

TIP550

Optically Isolated 8/4 Channel 12-bit D/A

Version 1.2

User Manual

Issue 1.2.0 October 2009

TEWS TECHNOLOGIES GmbH

 Am Bahnhof 7
 25469 Halstenbek, Germany

 Phone: +49 (0) 4101 4058 0
 Fax: +49 (0) 4101 4058 19

 e-mail: info@tews.com
 www.tews.com

TIP550-10 This document contains information, which is Optically Isolated 8 channel 12-bit D/A proprietary to TEWS TECHNOLOGIES GmbH. Any reproduction without written permission is forbidden. **TIP550-11** TEWS TECHNOLOGIES GmbH has made any Optically Isolated 4 channel 12-bit D/A effort to ensure that this manual is accurate and complete. However TEWS TECHNOLOGIES GmbH reserves the right to change the product described in this document at any time without notice. TEWS TECHNOLOGIES GmbH is not liable for any damage arising out of the application or use of the device described herein. **Style Conventions** Hexadecimal characters are specified with prefix 0x, i.e. 0x029E (that means hexadecimal value 029E). For signals on hardware products, an ,Active Low' is represented by the signal name with # following, i.e. IP_RESET#. Access terms are described as: W Write Only R Read Only R/W Read/Write Read/Clear R/C R/S Read/Set

©2009 by TEWS TECHNOLOGIES GmbH

All trademarks mentioned are property of their respective owners.

Issue	Description	Date
1.0	First Issue	February 1996
1.1	Technical Specification	April 1996
1.2	Register Description	December 1996
1.3	Status Register and General Revision	October 2002
1.4	DAC Control Register Description	October 2003
1.5	New Address: TEWS LLC	September 2006
1.2.0	New Hardware Revision of TIP550	October 2009
	New notation of User Manual Issue	
	Corrected Jumper Configuration Figure	

Table of Contents

1	PRODUCT DESCRIPTION	6
2	TECHNICAL SPECIFICATION	7
3	ID PROM CONTENTS	8
4	IP ADDRESSING	9
	4.1 I/O Addressing	9
	4.2 DAC Channel Select Register (Address: 0x01)	9
	4.3 DAC Status Register (Address: 0x03)	10
	4.4 DAC Data Register (Address: 0x04)	10
	4.5 Interrupt Vector Register (Address: 0x07)	11
	4.6 DAC Control Register (Address: 0x0B)	11
5	FUNCTIONAL DESCRIPTION	12
	5.1 DAC Data Coding	12
	5.2 Functional State Diagram and Description	12
6	PROGRAMMING HINTS	14
	6.1 DAC Data Correction	14
	 6.1.1 DAC Value Correction for 0V10V Output Voltage Range 6.1.2 DAC Value Correction for ±10V Output Voltage Range 	14 14
7	INSTALLATION	
	7.1 Jumper Configuration	
8	PIN ASSIGNMENT – I/O CONNECTOR	
-	81 Pin Δssignment	16
	8.2 Connector Orientation	17

List of Figures

FIGURE 1-1 :	BLOCK DIAGRAM	6
FIGURE 5-1 :	STATE DIAGRAM OF THE TIP550 DAC DATA HANDLING	13
FIGURE 8-1 :	IP CONNECTOR ORIENTATION	17

List of Tables

7
8
9
9
.10
.10
.11
.11
.12
.15
.15
.16

1 **Product Description**

The TIP550 is an IndustryPack® compatible module and provides 8 (TIP550-10) or 4 (TIP550-11) channels of isolated 12-bit D/A channels. The settling time to 0.01% is 13 μ s typical. The programmable output voltage range is +/-10V or 0-10V selectable by jumpers for each group of four D/A channels. The isolated DACs and the output buffers are powered by on board DC/DC converters.

Each TIP550 is factory calibrated. The calibration information for each D/A channel is stored in the Identification-PROM unique to each IP module.

