dynamically loading
 Creates devices with dynamically allocated or fixed major device numbers
 DEVFS and SYSFS (UDEV) support for automatic device node creation

The TDRV011-SW-82 device driver supports the modules listed below:

TPMC316 CAN Bus PMC Conduction Cooled

TPMC816 Two Independent Channels Extended CAN Bus PMC

TPMC901 6/4/2 Channels Extended CAN Bus PMC

In this document all supported modules and devices will be called TDRV011. Specials for a
certain device will be advised.

To get more information about the features and use of the supported devices it is recommended to
read the manuals listed below.

TPMC316, TPMC816 and TPMC901 Hardware User manual

TPMC316, TPMC816 and TPMC901 Engineering Manual

TDRV011-SW-82 - Linux Device Driver Page 5 of 39

2 Installation
The directory TDRV011-SW-82 on the distribution media contains the following files:

TDRV011-SW-82-1.0.4.pdf This manual in PDF format
TDRV011-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
Release.txt Release information
ChangeLog.txt Release history

The GZIP compressed archive TDRV011-SW-82-SRC.tar.gz contains the following files and
directories:

Directory path ‘./tdrv011/’:

tdrv011.c Driver source code
tdrv011def.h Driver include file
tdrv011.h Driver include file for application program
I82527.h Driver include file (CAN Controller Spec.)
Makefile Device driver make file
makenode Script to create device nodes in the file system
include/config.h Driver independent library header file
include/tpxxxhwdep.c Hardware dependent library
include/tpxxxhwdep.h Hardware dependent library header file
include/tpmodule.c Driver independent library
include/tpmodule.h Driver independent library header file
example/tdrv011exa.c Example application
example/Makefile Example application make file

In order to perform an installation, extract all files of the archive TDRV011-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TDRV011-SW-82-SRC.tar.gz’ will extract the files into
the local directory.

 Login as root and change to the target directory

 Copy tdrv011.h to /usr/include

2.1 Build and install the device driver

 Login as root

 Change to the target directory

 To create and install the driver in the module directory /lib/modules/<version> enter:

make install

 Only after the first build we have to execute depmod to create a new dependency description
for loadable kernel modules. This dependency file is later used by modprobe to automatically
load dependent kernel modules.

depmod –aq

TDRV011-SW-82 - Linux Device Driver Page 6 of 39

2.2 Uninstall the device driver

 Login as root

 Change to the target directory

 To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

 Update kernel module dependency description file

depmod –aq

2.3 Install the device driver in the running kernel

 To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tdrv011drv

 After the first build or if you are using dynamic major device allocation it is necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a dynamic device file system (devfs or sysfs with udev) then you have to
skip running the makenode script. Instead of creating device nodes from the script the driver
itself takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TDRV011 CAN Channel found. The
first TDRV011 CAN Channel can be accessed with device node /dev/tdrv011_0, the second with
/dev/tdrv011_1, the third with /dev/tdrv011_2 and so on.

The assignment of device nodes to physical TDRV011 modules depends on the search order of the
PCI bus driver. For more details on channel assignment see # cat /proc/tews-tdrv011.

2.4 Remove device driver from the running kernel

 To remove the device driver from the running kernel login as root and execute the following
command:

modprobe tdrv011drv –r

If your kernel has enabled a dynamic file system, all /dev/tdrv011_x nodes will be automatically
removed from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tdrv011drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe –r again.

TDRV011-SW-82 - Linux Device Driver Page 7 of 39

2.5 Change Major Device Number

The TDRV011 driver uses dynamic allocation of major device numbers by default. If this isn’t suitable
for the application it is possible to define a major number for the driver. If the kernel has enabled devfs
the driver will not use the symbol TDRV011_MAJOR.

To change the major number edit the file tdrv011def.h, change the following symbol to appropriate
value and enter make install to create a new driver.

TDRV011_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

Example:

#define TDRV011_MAJOR 122

Be sure that the desired major number isn’t used by other drivers. Please check /proc/devices
to see which numbers are free.

2.6 Receive Queue Configuration

Received CAN messages will be stored in receive queues. Each receive queue contains a FIFO and a
separate task wait queue. The number of receive queues and the depth of the FIFO can be adapted
by changing the following symbols in tdrv011def.h.

NUM_RX_QUEUES Defines the number of receive queues for each device (default = 3). Valid
numbers are in range between 1 and 15.

RX_FIFO_SIZE Defines the depth of the message FIFO inside each receive queue
(default = 100). Valid numbers are in range between 1 and MAXINT.

TDRV011-SW-82 - Linux Device Driver Page 8 of 39

3 Device Input/Output functions
This chapter describes the interface to the device driver I/O system used for communication over the
CAN Bus.

3.1 open()

NAME

open() - open a file descriptor

SYNOPSIS

#include <fcntl.h>

int open (const char *filename, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise
OR of the appropriate parameters (using the | operator in C). See also the GNU C Library
documentation for more information about the open function and open flags.

