
The Embedded I/O Company

TIP570-SW
VxWorks Device

16 Channel 12 Bit ADC and 8 C

Version 3.0.x

User Manu

Issue 3.0.0

August 2010

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
-42
Driver

hannel 12 Bit DAC

al

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TIP570-SW-42 – VxWorks Device Driver Page 2 of 22

TIP570-SW-42

VxWorks Device Driver

16 Channel 12 Bit ADC and
8 Channel 12 Bit DAC

Supported Modules:
TIP570-10
TIP570-11

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2010by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue July 19, 2000

1.1 General Revision October 1, 2003

1.1.1 File list changed, new issue format November 5, 2004

2.0.0 General Revision, New names for definitions, structures, and functions

Carrier driver support, read() and write() are now handled in ioctl()

August 20, 2007

2.0.1 Carrier Driver description added June 24, 2008

3.0.0 SMP Support, IPAC carrier interface functions removed August 3, 2010

TIP570-SW-42 – VxWorks Device Driver Page 3 of 22

Table of Contents

1 INTRODUCTION... 4

1.1 Device Driver ...4

1.2 IPAC Carrier Driver ...5

2 INSTALLATION.. 6

2.1 Include device driver in Tornado IDE project ..6

2.2 System resource requirement ...6

3 I/O SYSTEM FUNCTIONS.. 7

3.1 tip570Drv() ...7

3.2 tip570DevCreate()..9

4 I/O FUNCTIONS ... 11

4.1 open() ...11

4.2 close()...13

4.3 ioctl() ..15

4.3.1 FIO_TIP570_READ..17
4.3.2 FIO_TIP570_WRITE..19
4.3.3 FIO_TIP570_SIM_WRITE..21

TIP570-SW-42 – VxWorks Device Driver Page 4 of 22

1 Introduction

1.1 Device Driver

The TIP570-SW-42 VxWorks device driver software allows the operation of the supported
IndustryPack module conforming to the VxWorks I/O system specification. This includes a device-
independent basic I/O interface with open(), close(),and ioctl() functions.

The TIP570-SW-42 device driver supports the following features:

 reading ADC data with different input gains, with or without data correction
 support of single-ended and differential input lines
 set DAC output voltage with or without output data correction
 simultaneous DAC output for all channels
 Support for legacy and VxBus IPAC carrier driver
 SMP Support

The TIP570-SW-42 supports the modules listed below:

TIP570-10 16 Channel 12 Bit ADC (Gain: 1,2,5,10) and
8 Channel 12 Bit DAC

IndustryPack® compatible

TIP570-11 16 Channel 12 Bit ADC (Gain: 1,2,4,8) and
8 Channel 12 Bit DAC

IndustryPack® compatible

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

TIP570 User manual

TIP570 Engineering Manual

CARRIER-SW-42 IPAC Carrier User Manual

TIP570-SW-42 – VxWorks Device Driver Page 5 of 22

1.2 IPAC Carrier Driver

IndustryPack (IPAC) carrier boards have different implementations of the system to IndustryPack bus
bridge logic, different implementations of interrupt and error handling and so on. Also the different byte
ordering (big-endian versus little-endian) of CPU boards will cause problems on accessing the
IndustryPack I/O and memory spaces.

To simplify the implementation of IPAC device drivers which work with any supported carrier board,
TEWS TECHNOLOGIES has designed a so called Carrier Driver that hides all differences of different
carrier boards under a well defined interface.

The TEWS TECHNOLOGIES IPAC Carrier Driver CARRIER-SW-42 is part of this TIP570-SW-42
distribution. It is located in directory CARRIER-SW-42 on the corresponding distribution media.

This IPAC Device Driver requires a properly installed IPAC Carrier Driver. Due to the design of the
Carrier Driver, it is sufficient to install the IPAC Carrier Driver once, even if multiple IPAC Device
Drivers are used.

Please refer to the CARRIER-SW-42 User Manual for a detailed description how to install and setup
the CARRIER-SW-42 device driver, and for a description of the TEWS TECHNOLOGIES IPAC Carrier
Driver concept.