Figure 1-1 : Block Diagram

2 **Technical Specification**

IP Interface						
Interface	Single Size IndustryPack® Logic Interface compliant to ANSI/VITA 4-1995					
ID PROM Data	Format I					
I/O Space	Used with 0 wait states					
Interrupts	INTREQ0 used, interrupt acknowledgement with 0 wait states					
DMA	Not supported					
Clock Rate	8 MHz					
Module Type	Туре І					
	On Board Devices					
D/A Converter	DAC8420 (Analog Devices)					
	Digital-to-Analog Conversion					
Resolution	12 Bit					
Output Voltage Range	0V10V or ±10V, selectable for a group of four channels					
Output Settling Time	13µs typical to 0.01% from +10V to -10V					
Output Load per Channel Max. ±4mA for each Channel						
I/O Interface						
Number of Channels	TIP550-10: 8 channels (in two groups of four channels) TIP550-11: 4 channels (in one group of four channels)					
Isolation	All D/A channels are optically isolated from the IP interface					
Interface Connector	50-conductor flat cable					
Power Requirements	TIP550-10: 350mA typical @ +5V DC					
	±12V DC: not used					
	TIP550-11: 270mA typical @ +5V DC					
	±12V DC: not used					
	Physical Data					
Temperature Range	Operating -40°C to +85°C					
	Storage -40°C to +125°C					
MTBF	TIP550-10: 639000 h					
	TIP550-11: 724000 h					
	MTBF values shown are based on calculation according to MIL-HDBK-217F					
	and MIL-HDBK-217F Notice 2; Environment: G_B 20°C. The MTBE calculation is based on component FIT rates provided by the					
	component suppliers. If FIT rates are not available, MIL-HDBK-217F and MIL-HDBK-217F Notice 2 formulas are used for FIT rate calculation.					
Humidity	5 – 95 % non-condensing					
Weight	TIP550-10: 32 g					
	TIP550-11: 31 g					

3 ID PROM Contents

Address	Function	Contents
0x01	ASCII 'I'	0x49
0x03	ASCII 'P'	0x50
0x05	ASCII 'A'	0x41
0x07	ASCII 'C'	0x43
0x09	Manufacturer ID	0xB3
0x0B	Model Number	0x19
0x0D	Revision	0x10
0x0F	Reserved	0x00
0x11	Driver-ID Low - Byte	0x00
0x13	Driver-ID High - Byte	0x00
0x15	Number of bytes used	0x1D
0x17	CRC	Board dependent
0x19	Version	TIP550-10: 0A
		TIP550-11: 0B
0x1B	Offset – DAC Channel 1	Board dependent
0x1D	Offset – DAC Channel 2	Board dependent
0x1F	Offset – DAC Channel 3	Board dependent
0x21	Offset – DAC Channel 4	Board dependent
0x23	Offset – DAC Channel 5	Board dependent (TIP550-11x: 0x00)
0x25	Offset – DAC Channel 6	Board dependent (TIP550-11x: 0x00)
0x27	Offset – DAC Channel 7	Board dependent (TIP550-11x: 0x00)
0x29	Offset – DAC Channel 8	Board dependent (TIP550-11x: 0x00)
0x2B	Gain – DAC Channel 1	Board dependent
0x2D	Gain – DAC Channel 2	Board dependent
0x2F	Gain – DAC Channel 3	Board dependent
0x31	Gain – DAC Channel 4	Board dependent
0x33	Gain – DAC Channel 5	Board dependent (TIP550-11x: 0x00)
0x35	Gain – DAC Channel 6	Board dependent (TIP550-11x: 0x00)
0x37	Gain – DAC Channel 7	Board dependent (TIP550-11x: 0x00)
0x39	Gain – DAC Channel 8	Board dependent (TIP550-11x: 0x00)
0x3F		0x00

Table 3-1 : ID PROM Contents

The VRGx bits in the DAC Control Register select the correct set of ID PROM calibration data values. Therefore, these bits have to be configured prior to reading any calibration data values from the ID PROM and also before starting any data conversion.