EXAMPLE

int fd;

fd = open(“/dev/tdrv011_0”, O_RDWR);

if (fd == -1)

{

/* handle error condition */

}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

TDRV011-SW-82 - Linux Device Driver Page 9 of 39

ERRORS

ENODEV The requested minor device does not exist

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TDRV011-SW-82 - Linux Device Driver Page 10 of 39

3.2 close()

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) != 0) {

/* handle close error conditions */

}

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

ENODEV The requested minor device does not exist

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TDRV011-SW-82 - Linux Device Driver Page 11 of 39

3.3 ioctl()

NAME

ioctl() – device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in tdrv011.h:

Function Description

TDRV011_IOCXREAD Receive a CAN message

TDRV011_IOCSWRITE Send a CAN message

TDRV011_IOCSBITTIMING Setup new bit timing

TDRV011_IOCSSETFILTER Setup acceptance filter masks

TDRV011_IOCGGETFILTER Get the current acceptance filter masks

TDRV011_IOCBUSON Enter the bus on state

TDRV011_IOCBUSOFF Enter the bus off state

TDRV011_IOCFLUSH Flush one or all receive queues

TDRV011_IOCGCANSTATUS Returns the contents of the CAN controller status register

TDRV011_IOCSDEFRXBUF Define a receive buffer message object

TDRV011_IOCSDEFRMTBUF Define a remote transmit buffer message object

TDRV011_IOCSUPDATEBUF Update a remote or receive buffer message object

TDRV011_IOCTRELEASEBUF Release an allocated message buffer object

See behind for more detailed information on each control code.

To use these TDRV011 specific control codes the header file tdrv011.h must be included in the
application.

TDRV011-SW-82 - Linux Device Driver Page 12 of 39

RETURNS

On success, zero is returned. In the case of an error, a value of –1 is returned. The global variable
errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the
requested ioctl function is unknown. Please check
the argument request.

Other function dependant error codes will be described for each ioctl code separately. Note, the
TDRV011 driver always returns standard Linux error codes.

SEE ALSO

GNU C Library description – Low-Level Input/Output, ioctl man pages

TDRV011-SW-82 - Linux Device Driver Page 13 of 39

3.3.1 TDRV011_IOCXREAD

NAME

TDRV011_IOCXREAD – Receive a CAN message

DESCRIPTION

This ioctl function reads a CAN message from the specified receive queue. A pointer to the caller’s
message buffer (TDRV011_MSG_BUF) is passed by the parameter argp to the driver.

typedef struct

{

unsigned long identifier;

long timeout;

unsigned char rx_queue_num;

unsigned char extended;

unsigned char status;

unsigned char msg_len;

unsigned char data[8];

} TDRV011_MSG_BUF, *PTDRV011_MSG_BUF;

identifier

Receives the message identifier of the read CAN message.

timeout

Specifies the amount of time (in system ticks) the caller is willing to wait for execution of read. A
value of 0 means wait indefinitely.

rx_queue_num

Specifies the receive queue number from which the data will be read. Valid receive queue
numbers are in range between 1 and n, in which n depends on the definition of
NUM_RX_QUEUES (see also 2.6).

extended

Receives TRUE for extended CAN messages.

TDRV011-SW-82 - Linux Device Driver Page 14 of 39

status

Receives status information about overrun conditions either in the CAN controller or
intermediate software FIFO’s.

Value Description

TDRV011_SUCCESS No messages lost

TDRV011_FIFO_OVERRUN One or more messages was overwritten in the
receive queue FIFO. This problem occurs if the
FIFO is too small for the application read interval.

TDRV011_MSGOBJ_OVERRUN One or more messages were overwritten in the
CAN controller message object because the
interrupt latency is too large. Keep in mind Linux
isn’t a real-time operating system. Use message
object 15 (buffered) to receive this time critical CAN
messages, reduce the CAN bit rate or upgrade the
system speed.

TDRV011_RAW_FIFO_OVERRUN One or more messages was overwritten in the FIFO
between the interrupt service routine and post-
processing in the driver (bottom half).

msg_len

Receives the number of message data bytes (0...8).

data

This buffer receives up to 8 data bytes. data[0] receives message data 0, data[1] receives
message data 1 and so on.

EXAMPLE

#include “tdrv011.h”

int fd;

ssize_t NumBytes;

TDRV011_MSG_BUF MsgBuf;

MsgBuf.rx_queue_num = 1;

MsgBuf.timeout = 200;

NumBytes = ioctl(fd, TDRV011_IOCXREAD, &MsgBuf);

if (NumBytes > 0) {

/* process received CAN message */

}

TDRV011-SW-82 - Linux Device Driver Page 15 of 39

RETURNS

On success this function returns the size of structure TDRV011_MSG_BUF. In case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the
size of the message buffer is too small.

ECHRNG The specified receive queue number is out of
range.

EFAULT Invalid pointer to the message buffer.

ECONNREFUSED The controller is in bus off state and no message is
available in the specified receive queue.
Note, as long as CAN messages are available in
the receive queue FIFO, bus off conditions were not
reported by a read function. This means you can
read all CAN messages out of the receive queue
FIFO during bus off state without an error result.

EAGAIN Resource temporarily unavailable; the call might
work if you try again later. This error occurs only if
the device is opened with the flag O_NONBLOCK
set.

