
The Embedded I/O Company

TIP501-SW
VxWorks Device

Optically Isolated 16 Chan

Version 2.1.x

User Manu
Issue 2.1.0

January 201

TEWS TECHNOLOGIES G
Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49
e-mail: info@tews.com www.tews
-42
Driver

nel 16 Bit ADC

al

0

mbH
lstenbek, Germany
(0) 4101 4058 19
.com

TIP501-SW-42 – VxWorks Device Driver Page 2 of 22

TIP501-SW-42

VxWorks Device Driver

Optically Isolated 16 Channel 16 Bit ADC

Supported Modules:
TIP501

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

1998-2010 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue April 17, 1998

1.1 Corrections January 27, 2003

2.0.0 Complete revision, carrier support added, new application interface April 21, 2006

2.0.1 New Address TEWS LLC, ChangeLog.txt added to file list December 4, 2006

2.0.2 Chapter “Special Configuration for VxWorks 5.4” removed February 15, 2007

2.0.3 Carrier Driver description added June 23, 2008

2.1.0 SMP Support January 25, 2010

TIP501-SW-42 – VxWorks Device Driver Page 3 of 22

Table of Contents
1 INTRODUCTION... 4

1.1 Device Driver ...4
1.2 IPAC Carrier Driver ...5

2 INSTALLATION.. 6
2.1 Include the device driver in a VxWorks project ...6
2.2 System resource requirement ...6

3 I/O SYSTEM FUNCTIONS.. 7
3.1 tip501Drv() ...7
3.2 tip501DevCreate()..9

4 I/O FUNCTIONS ... 13
4.1 open() ...13
4.2 close()...15
4.3 ioctl() ..17

4.3.1 TIP501_READ..19
4.3.2 TIP501_INFO ...21

TIP501-SW-42 – VxWorks Device Driver Page 4 of 22

1 Introduction

1.1 Device Driver
The TIP501-SW-42 VxWorks device driver software allows the operation of the TIP501 IPAC
conforming to the VxWorks I/O system specification. This includes a device-independent basic I/O
interface with open(), close() and ioctl() functions.

The TIP501-SW-42 device driver supports the following features:

 Read converted input data
 Data correction with factory set data
 Read module information
 Support for legacy and VxBus IPAC carrier driver
 SMP Support

The TIP501-SW-42 supports the modules listed below:

TIP501-10 Optically isolated 16 channel 16 bit ADC input
voltage range +/-10V, gain 1, 2, 5, 10

IndustryPack® compatible

TIP501-11 Optically isolated 16 channel 16 bit ADC input
voltage range +/-10V, gain 1, 2, 4, 8

IndustryPack® compatible

TIP501-20 Optically isolated 16 channel 16 bit ADC input
voltage range 0V to +10V, gain 1, 2, 5, 10

IndustryPack® compatible

TIP501-21 Optically isolated 16 channel 16 bit ADC input
voltage range 0V to +10V, gain 1, 2, 4, 8

IndustryPack® compatible

To get more information about the features and use of TIP501 devices it is recommended to read the
manuals listed below.

TIP501 User manual

TIP501 Engineering Manual

CARRIER-SW-42 IPAC Carrier User Manual

TIP501-SW-42 – VxWorks Device Driver Page 5 of 22

1.2 IPAC Carrier Driver
IndustryPack (IPAC) carrier boards have different implementations of the system to IndustryPack bus
bridge logic, different implementations of interrupt and error handling and so on. Also the different byte
ordering (big-endian versus little-endian) of CPU boards will cause problems on accessing the
IndustryPack I/O and memory spaces.

To simplify the implementation of IPAC device drivers which work with any supported carrier board,
TEWS TECHNOLOGIES has designed a so called Carrier Driver that hides all differences of different
carrier boards under a well defined interface.

The TEWS TECHNOLOGIES IPAC Carrier Driver CARRIER-SW-42 is part of this TIP501-SW-42
distribution. It is located in directory CARRIER-SW-42 on the corresponding distribution media.