4 IP Addressing

4.1 I/O Addressing

The complete register set of the TIP550 is accessible in the I/O space of the IP Module.

Address	Symbol	Description	Size (Bit)	Access
0x01	CHANSEL	DAC Channel Select Register	8	R/W
0x03	STATREG	DAC Status Register	8	R
0x04	DATAREG	DAC Data Register	16	R/W
0x07	INTVEC	Interrupt Vector Register	8	R/W
0x0B	CONTREG	DAC Control Register	8	R/W

Table 4-1 : IO Space Register Set TIP550

4.2 DAC Channel Select Register (Address: 0x01)

The DAC Channel Select Register (CHANSEL) is used to select an output channel. The write access that selects the channel also starts the serial data transfer to the DAC with the value stored in the DAC Data Register (DATAREG). Therefore, be sure that the desired value is stored inside the DATAREG prior to starting the conversion.

Bit	Symbol	Desc	Description						Access	Reset Value
7:3	-	Not u	sed, alv	vays rea	ad as '0'	•			R/W	0
2	CS2	Outpu	ut Chan	nel Sele	ection:			_	R/W	000
1	CS1		CS2	CS1	CS0	Channel				
0	CS0		0	0	0	1				
			0	0	1	2				
			0	1	0	3				
			0	1	1	4				
			1	0	0	5	TIP550-10 only			
			1	0	1	6	TIP550-10 only			
			1	1	0	7	TIP550-10 only			
			1	1	1	8	TIP550-10 only			

Table 4-2 : DAC Channel Select Register (CHANSEL)

Always check that the DAC_BUSY flag is clear in the DAC Status Register (STATREG) before writing to the DAC Channel Select Register.

The TIP550-11x provides only four output channels. Therefore, Bit 2 of the DAC Channel Select Register must be '0' for the TIP550-11x.

4.3 DAC Status Register (Address: 0x03)

The DAC Status Register (STATREG) provides status flags for the DAC communication.

Bit	Symbol	Description		Reset Value
7:2	-	Not used, always read as '0'.	R	0
1	DATA_BUSY	Data Busy Flag: Indicates that a data value written into the DAC Data Register has not yet been transferred to the DAC. The data transfer is started by writing to the DAC Channel Select Register. This Bit is automatically set to '1' when a data value is written to the DATAREG. This Bit is automatically set to '0' when a transfer to the DACs is started by writing to the CHANSEL Register.	R	0
0	DAC_BUSY	 DAC Busy Flag: Indicates that a serial data transfer to one of the DACs is in progress. This Bit is automatically set to '1' when a transfer to the DACs is started by writing to the CHANSEL Register. This Bit is automatically set to '0' when the current transfer is finished. Always check this flag before writing to the CHANSEL Register. 1 = Serial data transfer in progress 0 = No serial data transfer in progress 	R	0

Table 4-3 : DAC Status Register (CHANSEL)

4.4 DAC Data Register (Address: 0x04)

The DAC Data Register (DATAREG) is a 12-bit wide read/write register. It contains the desired DAC conversion value.

Bit	Symbol	Description	Access	Reset Value
15:12	-	Not used, always read as '0'.	R/W	0
11:0	DAC_DATA	12-bit DAC value to be converted.	R/W	0x0000

Table 4-4 : DAC Data Register (DATAREG)

Always check that the DATA_BUSY flag in the DAC Status Register is clear before writing to the DAC Data Register.

For DAC data coding see chapter "DAC Data Coding".

4.5 Interrupt Vector Register (Address: 0x07)

The Interrupt Vector Register (INTVEC) is a byte wide read/write register. An interrupt acknowledge cycle clears the interrupt request and puts the Interrupt Vector onto the data bus.

If interrupts are enabled in the DAC Control Register, interrupts are generated whenever a serial transfer to one of the DACs is finished; i.e. when the DAC_BUSY flag in the DAC Status Register becomes inactive (set to '0').