ETIME The allowed time to finish the read request has
elapsed.

EINTR Interrupted function call; an asynchronous signal
occurred and prevented completion of the call.
When this happens, you should try the call again.

TDRV011-SW-82 - Linux Device Driver Page 16 of 39

3.3.2 TDRV011_IOCSWRITE

NAME

TDRV011_IOCSWRITE – Send a CAN message

DESCRIPTION

This ioctl function writes a CAN message to the specified CAN device. A pointer to the caller’s
message buffer (TDRV011_MSG_BUF) is passed by the parameter argp to the driver.

This ioctl function dynamically allocates a free message object for this transmit operation. The search
begins at message object 1 and ends at message object 14. The first free message object found is
used. If currently no message object is available the write operation is blocked until any message
object becomes free or a timeout occurs.

typedef struct

{

unsigned long identifier;

long timeout;

unsigned char rx_queue_num;

unsigned char extended;

unsigned char status;

unsigned char msg_len;

unsigned char data[8];

} TDRV011_MSG_BUF, *PTDRV011_MSG_BUF;

identifier

Contains the message identifier of the CAN message to write.

timeout

Specifies the amount of time (in system ticks) the caller is willing to wait for execution of write. A
value of 0 means wait indefinitely.

rx_queue_num

Unused for this control function.

extended

Contains TRUE (1) for extended CAN messages.

status

Unused for this control function.

msg_len

Contains the number of message data bytes (0...8).

TDRV011-SW-82 - Linux Device Driver Page 17 of 39

data

This buffer contains up to 8 data bytes. data[0] contains message data 0, data[1] contains
message data 1 and so on.

EXAMPLE

#include “tdrv011.h”

int fd;

ssize_t NumBytes;

TDRV011_MSG_BUF MsgBuf;

MsgBuf.identifier = 1234;

MsgBuf.timeout = 200;

MsgBuf.extended = TRUE;

MsgBuf.msg_len = 2;

MsgBuf.data[0] = 0xaa;

MsgBuf.data[1] = 0x55;

NumBytes = ioctl(fd, TDRV011_IOCSWRITE, &MsgBuf);

if (NumBytes > 0) {

/* CAN message successfully transmitted */

}

TDRV011-SW-82 - Linux Device Driver Page 18 of 39

RETURNS

On success this function returns the size of structure TDRV011_MSG_BUF. In case of an error, a
value of –1 is returned by ioctl(). The global variable errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the
size of the message buffer is too small.

EFAULT Invalid pointer to the message buffer.

ECONNREFUSED The controller is in bus off state and unable to
transmit messages.

EAGAIN Resource temporarily unavailable; the call might
work if you try again later. This error occurs only if
the device is opened with the flag O_NONBLOCK
set.

ETIME The allowed time to finish the write request has
elapsed. This occurs if currently no message object
is available or if the CAN bus is overloaded and the
priority of the message identifier is too low.

EINTR Interrupted function call; an asynchronous signal
occurred and prevented completion of the call.
When this happens, you should try the call again.

TDRV011-SW-82 - Linux Device Driver Page 19 of 39

3.3.3 TDRV011_IOCSBITTIMING

NAME

TDRV011_IOCSBITTIMING - Setup new bit timing

DESCRIPTION

This ioctl function modifies the bit timing register of the CAN controller to setup a new CAN bus
transfer speed. A pointer to the caller’s parameter buffer (TDRV011_BITTIMING) is passed by the
argument argp to the driver.

Keep in mind to setup a valid bit timing value before changing into the Bus On state.

typedef struct

{

unsigned short timing_value;

unsigned short three_samples;

} TDRV011_BITTIMING, *PTDRV011_BITTIMING;

timing_value

This parameter holds the new values for the Bit Timing Register 0 (bit 0...7) and for the Bit
Timing Register 1 (bit 8...15). Possible transfer rates are between 20 kBit per second and
1.0 MBit per second. The include file tdrv011.h contains predefined transfer rate symbols
(TDRV011_20KBIT ... TDRV011_1_0MBIT).

For other transfer rates please follow the instructions of the Intel 82527 Architectural Overview,
which is also part of the engineering documentation.

three_samples

If this parameter is TRUE (1) the CAN bus is sampled three times per bit time instead of one.

Use one sample point for faster bit rates and three sample points for slower bit rates to make
the CAN bus more resistant against noise spikes.

TDRV011-SW-82 - Linux Device Driver Page 20 of 39

EXAMPLE

#include “tdrv011.h”

int fd;

int result;

TDRV011_BITTIMING BitTimingParam;

BitTimingParam.timing_value = TDRV011_100KBIT;

BitTimingParam.three_samples = FALSE;

result = ioctl(fd, TDRV011_IOCSBITTIMING, &BitTimingParam);

if (result < 0) {

/* handle ioctl error */

}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please
check the argument argp.

SEE ALSO

tdrv011.h for predefined bus timing constants

Intel 82527 Architectural Overview - 4.13 Bit Timing Overview

TDRV011-SW-82 - Linux Device Driver Page 21 of 39

3.3.4 TDRV011_IOCSSETFILTER

NAME

TDRV011_IOCSSETFILTER - Setup acceptance filter masks

DESCRIPTION

This ioctl function modifies the acceptance filter masks of the specified CAN controller device.