TIP570-SW-42 – VxWorks Device Driver Page 6 of 22

2 Installation
Following files are located on the distribution media:

Directory path ‘TIP570-SW-42’:

tip570drv.c TIP570 device driver source
tip570def.h TIP570 driver include file
tip570.h TIP570 include file for driver and application
tip570exa.c Example application
include/ipac_carrier.h Carrier driver interface definitions
TIP570-SW-42-3.0.0.pdf PDF copy of this manual
ChangeLog.txt Release history
Release.txt Release information

2.1 Include device driver in Tornado IDE project

For including the TIP570-SW-42 device driver into a VxWorks project (e.g. Tornado IDE or
Workbench) follow the steps below:

(1) Copy the files from the distribution media into a subdirectory in your project path.
(For example: ./TIP570)

(2) Add the device drivers C-files to your project.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your VxWorks User’s
Guide (e.g. Tornado, Workbench, etc.)

2.2 System resource requirement

The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement

Memory < 1 KB < 1 KB

Stack < 1 KB < 1 KB

Semaphores 0 3

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

TIP570-SW-42 – VxWorks Device Driver Page 7 of 22

3 I/O system functions
This chapter describes the driver-level interface to the I/O system. The purpose of these functions is to
install the driver in the I/O system, add and initialize devices.

3.1 tip570Drv()

NAME

tip570Drv() - installs the TIP570 driver in the I/O system

SYNOPSIS

#include “tip570.h”

STATUS tip570Drv(void)

DESCRIPTION

This function initializes and installs the TIP570 driver in the I/O system.

A call to this function is the first thing the user has to do before adding any device to the
system or performing any I/O request.

EXAMPLE

#include "tip570.h”

STATUS result;

/*-------------------

Initialize Driver

-------------------*/

result = tip570Drv();

if (result == ERROR)

{

/* Error handling */

}

TIP570-SW-42 – VxWorks Device Driver Page 8 of 22

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TIP570-SW-42 – VxWorks Device Driver Page 9 of 22

3.2 tip570DevCreate()

NAME

tip570DevCreate() – Add a TIP570 device to the VxWorks system

SYNOPSIS

#include “tip570.h”

STATUS tip570DevCreate
(

char *name,
int devIdx,
int funcType,
void *pParam

)

DESCRIPTION

This routine adds the selected device to the VxWorks system. The device hardware will be setup and
prepared for use.

This function must be called before performing any I/O request to this device.

PARAMETER

name

This string specifies the name of the device that will be used to identify the device, for example
for open() calls.

devIdx

This index number specifies the desired device instance beginning by 0. This parameter is 0 for
the first TIP570 in the system, 1 for the second TIP570 and so forth. The order of TIP570
modules depends on the search order of the IPAC carrier driver.

funcType

This parameter is unused and should be set to 0.

pParam

This parameter is unused and should be set to NULL.

TIP570-SW-42 – VxWorks Device Driver Page 10 of 22

EXAMPLE

#include "tip570.h”

STATUS result;

/*---

Create the device "/tip570/0" for the first TIP570 module

---*/

result = tip570DevCreate("/tip570/0", 0, 0, NULL);

if (result == ERROR)

{

/* Error occurred when creating the device */

}

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes can be read with the function errnoGet().

Error code Description

S_ioLib_NO_DRIVER The driver has not been started

EINVAL Input parameter has an invalid value

EISCONN The device has already been created

ETIMEDOUT An initial ADC Conversion has failed

ENXIO No TIP570 module found for the specified parameter
devIdx. If this error occurred for parameter devIdx=0, no
TIP570 module at all was recognized.

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TIP570-SW-42 – VxWorks Device Driver Page 11 of 22

4 I/O Functions

4.1 open()

NAME

open() - open a device or file.

SYNOPSIS

int open
(

const char *name,
int flags,
int mode

)

DESCRIPTION

Before I/O can be performed to the TIP570 device, a file descriptor must be opened by invoking the
basic I/O function open().

PARAMETER

name

Specifies the device which shall be opened, the name specified in tip570DevCreate() must be
used

flags

Not used

mode

Not used

TIP570-SW-42 – VxWorks Device Driver Page 12 of 22

EXAMPLE

int fd;

/*--

Open the device named "/tip570/0" for I/O

--*/

fd = open("/tip570/0", 0, 0);

if (fd == ERROR)

{

/* Handle error */

}

RETURNS

A device descriptor number or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - open()

TIP570-SW-42 – VxWorks Device Driver Page 13 of 22

4.2 close()

NAME

close() – close a device or file

SYNOPSIS

STATUS close
(

int fd
)

DESCRIPTION

This function closes opened devices.

PARAMETER

fd

This file descriptor specifies the device to be closed. The file descriptor has been returned by
the open() function.