This IPAC Device Driver requires a properly installed IPAC Carrier Driver. Due to the design of the
Carrier Driver, it is sufficient to install the IPAC Carrier Driver once, even if multiple IPAC Device
Drivers are used.

Please refer to the CARRIER-SW-42 User Manual for a detailed description how to install and setup
the CARRIER-SW-42 device driver, and for a description of the TEWS TECHNOLOGIES IPAC Carrier
Driver concept.

How to use the carrier driver in the application program is shown in the programming example
tip501exa.c.

TIP501-SW-42 – VxWorks Device Driver Page 6 of 22

2 Installation
Following files are located on the distribution media:

Directory path ‘TIP501-SW-42’:

tip501drv.c TIP501 device driver source
tip501def.h TIP501 driver include file
tip501.h TIP501 include file for driver and application
tip501exa.c Example application
include/ipac_carrier.h Carrier driver interface definitions
TIP501-SW-42-2.1.0.pdf PDF copy of this manual
Release.txt Release information
ChangeLog.txt Release history

2.1 Include the device driver in a VxWorks project
In order to include the TIP501-SW-42 device driver into a VxWorks project (e.g. Tornado IDE or
Workbench) follow the steps below:

(1) Copy the files from the distribution media into a subdirectory in your project path.
(For example: ./TIP501)

(2) Add the device drivers C-files to your project.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your VxWorks User’s
Guide (e.g. Tornado, Workbench, etc.)

2.2 System resource requirement
The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement

Memory < 1 KB < 1 KB

Stack < 1 KB ---

Semaphores 0 1

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

TIP501-SW-42 – VxWorks Device Driver Page 7 of 22

3 I/O system functions
This chapter describes the driver-level interface to the I/O system. The purpose of these functions is to
install the driver in the I/O system, add and initialize devices.

3.1 tip501Drv()

NAME

tip501Drv() - installs the TIP501 driver in the I/O system

SYNOPSIS

#include “tip501.h”

STATUS tip501Drv(void)

DESCRIPTION

This function initializes the TIP501 driver and installs it in the I/O system.

A call to this function is the first thing the user has to do before adding any device to the
system or performing any I/O request.

EXAMPLE

#include "tip501.h”

…

/*-------------------
Initialize Driver
-------------------*/

status = tip501Drv();
if (status == ERROR)
{

/* Error handling */
}

…

TIP501-SW-42 – VxWorks Device Driver Page 8 of 22

RETURNS

OK, or ERROR if the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TIP501-SW-42 – VxWorks Device Driver Page 9 of 22

3.2 tip501DevCreate()

NAME

tip501DevCreate() – Add a TIP501 device to the VxWorks system

SYNOPSIS

#include “tip501.h”

STATUS tip501DevCreate
(

char *name,
int devIdx,
int funcType,
void *pParam

)

DESCRIPTION

This routine adds the selected device to the VxWorks system. The device hardware will be setup and
prepared for use.

This function must be called before performing any I/O request to this device.

PARAMETER

name

This string specifies the name of the device that will be used to identify the device, for example
for open() calls.

devIdx

This index number specifies the TIP501 minor device number to add to the system.

If modules of the same type are installed the device numbers will be assigned in the order the
IPAC CARRIER ipFindDevice() function will find the devices.

For TIP501 devices there is only one devIdx per hardware module starting with devIdx = 0.

funcType

This parameter is unused and should be set to 0.

TIP501-SW-42 – VxWorks Device Driver Page 10 of 22

pParam

This parameter points to a structure (TIP501_DEVCONFIG) containing the default configuration
of the device.