The acceptance masks allow message objects to receive messages with a larger range of message
identifiers instead of just a single message identifier. A "0" value means "don't care", or accept a "0" or
"1" for that bit position. A "1" value means that the incoming bit value "must-match" identically to the
corresponding bit in the message identifier.

A pointer to the caller’s parameter buffer (TDRV011_ACCEPT_MASKS) is passed by the parameter
argp to the driver.

typedef struct

{

unsigned long message_15_mask;

unsigned long global_mask_extended;

unsigned short global_mask_standard;

} TDRV011_ACCEPT_MASKS, *PTDRV011_ACCEPT_MASKS;

message_15_mask

This parameter specifies the value for the Message 15 Mask Register. The Message 15 Mask
Register is a local mask for message object 15. This 29 bit identifier mask appears in bit 3...31
of this parameter. The Message 15 Mask is "ANDed" with the Global Mask. This means that any
bit defined as "don't care" in the Global Mask will automatically be a "don't care" bit for message
15. (See also Intel 82527 Architectural Overview).

global_mask_extended

This parameter specifies the value for the Global Mask-Extended Register. The Global Mask-
Extended Register applies only to messages using the extended CAN identifier. This 29 bit
identifier mask appears in bit 3...31 of this parameter.

global_mask_standard

This parameter specifies the value for the Global Mask-Standard Register. The Global Mask-
Standard Register applies only to messages using the standard CAN identifier. The 11 bit
identifier mask appears in bit 5...15 of this parameter.

The TDRV011 device driver copies the parameter directly into the corresponding registers of
the CAN controller, without shifting any bit positions. For more information see the Intel 82527
Architectural Overview - 4.7…4.10

TDRV011-SW-82 - Linux Device Driver Page 22 of 39

EXAMPLE

#include “tdrv011.h”

int fd;

int result;

TDRV011_ACCEPT_MASKS AcceptMasksParam;

/* Standard identifier bits 0..3 don't care */

AcceptMasksParam.global_mask_standard = 0xfe00;

/* extended identifier bits 0..3 don't care */

AcceptMasksParam.global_mask_extended = 0xffffff80;

/* Message object 15 identifier bits 0..7 don't care */

AcceptMasksParam.message_15_mask = 0xfffff800;

result = ioctl(fd, TDRV011_IOCSSETFILTER, &AcceptMasksParam);

if (result < 0) {

/* handle ioctl error */

}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please
check the argument argp.

SEE ALSO

Intel 82527 Architectural Overview - 4.9 Acceptance Filtering

TDRV011-SW-82 - Linux Device Driver Page 23 of 39

3.3.5 TDRV011_IOCGGETFILTER

NAME

TDRV011_IOCGGETFILTER - Get the current acceptance filter masks

DESCRIPTION

This ioctl function returns the current acceptance filter masks of the specified CAN Controller.

A pointer to the caller’s parameter buffer (TDRV011_ACCEPT_MASKS) is passed by the parameter
argp to the driver.

typedef struct

{

unsigned long message_15_mask;

unsigned long global_mask_extended;

unsigned short global_mask_standard;

} TDRV011_ACCEPT_MASKS, *PTDRV011_ACCEPT_MASKS;

message_15_mask

This parameter receives the value for the Message 15 Mask Register. The Message 15 Mask
Register is a local mask for message object 15. This 29 bit identifier mask appears in bit 3...31
of this parameter.

global_mask_extended

This parameter receives the value for the Global Mask-Extended Register. The Global Mask-
Extended Register applies only to messages using the extended CAN identifier. This 29 bit
identifier mask appears in bit 3...31 of this parameter.

global_mask_standard

This parameter receives the value for the Global Mask-Standard Register. The Global Mask-
Standard Register applies only to messages using the standard CAN identifier. The 11 bit
identifier mask appears in bit 5...15 of this parameter.

The TDRV011 device driver copies the masks directly from the corresponding registers of the
CAN controller into the parameter buffer, without shifting any bit positions. For more
information see the Intel 82527 Architectural Overview - 4.7…4.10

TDRV011-SW-82 - Linux Device Driver Page 24 of 39

EXAMPLE

#include “tdrv011.h”

int fd;

int result;

TDRV011_ACCEPT_MASKS AcceptMasksParam;

result = ioctl(fd, TDRV011_IOCGGETFILTER, &AcceptMasksParam);

if (result < 0) {

/* handle ioctl error */

}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please
check the argument argp.

SEE ALSO

Intel 82527 Architectural Overview - 4.9 Acceptance Filtering

TDRV011-SW-82 - Linux Device Driver Page 25 of 39

3.3.6 TDRV011_IOCBUSON

NAME

TDRV011_IOCBUSON - Enter the bus on state

DESCRIPTION

This ioctl function sets the specified CAN controller into the Bus On state.