Bit	Symbol	Description	Access	Reset Value
7:0	INTVEC	Interrupt Vector loaded by software	R/W	0x00

Table 4-5 : Interrupt Vector Register (INTVEC)

4.6 DAC Control Register (Address: 0x0B)

The DAC Control Register (CONTREG) is used to configure interrupts and to set up voltage ranges.

Bit	Symbol	Description	Access	Reset Value
7:3	-	Not used, always read as '0'.		0
2	INTENA	Interrupt Enable Bit:	R/W	0
		0 = Interrupts disabled		
		If interrupts are enabled, interrupts are generated each time the DAC_BUSY flag in the DAC Status Register becomes inactive (set to '0').		
1	VRG_2	 Voltage Range Selection for DAC Channels 5-8: This Bit has to be configured according to the jumper settings for the output voltage ranges. 1 = ±10V output voltage range and two's complement data coding 0 = 0V to 10V output voltage range and straight binary data coding 	R/W	0
0	VRG_1	 Voltage Range Selection for DAC Channels 1-4: This Bit has to be configured according to the jumper settings for the output voltage ranges. 1 = ±10V output voltage range and two's complement data coding 0 = 0V to 10V output voltage range and straight binary data coding 	R/W	0

Table 4-6 : DAC Control Register (CONTREG)

The VRGx bits in the DAC Control Register select the correct set of ID PROM calibration data values. Therefore, these bits have to be configured prior to reading any calibration data values from the ID PROM and also before starting any data conversion.

5 **Functional Description**

5.1 DAC Data Coding

Data Value	Analog Output Voltage				
Voltage Range: 0 … 10V (Unipolar)					
0xFFF	0xFFF +FSR 9.997559V				
0x801	Midscale +1LSB	5.002441V			
0x800	Midscale	5V			
0x7FF	Midscale -1LSB 4.9975				
0x000	-FSR	0V			
Voltage Range: -10V … +10V (Bipolar)					
0x7FF	+FSR	+9.995117V			
0x001	Midscale +1LSB	+0.0048828V			
0x000	Midscale	0V			
0xFFF	0xFFF Midscale -1LSB -0.00488				
0x800 -FSR		-10V			

Table 5-1 : DAC Data Coding

5.2 Functional State Diagram and Description

An IP_RESET sets the TIP550 into its IDLE state.

After a write access to the DAC Data Register, the TIP550 changes to the DATA_BUSY state and the DATA_BUSY flag in the DAC Status Register is set. In this state, another write access to the DAC Data Register overwrites the current value and the TIP550 remains in the DATA_BUSY state. A write access to the DAC Channel Select Register, however, starts the serial data transfer to the corresponding DAC channel and the TIP550 enters the DAC_BUSY state. The DAC_BUSY flag in the DAC Status Register is set accordingly. As long as the serial transfer is in progress, the DAC_BUSY state is held. If another data value is written into the DAC Data Register during the serial data transfer, the TIP550 enters the DATA_BUSY state again; otherwise it automatically enters the IDLE state when the transfer is finished. The state transition from DAC_BUSY state to IDLE state generates an interrupt if interrupts are enabled in the DAC Control Register.

It is possible to transfer the previously written data value in the DAC Data Register again, when the TIP550 is in IDLE state. In order to do that, a write access to the DAC Channel Select Register has to be performed.

The following state diagram shows the above mentioned principles.

Figure 5-1 : State Diagram of the TIP550 DAC Data Handling

6 Programming Hints

6.1 DAC Data Correction

There are two errors affecting the accuracy of the DAC that can be corrected using the factory calibrated calibration data space.

First, there is the so called "offset error". For the DAC, this is the data value that is required to produce a zero voltage output signal. This error is corrected by subtracting the offset from the DAC data value.

Second, there is the so called "gain error". The gain error is the difference between the ideal gain and the actual gain of the DAC. It is corrected by multiplying the DAC data value with a correction factor.

The correction values are obtained during factory calibration and are stored in an on board EEPROM as two's complement byte-wide values in the range from -128 to +127. To achieve a higher accuracy, they are scaled to $\frac{1}{4}$ LSB.