The structure (TIP501_DEVCONFIG) has the following layout and is defined in tip501.h:

typedef struct
{

struct ipac_resource *ipac;
} TIP501_DEVCONFIG;

ipac

Pointer to TIP501 module resource descriptor, retrieved by CARRIER Driver
ipFindDevice() function

EXAMPLE

#include "tip501.h”

…

STATUS result;
TIP501_DEVCONFIG tip501Conf;
struct ipac_resource ipac;

/* IPAC CARRIER Driver initialization */

…

/*
** Find an IP module from TEWS TECHNOLOGIES (manufacturer = 0xB3)
** with model number MODEL_TIP501 (see tip501.h).
** This module uses both interrupt lines and needs an IACK cycle,
** we need only the IO space base address for the related driver.
*/
result = ipFindDevice(0xB3, MODEL_TIP501, 0,

IPAC_INT0_EN | IPAC_INT1_EN | IPAC_LEVEL_SENS | IPAC_IACK_CYC |
IPAC_CLK_8MHZ,
&ipac);

…

TIP501-SW-42 – VxWorks Device Driver Page 11 of 22

…

if (result == OK)
{

/*---
Create the device "/tip501/0"
---*/
tip501Conf.ipac = &ipac;

result = tip501DevCreate("/tip501/0",
0,
0,
(void*)&tip501Conf);

if (result == OK)
{

/* Device successfully created */
}
else
{

/* Error occurred when creating the device */
}

}
else
{

printf("ERROR: No IP found on supported IP carrier boards\n");
}

…

RETURNS

OK, or ERROR if the function fails an error code will be stored in errno.

TIP501-SW-42 – VxWorks Device Driver Page 12 of 22

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

S_ioLib_NO_DRIVER The driver has not been started.

EINVAL Invalid input argument

EISCONN The device has already been created

ENOTSUP The detected model type is not supported

EIO Device Initialization failed

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TIP501-SW-42 – VxWorks Device Driver Page 13 of 22

4 I/O Functions

4.1 open()

NAME

open() - open a device or file.

SYNOPSIS

int open
(

const char *name,
int flags,
int mode

)

DESCRIPTION

Before I/O can be performed to the TIP501 device, a file descriptor must be opened by invoking the
basic I/O function open().

PARAMETER

name

Specifies the device which shall be opened, the name specified in tip501DevCreate() must be
used

flags

Not used

mode

Not used

TIP501-SW-42 – VxWorks Device Driver Page 14 of 22

EXAMPLE

int fd;

…

/*--
Open the device named "/tip501/0" for I/O
--*/

fd = open("/tip501/0", 0, 0);
if (fd == ERROR)
{

/* handle error */
}

…

RETURNS

A device descriptor number, or ERROR if the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - open()

TIP501-SW-42 – VxWorks Device Driver Page 15 of 22

4.2 close()

NAME

close() – close a device or file

SYNOPSIS

int close
(

int fd
)

DESCRIPTION

This function closes opened devices.

PARAMETER

fd

This file descriptor specifies the device to be closed. The file descriptor has been returned by
the open() function.

EXAMPLE

int fd;
STATUS retval;

…

/*----------------
close the device
----------------*/

retval = close(fd);
if (retval == ERROR)
{

/* handle error */
}

…

TIP501-SW-42 – VxWorks Device Driver Page 16 of 22

RETURNS

OK, or ERROR if the function fails, an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - close()

TIP501-SW-42 – VxWorks Device Driver Page 17 of 22

4.3 ioctl()

NAME

ioctl() - performs an I/O control function.

SYNOPSIS

#include “tip501.h”

int ioctl
(

int fd,
int request,
int arg

)

DESCRIPTION

Special I/O operation that does not fit to the standard basic I/O calls (read, write) will be performed by
calling the ioctl() function.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

request

This argument specifies the function that shall be executed. Following functions are defined:
Function Description

TIP501_READ Execute AD conversion and read value

TIP501_INFO Read module information

arg

This parameter depends on the selected function (request). How to use this parameter is
described below with the function.

RETURNS

Function dependent value (described with the function) or ERROR if the function fails an error code
will be stored in errno.