After an abnormal rate of occurrences of errors on the CAN bus or after driver startup, the CAN
controller enters the Bus Off state. This control function resets the init bit in the control register. The
CAN controller begins the busoff recovery sequence and resets the transmit and receive error
counters. If the CAN controller counts 128 packets of 11 consecutive recessive bits on the CAN bus,
the Bus Off state is exited.

The optional argument can be omitted for this ioctl function.

Before the driver is able to communicate over the CAN bus after driver startup, this control
function must be executed.

EXAMPLE

#include “tdrv011.h”

int fd;

int result;

result = ioctl(fd, TDRV011_IOCBUSON);

if (result < 0) {

/* handle ioctl error */

}

SEE ALSO

Intel 82527 Architectural Overview - 3.2 Software Initialization

TDRV011-SW-82 - Linux Device Driver Page 26 of 39

3.3.7 TDRV011_IOCBUSOFF

NAME

TDRV011_IOCBUSOFF - Enter the bus off state

DESCRIPTION

This ioctl function sets the specified CAN controller into the Bus Off state. After a successful execution
of this control function the CAN controller is completely removed from the CAN bus and cannot
communicate until the control function TDRV011_IOCBUSON is executed. It is not possible to set the
device bus off during a write operation of another concurrent process.

The optional argument can be omitted for this ioctl function.

Execute this control function before the last close to the CAN controller channel.

EXAMPLE

#include “tdrv011.h”

int fd;

int result;

result = ioctl(fd, TDRV011_IOCBUSOFF);

if (result < 0) {

/* handle ioctl error */

}

ERRORS

EBUSY Device busy. Another concurrent process is writing
to the device at the moment. Try it again later.

SEE ALSO

Intel 82527 Architectural Overview - 3.2 Software Initialization

TDRV011-SW-82 - Linux Device Driver Page 27 of 39

3.3.8 TDRV011_IOCFLUSH

NAME

TDRV011_IOCFLUSH - Flush one or all receive queues

DESCRIPTION

This ioctl function flushes the message FIFO of the specified receive queue(s).

The optional argument argp passes the receive queue number to the device driver on which the FIFO
is to be flushed. If this parameter is 0 the FIFOs of all receive queues of the device will be flushed,
otherwise only the FIFO of the specified receive queue will be flushed.

EXAMPLE

#include “tdrv011.h”

int fd;

int result;

/* flush all receive queues */

result = ioctl(fd, TDRV011_IOCFLUSH, (int)0);

if (result < 0) {

/* handle ioctl error */

}

ERRORS

EINVAL Invalid argument. This error code is returned if the
specified receive queue is out of range.

TDRV011-SW-82 - Linux Device Driver Page 28 of 39

3.3.9 TDRV011_IOCGCANSTATUS

NAME

TDRV011_IOCGCANSTATUS - Returns the contents of the CAN status register

DESCRIPTION

This ioctl function returns the current content of the CAN controller status register for diagnostic
purposes.

The content of the controller status register is received in an unsigned char variable. A pointer to this
variable is passed by the argument argp to the driver.

EXAMPLE

#include “tdrv011.h”

int fd;

int result;

unsigned char CanStatus;

result = ioctl(fd, TDRV011_IOCGCANSTATUS, &CanStatus);

if (result < 0) {

/* handle ioctl error */

}

ERRORS

EFAULT Invalid pointer to the unsigned char variable which
receives the contents of the CAN status register.
Please check the argument argp.

SEE ALSO

Intel 82527 Architectural Overview - 4.3 status Register (01H)

TDRV011-SW-82 - Linux Device Driver Page 29 of 39

3.3.10 TDRV011_IOCSDEFRXBUF

NAME

TDRV011_IOCSDEFRXBUF - Define a receive buffer message object

DESCRIPTION

This ioctl function defines a CAN message object to receive a single message identifier or a range of
message identifiers (see also Acceptance Mask). All CAN messages received by this message object
are directed to the associated receive queue and can be read with the standard read function (see
also 3.3.1).

Before the driver can receive CAN messages it is necessary to define at least one receive message
object. If only one receive message object is defined at all preferably message object 15 should be
used because this message object is buffered.

A pointer to the caller’s message description (TDRV011_BUF_DESC) is passed by the argument argp
to the driver.

typedef struct

{

unsigned long identifier;

unsigned char msg_obj_num;

unsigned char rx_queue_num;

unsigned char extended;

unsigned char msg_len;

unsigned char data[8];

} TDRV011_BUF_DESC, *PTDRV011_BUF_DESC;

identifier

Specifies the message identifier for the message object to be defined.

msg_obj_num

Specifies the number of the message object to be defined. Valid object numbers are in range
between 1 and 15.

rx_queue_num

Specifies the associated receive queue for this message object. All CAN messages received by
this object are directed to this receive queue. The receive queue numbers are in range between
1 and n, in which n depends on the definition of NUM_RX_QUEUES (see also 2.6).

extended

Set to TRUE for extended CAN messages.

msg_len

Unused for this control function. Set to 0.

TDRV011-SW-82 - Linux Device Driver Page 30 of 39

data

Unused for this control function.

It is possible to assign more than one receive message object to one receive queue.