EXAMPLE

int fd;

STATUS retval;

/*----------------

close the device

----------------*/

retval = close(fd);

if (retval == ERROR)

{

/* Handle error */

}

TIP570-SW-42 – VxWorks Device Driver Page 14 of 22

RETURNS

OK or ERROR. If the function fails, an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - close()

TIP570-SW-42 – VxWorks Device Driver Page 15 of 22

4.3 ioctl()

NAME

ioctl() - performs an I/O control function.

SYNOPSIS

#include “tip570.h”

int ioctl
(

int fd,
int request,
int arg

)

DESCRIPTION

Special I/O operations that do not fit to the standard basic I/O calls (read, write) will be performed by
calling the ioctl() function.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

request

This argument specifies the function that shall be executed. Following functions are defined:

Function Description

FIO_TIP570_READ read ADC input value

FIO_TIP570_WRITE set output of a single DAC channel

FIO_TIP570_SIM_WRITE set output of all DAC channels

arg

This parameter depends on the selected function (request). How to use this parameter is
described below with the function.

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

TIP570-SW-42 – VxWorks Device Driver Page 16 of 22

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).
Function specific error codes will be described with the function.

Error code Description

ENOTSUP The specified function code is not supported

SEE ALSO

ioLib, basic I/O routine - ioctl()

TIP570-SW-42 – VxWorks Device Driver Page 17 of 22

4.3.1 FIO_TIP570_READ

This I/O control function starts an AD conversion with the specified parameters and will be blocked
until the data acquisition and conversion has completed. In case of the input channel or selected gain
has changed since the previous conversion the conversion is delayed by the hardware settling time.

Interlocking access to a specific device will be synchronized by a mutual-exclusion semaphore with
priority-inheritance. In case of the device is busy converting data the calling task is blocked for 2 ticks
at worst until it gains access to the device or the request times out.

The ADC and DAC function can be used concurrently because of using different mutual-exclusion
semaphores.

The function specific control parameter arg is a pointer to a TIP570_READ_BUFFER structure.

typedef struct

{

unsigned long flags;

unsigned long channel;

unsigned long gain;

int data;

} TIP570_READ_BUFFER;

flags

This parameter is an ORed value of the following flags:

Flag Description

TIP570_DIFF If this flag is set the ADC input will use differential input interface.

If this flag is not set, the ADC input will use single-ended
interface.

TIP570_PIPL If this flag is set the ADC will be used in pipeline mode.

TIP570_CORRECTION If this flag is set the input value will be corrected with the
manufacturer stored correction data.

TIP570_FAST If this flag is set the driver will wait in a busy loop (polling-mode)
until the conversion has finished instead of using interrupt
notification. Depending on system performance in polling-mode
the conversion time is about 9 microseconds instead of 15
microseconds in interrupt-mode.

In interrupt-mode lower priority tasks were given a chance to run
during conversion in polling-mode not.

channel

This value specifies the ADC input channel. Allowed channel numbers are 1..8 in differential
mode, and 1..16 in single-ended mode.

gain

This value specifies the input gain. The allowed values depend on the version of the module.
For TIP570-10 the allowed gain values are 1, 2, 5, and 10, for TIP570-11 allowed gain values
are 1, 2, 4, and 8.

data

This is the parameter where the ADC input value will be stored. The value is returned as a
12-bit value in the range from -2048 to 2047.

TIP570-SW-42 – VxWorks Device Driver Page 18 of 22

EXAMPLE

#include “tip570.h”

int fd;

TIP570_READ_BUFFER readBuf;

int retval;

/*---

make conversion on ADC channel 3 (single-ended) with gain 2

and return a corrected value

---*/

readBuf.flags = TIP570_CORRECTION | TIP570_FAST;

readBuf.channel = 3;

readBuf.gain = 2;

retval = ioctl(fd, FIO_TIP570_READ, (int)&readBuf);

if (retval != ERROR)

{

/* function succeeded */

printf(“ADC input value: %d\n”, readBuf.data);

}

else

{

/* handle the error */

}

ERROR CODES

Error code Description

EINVAL An invalid parameter value has been specified. (gain,
channel)

ENOTSUP The detected model version is not supported

EBUSY The module is already in use

ETIMEDOUT Waiting for settling time, or AD conversion timed out

TIP570-SW-42 – VxWorks Device Driver Page 19 of 22

4.3.2 FIO_TIP570_WRITE

This I/O control function sets a new output value and starts DA conversion for a specified DAC
channel. If a previous conversion is still in progress the driver will wait in a busy loop until the
conversion has completed.