TIP501-SW-42 – VxWorks Device Driver Page 18 of 22

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - ioctl()

TIP501-SW-42 – VxWorks Device Driver Page 19 of 22

4.3.1 TIP501_READ

This I/O control function starts an AD conversion with the specified parameters. The function will wait
for completion of the conversion before reading the data. The driver will wait for settling and
conversion time if conversion parameters have changed, otherwise it will just wait for conversion time.

The function specific control parameter arg is a pointer on a TIP501_READ_BUFFER.

typedef struct
{

int channel;
int gain;
unsigned long flags;
long data;

} TIP501_READ_BUFFER;

channel

This parameter specifies the ADC channel on the specified module. Allowed values are 1 up to
16 for single-ended interfaces and 1 up to 8 for differential interfaces.

gain

This parameter specifies the gain which shall be used for the conversion. The allowed gain
values are depending on the installed module type. TIP501-x0 supports gain = 1, 2, 5, and 10,
TIP501-x1 support gain = 1, 2, 4 and 8.

flags

This is an ORed value of the following flags:
Flag Description

TIP501_CORRECTION The ADC value shall be corrected with the factory
stored correction data.

TIP501_DIFF If this flag is set the channel will use a differential
input interface.
If this flag is not set, the channel will use a single-
ended input interface.

data

The result of the conversion will be returned in this parameter. The range of returned values
depends on the module type. Unipolar modules will return values between 0 and 65535, and
bipolar modules will return values between -32768 and 32767.

TIP501-SW-42 – VxWorks Device Driver Page 20 of 22

EXAMPLE

#include “tip501.h”

…

int fd;
TIP501_READ_BUFFER readBuf;
int retval;

…

/*------------------------------------
Read from channel 1 with a gain of 2
use differential interface and
make data correction
------------------------------------*/

readBuf.channel = 1;
readBuf.gain = 2;
readBuf.flags = TIP501_CORRECTION | TIP501_DIFF;

retval = ioctl(fd, TIP501_READ, (int)&readBuf);
if (retval != ERROR)
{

/* function succeeded */
printf("Input Value: %ld\n", readBuf.data);

}
else
{

/* handle the error */
}

…

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

EINVAL An invalid parameter value has been specified.

EBUSY The module is already in use.

EIO The conversion failed.

TIP501-SW-42 – VxWorks Device Driver Page 21 of 22

4.3.2 TIP501_INFO

This I/O control function returns information about the specified device. The function specific control
parameter arg is a pointer on a TIP501_INFO_BUFFER.

typedef struct
{

int modelType;
long maxVal;
int suppGains[4];
long corrGain[4];
long corrOffset[4];

} TIP501_INFO_BUFFER;

modeltype

This parameter returns the model type of the specified device. A TIP501-10 will return 10, a
TIP501-11 will return 11 and so on.

maxVal

This parameter returns the maximum positive data value.

suppGains[]

This array returns the supported gain values.

corrGain[]

This array returns the factory stored gain calibration data. (The value is stored in ¼ LSBs).

corrOffset[]

This array returns the factory stored offset calibration data. (The value is stored in ¼ LSBs).

The correction data is assigned to a special gain by its array index. The assignment is made by
the suppGains[] array.

TIP501-SW-42 – VxWorks Device Driver Page 22 of 22

EXAMPLE

#include “tip501.h”

…

int fd;
TIP501_INFO_BUFFER infoBuf;
int retval;

…

/*-----------------------
Read module information
-----------------------*/

retval = ioctl(fd, TIP501_INFO, (int)&infoBuf);
if (retval != ERROR)
{

/* function succeeded */
printf("TIP501-%2d\n", infoBuf.modelType);

}
else
{

/* handle the error */
}

…

ERROR CODES

No function specific error codes.

	Introduction
	Device Driver
	IPAC Carrier Driver

	Installation
	Include the device driver in a VxWorks project
	System resource requirement

	I/O system functions
	tip501Drv()
	tip501DevCreate()

	I/O Functions
	open()
	close()
	ioctl()
	TIP501_READ
	TIP501_INFO