EXAMPLE

#include “tdrv011.h”

int fd;

int result;

TDRV011_BUF_DESC BufDesc;

BufDesc.msg_obj_num = 15;

BufDesc.rx_queue_num = 1;

BufDesc.identifier = 1234;

BufDesc.extended = TRUE;

/* Define message object 15 to receive the extended */

/* message identifier 1234 and store received messages */

/* in receive queue 1 */

result = ioctl(fd, TDRV011_IOCSDEFRXBUF, &BufDesc);

if (result < 0) {

/* handle ioctl error */

}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please
check the argument argp.

EINVAL Invalid argument. This error code is returned if
either the message object number, or the specified
receive queue is out of range.

EADDRINUSE The requested message object is already occupied.

SEE ALSO

Intel 82527 Architectural Overview - 4.18 82527 Message Objects

TDRV011-SW-82 - Linux Device Driver Page 31 of 39

3.3.11 TDRV011_IOCSDEFRMTBUF

NAME

TDRV011_IOCSDEFRMTBUF - Define a remote transmit buffer message object

DESCRIPTION

This ioctl function defines a remote transmission CAN message buffer object. A remote transmission
object is similar to normal transmission objects with exception that the CAN message is transmitted
only after receiving a remote frame with the same identifier.

This type of message object can be used to make process data available for other nodes which can
be polled around the CAN bus without any action of the provider node.

The message data remains available for other CAN nodes until this message object is updated with
the control function TDRV011_IOCSUPDATEBUF or cancelled with TDRV011_IOCTRELEASEBUF.

A pointer to the caller’s message description (TDRV011_BUF_DESC) is passed by the argument argp
to the driver.

typedef struct

{

unsigned long identifier;

unsigned char msg_obj_num;

unsigned char rx_queue_num;

unsigned char extended;

unsigned char msg_len;

unsigned char data[8];

} TDRV011_BUF_DESC, *PTDRV011_BUF_DESC;

identifier

Specifies the message identifier for the message object to be defined.

msg_obj_num

Specifies the number of the message object to be defined. Valid object numbers are in range
between 1 and 14.

Keep in mind that message object 15 is only available for receive message objects.

rx_queue_num

Unused for remote transmission message objects. Set to 0.

extended

Set to TRUE for extended CAN messages.

msg_len

Contains the number of message data bytes (0...8).

TDRV011-SW-82 - Linux Device Driver Page 32 of 39

data

This buffer contains up to 8 data bytes. data[0] contains message data 0, data[1] contains
message data 1 and so on.

EXAMPLE

#include “tdrv011.h”

int fd;

int result;

TDRV011_BUF_DESC BufDesc;

BufDesc.msg_obj_num = 10;

BufDesc.identifier = 777;

BufDesc.extended = TRUE;

BufDesc.msg_len = 1;

BufDesc.data[0] = 123;

/* Define message object 10 to transmit the extended */

/* message identifier 777 after receiving of a remote */

/* frame with the same identifier */

result = ioctl(fd, TDRV011_IOCSDEFRMTBUF, &BufDesc);

if (result < 0) {

/* handle ioctl error */

}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please
check the argument argp.

EINVAL Invalid argument. This error code is returned if the
message object number is out of range.

EADDRINUSE The requested message object is already occupied.

EMSGSIZE Invalid message size. msg_len must be in range
between 0 and 8.

SEE ALSO

Intel 82527 Architectural Overview - 4.18 82527 Message Objects

TDRV011-SW-82 - Linux Device Driver Page 33 of 39

3.3.12 TDRV011_IOCSUPDATEBUF

NAME

TDRV011_IOCSUPDATEBUF - Update a remote or receive buffer message object

DESCRIPTION

This ioctl function updates a previously defined receive or remote transmission message buffer object.

To update a receive message object a remote frame is transmitted over the CAN bus to request new
data from a corresponding remote transmission message object on other nodes.

To update a remote transmission object only the message data and message length of the specified
message object is changed. No transmission is initiated by this control function.

A pointer to the caller’s message description (TDRV011_BUF_DESC) is passed by the argument argp
to the driver.

typedef struct

{

unsigned long identifier;

unsigned char msg_obj_num;

unsigned char rx_queue_num;

unsigned char extended;

unsigned char msg_len;

unsigned char data[8];

} TDRV011_BUF_DESC, *PTDRV011_BUF_DESC;

identifier

Unused for this control function. Set to 0.

msg_obj_num

Specifies the number of the message object to be updated. Valid object numbers are in range
between 1 and 14.

Keep in mind that message object 15 is available only for receive message objects.

rx_queue_num

Unused. Set to 0.

extended

Set to TRUE for extended CAN messages.

msg_len

Contains the number of message data bytes (0...8). This parameter is used only for remote
transmission object updates.

TDRV011-SW-82 - Linux Device Driver Page 34 of 39

data

This buffer contains up to 8 data bytes. data[0] contains message data 0, data[1] contains
message data 1 and so on.

This parameter is used only for remote transmission object updates.