Because offset and gain correction values are dependent on the selected output voltage range, the TIP550-10 has four different sets of ID PROM data (four combinations of output voltage ranges for the two groups of D/A channels) and the TIP550-11x has two different sets of ID PROM data (two combinations of output voltage ranges for one group of D/A channels).

Before accessing the correction values from the ID PROM, the DAC Control Register has to be set up identically to the output voltage ranges configured by the jumpers.

6.1.1 DAC Value Correction for 0V...10V Output Voltage Range

The basic formula for correction the DAC output value in unipolar mode is:

Data = Value * (1 – GAIN_{corr} / 16384) – OFFSET_{corr} / 4

Data is the corrected digital value that should be programmed to the data register. *Value* is the ideal digital value for the desired output voltage. $GAIN_{corr}$ and $OFFSET_{corr}$ are the correction factors from the on board EEPROM. $GAIN_{corr}$ and $OFFSET_{corr}$ are stored separately for each of the possible D/A channels.

6.1.2 DAC Value Correction for ±10V Output Voltage Range

The basic formula for correcting DAC output value in bipolar mode is:

Data = Value * (1 – GAIN_{corr} / 8192) – OFFSET_{corr} / 4

Data is the corrected digital value that should be programmed to the data register. *Value* is the ideal digital value for the desired output voltage. $GAIN_{corr}$ and $OFFSET_{corr}$ are the correction factors from the on board EEPROM. $GAIN_{corr}$ and $OFFSET_{corr}$ are stored separately for each of the possible D/A channels.

The GAIN_{corr} and OFFSET_{corr} values can be read in the Calibration Data Space.

Floating point arithmetic or scaled integer arithmetic is necessary to avoid rounding errors while computing the above formulas.

7 Installation

7.1 Jumper Configuration

The TIP550 has to be configured by jumpers for the desired output voltage ranges. For the TIP550, it is possible to select different output voltage ranges for a group of four channels. Channels 1-4 and channels 5-8 are grouped together. The following table shows the corresponding jumper settings.

	TIP5	50-10/-11	TIP550-10 only		
Voltage Range	Group 1 (Channels 1-4)		Range Group 1 (Channels 1-4) Group 2 (Ch		Channels 5-8)
0V10V	J1, J2:	1-2 installed	J3, J4:	1-2 installed	
±10V	J1, J2:	2-3 installed	J3, J4:	2-3 installed	

Table 7-1 :	Jumper Config	uration for Output	Voltage Ranges
-------------	---------------	--------------------	----------------

Table 7-2 : Jumper Configuration for Output Voltage Ranges

Factory configuration is 0V...10V for all channels (Jumpers installed on 1-2).

The VRGx bits in the DAC Control Register select the correct set of ID PROM calibration data values. Therefore, these bits have to be configured prior to reading any calibration data values from the ID PROM and also before starting any data conversion.

8 Pin Assignment – I/O Connector

8.1 Pin Assignment

Pin	Signal		Pin	Signal	
1	DAC Output 1		26		
2	AGND		27		
3	DAC Output 2		28		
4	AGND		29		
5	DAC Output 3		30		
6	AGND		31		
7	DAC Output 4		32		
8	AGND		33		
9	DAC Output 5	TIP550-10 only	34		
10	AGND		35		
11	DAC Output 6	TIP550-10 only	36		
12	AGND		37		
13	DAC Output 7	TIP550-10 only	38		
14	AGND		39		
15	DAC Output 8	TIP550-10 only	40		
16			41		
17			42		
18			43		
19			44	AGND	See Note below
20			45	-15V	See Note below
21			46	AGND	See Note below
22			47	+15V	See Note below
23			48	AGND	See Note below
24			49	+5V	See Note below
25			50	AGND	See Note below

tor

The Power input connections (Pins 44 to 50) are reserved for special versions of the TIP550 without on board DC/DC converters.

8.2 Connector Orientation

Figure 8-1 : IP Connector Orientation