Interlocking access to a specific device will be synchronized by a mutual-exclusion semaphore with
priority-inheritance. In case of the device is already attached the calling task is blocked for 2 ticks at
worst until it gains access to the device or the request times out.

The ADC and DAC function can be used concurrently because of using different mutual-exclusion
semaphores.

The function specific control parameter arg is a pointer to a TIP570_WRITE_BUFFER structure.

typedef struct

{

unsigned long flags;

unsigned long channel;

int data;

} TIP570_WRITE_BUFFER;

flags

This parameter is an ORed value of the following flags:

Flag Description

TIP570_CORRECTION If this flag is set, the output value will be corrected with the
manufacturer stored correction data.

channel

This parameter selects the DAC channel. Valid channel numbers are 1 up to 8.

data

This value specifies the new output value. The value is a 12-bit value in the range from -2048 to
2047.

TIP570-SW-42 – VxWorks Device Driver Page 20 of 22

EXAMPLE

#include “tip570.h”

int fd;

TIP570_WRITE_BUFFER writeBuf;

int retval;

/*--

Set a new output voltage for DAC channel 5

--*/

writeBuf.flags = 0; /* no correction */

writeBuf.channel = 5;

writeBuf.data = 1024; /* 5V */

retval = ioctl(fd, FIO_TIP570_WRITE, (int)&writeBuf);

if (retval == ERROR)

{

/* handle the error */

}

ERROR CODES

Error code Description

EINVAL Invalid parameter value (channel)

ETIMEDOUT The previous DA conversion has not been completed. A
new DA conversion is blocked.

EBUSY The module is already in use

TIP570-SW-42 – VxWorks Device Driver Page 21 of 22

4.3.3 FIO_TIP570_SIM_WRITE

This I/O control function sets new output values and starts DA conversion for all eight DAC channels.
If a previous conversion is still in progress the driver will wait in a busy loop until the conversion has
completed.

Interlocking access to a specific device will be synchronized by a mutual-exclusion semaphore with
priority-inheritance. In case of the device is already attached the calling task is blocked for 2 ticks at
worst until it gains access to the device or the request times out.

The ADC and DAC function can be used concurrently because of using different mutual-exclusion
semaphores.

The function specific control parameter arg is a pointer to a TIP570_SIMWR_BUFFER structure.

typedef struct

{

unsigned long flags[TIP570_DAC_CHANNELS];

int data[TIP570_DAC_CHANNELS];

} TIP570_SIMWR_BUFFER;

flags[]

This parameter array specifies flags for DA conversion individually for each channel. The array
index specifies the assigned channel, index 0 for channel 1, index 1 for channel 2, and so on.
The flags are OR’ed values of the following flags:

Flag Description

TIP570_CORRECTION If this flag is set, the output value will be corrected
with the manufacturer stored correction data.

data[]

This parameter array specifies data values for DA conversion individually for each channel. The
array index specifies the assigned channel, index 0 for channel 1, index 1 for channel 2, and so
on. The value is a 12-bit value in the range from -2048 to 2047.

TIP570-SW-42 – VxWorks Device Driver Page 22 of 22

EXAMPLE

#include “tip570.h”

int fd;

TIP570_SIMWR_BUFFER simwrBuf;

int retval;

int channel;

/*--

Set all DAC outputs to a value <channel_no> * 0x10

even channels shall be corrected, odd channels not

--*/

for (channel = 1; channel <= TIP570_DAC_CHANNELS; channel++)

{

if (channel % 2)

{

simwrBuf.flags[channel - 1] = TIP570_CORRECTION;

}

else

{

simwrBuf.flags[channel - 1] = 0;

}

simwrBuf.data[channel - 1] = channel * 0x10;

}

retval = ioctl(fd, FIO_TIP570_SIM_WRITE, (int)&simwrBuf);

if (retval != ERROR)

{

/* function succeeded */

}

else

{

/* handle the error */

}

ERROR CODES

Error code Description

ETIMEDOUT A DA conversion has timed out.

EBUSY The module is already in use.

	1	Introduction
	1.1	Device Driver
	1.2	IPAC Carrier Driver

	2	Installation
	2.1	Include device driver in Tornado IDE project
	2.2	System resource requirement

	3	I/O system functions
	3.1	tip570Drv()
	3.2	tip570DevCreate()

	4	I/O Functions
	4.1	open()
	4.2	close()
	4.3	ioctl()
	4.3.1	FIO_TIP570_READ
	4.3.2	FIO_TIP570_WRITE
	4.3.3	FIO_TIP570_SIM_WRITE