EXAMPLE

#include “tdrv011.h”

int fd;

int result;

TDRV011_BUF_DESC BufDesc;

/* Update a receive message object */

BufDesc.msg_obj_num = 14;

result = ioctl(fd, TDRV011_IOCSUPDATEBUF, &BufDesc);

if (result < 0) {/* handle ioctl error */ }

/* Update a remote message object */

BufDesc.msg_obj_num = 10;

BufDesc.msg_len = 1;

BufDesc.data[0] = 124;

result = ioctl(fd, TDRV011_IOCSUPDATEBUF, &BufDesc);

if (result < 0) {

/* handle ioctl error */

}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please
check the argument argp.

EINVAL Invalid argument. This error code is returned if
either the message object number is out of range or
the requested message object is not defined.

EMSGSIZE Invalid message size. msg_len must be in range
between 0 and 8.

SEE ALSO

Intel 82527 Architectural Overview - 4.18 82527 Message Objects

TDRV011-SW-82 - Linux Device Driver Page 35 of 39

3.3.13 TDRV011_IOCTRELEASEBUF

NAME

TDRV011_IOCTRELEASEBUF - Release an allocated message buffer object

DESCRIPTION

This control function releases a previously defined CAN message object. Any CAN bus transactions of
the specified message object will be disabled. After releasing the message object can be defined
again with TDRV011_IOCSDEFRXBUF and TDRV011_IOCSDEFRMTBUF control functions.

A pointer to the caller’s message description (TDRV011_BUF_DESC) is passed by the argument argp
to the driver.

typedef struct

{

unsigned long identifier;

unsigned char msg_obj_num;

unsigned char rx_queue_num;

unsigned char extended;

unsigned char msg_len;

unsigned char data[8];

} TDRV011_BUF_DESC, *PTDRV011_BUF_DESC;

msg_obj_num

Specifies the number of the message object to be released. Valid object numbers are in range
between 1 and 15.

All other parameters are not used and should be set to 0.

TDRV011-SW-82 - Linux Device Driver Page 36 of 39

EXAMPLE

#include “tdrv011.h”

int fd;

int result;

TDRV011_BUF_DESC BufDesc;

BufDesc.msg_obj_num = 14;

result = ioctl(fd, TDRV011_IOCTRELEASEBUF, &BufDesc);

if (result < 0) {

/* handle ioctl error */

}

ERRORS

EFAULT Invalid pointer to the parameter buffer. Please
check the argument argp.

EINVAL Invalid argument. This error code is returned if the
message object number is out of range.

EBADMSG The requested message object is not defined.

EBUSY The message object is currently busy transmitting
data.

TDRV011-SW-82 - Linux Device Driver Page 37 of 39

4 Diagnostic
If the TDRV011 driver does not work properly it is helpful to get some status information from the
driver respective kernel.

To get debug output from the driver enable the following symbols in “tdrv011.c” by replacing “#undef”
with “#define” and reinstall the driver:

#define DEBUG_TDRV011

#define DEBUG_TDRV011_INTR

The Linux /proc file system provides additional information about kernel, resources, drivers, devices
and so on. The following screen dumps display information of a correct running TDRV011 driver (see
also the proc man pages).

tail –f /var/log/messages /* before modprobing the TDRV011 driver */

May 3 11:10:06 linuxsmp2 kernel: TEWS TECHNOLOGIES - TDRV011 6,4,2 and 1
Channel Extended CAN Bus - version 1.0.x (yyyy-mm-dd)

May 3 11:10:06 linuxsmp2 kernel: TDRV011: Probe new device
(vendor=0x10B5, device=0x9050, type=816)

May 3 11:10:06 linuxsmp2 kernel: TDRV011: 1x I82527 CAN controller

May 3 11:10:06 linuxsmp2 kernel:

May 3 11:10:06 linuxsmp2 kernel: TDRV011: Add tdrv011 node into the list
of kown major devices

May 3 11:10:06 linuxsmp2 kernel: TDRV011: Probe new device
(vendor=0x10B5, device=0x9050, type=901)

May 3 11:10:06 linuxsmp2 kernel: TDRV011: 6x I82527 CAN controller

May 3 11:10:06 linuxsmp2 kernel:

May 3 11:10:06 linuxsmp2 kernel: TDRV011: Add tdrv011 node into the list
of kown major devices

May 3 11:10:06 linuxsmp2 kernel: TDRV011: Probe new device
(vendor=0x1498, device=0x013C, type=316)

May 3 11:10:06 linuxsmp2 kernel: TDRV011: 2x I82527 CAN controller

May 3 11:10:06 linuxsmp2 kernel:

May 3 11:10:06 linuxsmp2 kernel: TDRV011: Add tdrv011 node into the list
of kown major devices

/* after modprobing the driver */

TDRV011-SW-82 - Linux Device Driver Page 38 of 39

cat /proc/tews-tdrv011

/* after driver start, reset condition */

TEWS TECHNOLOGIES - TDRV011 6,4,2 and 1 Channel Extended CAN Bus - version
1.0.x (yyyy-mm-dd)

Supported modules: TPMC316, TPMC816, TPMC901

Registered Intel 82527 CAN controller channels:

/dev/tdrv011_0 (Car: TPMC816 #0, stat: 0x07 ctrl: 0x49, RxQ1[0,0],
RxQ2[0,0], RxQ3[0,0])

/dev/tdrv011_1 (Car: TPMC901 #0, stat: 0x07 ctrl: 0x49, RxQ1[0,0],
RxQ2[0,0], RxQ3[0,0])

/dev/tdrv011_2 (Car: TPMC901 #1, stat: 0x07 ctrl: 0x49, RxQ1[0,0],
RxQ2[0,0], RxQ3[0,0])

/dev/tdrv011_3 (Car: TPMC901 #2, stat: 0x07 ctrl: 0x49, RxQ1[0,0],
RxQ2[0,0], RxQ3[0,0])

/dev/tdrv011_4 (Car: TPMC901 #3, stat: 0x07 ctrl: 0x49, RxQ1[0,0],
RxQ2[0,0], RxQ3[0,0])

/dev/tdrv011_5 (Car: TPMC901 #4, stat: 0x07 ctrl: 0x49, RxQ1[0,0],
RxQ2[0,0], RxQ3[0,0])

/dev/tdrv011_6 (Car: TPMC901 #5, stat: 0x07 ctrl: 0x49, RxQ1[0,0],
RxQ2[0,0], RxQ3[0,0])

/dev/tdrv011_7 (Car: TPMC316 #0, stat: 0x07 ctrl: 0x49, RxQ1[0,0],
RxQ2[0,0], RxQ3[0,0])

/dev/tdrv011_8 (Car: TPMC316 #1, stat: 0x07 ctrl: 0x49, RxQ1[0,0],
RxQ2[0,0], RxQ3[0,0])…

cat /proc/devices

Character devices:

1 mem

4 /dev/vc/0

4 tty

...

180 usb

226 drm

254 tdrv011drv

TDRV011-SW-82 - Linux Device Driver Page 39 of 39

cat /proc/interrupts

CPU0 CPU1

0: 5860733 5901379 IO-APIC-edge timer

1: 2099 1872 IO-APIC-edge i8042

2: 0 0 XT-PIC cascade

8: 0 1 IO-APIC-edge rtc

9: 2 0 IO-APIC-level acpi

12: 50793 50084 IO-APIC-edge i8042

14: 155677 148926 IO-APIC-edge ide0

169: 712307 709746 IO-APIC-level radeon@PCI:1:0:0, TDRV011

177: 0 2 IO-APIC-level uhci_hcd, AMD AMD8111, TDRV011

185: 25775 31 IO-APIC-level uhci_hcd, eth0

193: 0 1 IO-APIC-level libata, ehci_hcd, ..., TDRV011

NMI: 0 0

LOC: 11763048 11763049

ERR: 0

MIS: 0

lspci –v

/* TPMC816-XX */

02:07.0 Network controller: PLX Technology, Inc. PCI <-> IOBus Bridge (rev
0a)

Subsystem: TEWS Datentechnik GmBH: Unknown device 0330

Flags: medium devsel, IRQ 193

Memory at ff5fe000 (32-bit, non-prefetchable)

I/O ports at a400 [size=128]

Memory at ff5fd400 (32-bit, non-prefetchable) [size=256]

/* TPMC901-XX */

02:08.0 Network controller: PLX Technology, Inc. PCI <-> IOBus Bridge (rev
01)

Subsystem: TEWS Datentechnik GmBH: Unknown device 0385

Flags: medium devsel, IRQ 177

Memory at ff5fe400 (32-bit, non-prefetchable)

I/O ports at a800 [size=128]

Memory at ff5fd800 (32-bit, non-prefetchable) [size=2K]

I/O ports at a480 [size=4]

/* TPMC316-XX */

02:09.0 Network controller: TEWS Datentechnik GmBH: Unknown device 013c
(rev 0a)

Subsystem: TEWS Datentechnik GmBH: Unknown device 000a

Flags: medium devsel, IRQ 169

Memory at ff5fec00 (32-bit, non-prefetchable)

I/O ports at a880 [size=128]

Memory at ff5fe800 (32-bit, non-prefetchable) [size=512]

	1	Introduction
	2	Installation
	2.1	Build and install the device driver
	2.2	Uninstall the device driver
	2.3	Install the device driver in the running kernel
	2.4	Remove device driver from the running kernel
	2.5	Change Major Device Number
	2.6	Receive Queue Configuration

	3	Device Input/Output functions
	3.1	open()
	3.2	close()
	3.3	ioctl()
	3.3.1	TDRV011_IOCXREAD
	3.3.2	TDRV011_IOCSWRITE
	3.3.3	TDRV011_IOCSBITTIMING
	3.3.4	TDRV011_IOCSSETFILTER
	3.3.5	TDRV011_IOCGGETFILTER
	3.3.6	TDRV011_IOCBUSON
	3.3.7	TDRV011_IOCBUSOFF
	3.3.8	TDRV011_IOCFLUSH
	3.3.9	TDRV011_IOCGCANSTATUS
	3.3.10	TDRV011_IOCSDEFRXBUF
	3.3.11	TDRV011_IOCSDEFRMTBUF
	3.3.12	TDRV011_IOCSUPDATEBUF
	3.3.13	TDRV011_IOCTRELEASEBUF

	4	Diagnostic

