
 

The Embedded I/O Company

 
 

TIP570-SW
LynxOS Device

16/8 Channel 12 B
and 

8 Channel 12 Bit
 
 
 
 
 

User Manu
Issue 1.0 Version

January 200
 
 
 
 

 
TEWS TECHNOLOGIES GmbH 
Am Bahnhof 7  25469 Halstenbek / Germany 
Phone: +49-(0)4101-4058-0  Fax: +49-(0)4101-4058-19 
e-mail: info@tews.com www.tews.com 

  
TEWS 
1 E. Lib
Phone:
e-mail:
-72 
 Driver 
it ADC 

 DAC 

al 
 1.0.0 

3 

TECHNOLOGIES LLC 
erty Street, Sixth Floor Reno, Nevada  89504 / USA 
 +1 (775) 686 6077 Fax: +1 (775) 686 6024 
 usasales@tews.com www.tews.com 

mailto:info@tews.com
mailto:usasales@tews.com


 

 

TIP570-SW-72 – LynxOS Device Driver Page 2 of 19 

TIP570-SW-72 
16/8 Channel 12 Bit ADC and 8 Channel 12 Bit 
DAC 

LynxOS Device Driver 

  

This document contains information, which is 
proprietary to TEWS TECHNOLOGIES GmbH. Any 
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any 
effort to ensure that this manual is accurate and 
complete. However TEWS TECHNOLOGIES GmbH 
reserves the right to change the product described 
in this document at any time without notice. 

TEWS TECHNOLOGIES GmbH is not liable for any 
damage arising out of the application or use of the 
device described herein. 

2003 by TEWS TECHNOLOGIES GmbH 

 

Issue Description Date 
1.0 First Issue January 24, 2003 



 

 

TIP570-SW-72 – LynxOS Device Driver Page 3 of 19 

Table of Content 
1 INTRODUCTION......................................................................................................... 4 
2 INSTALLATION.......................................................................................................... 5 

2.1 Device Driver Installation ...............................................................................................................5 
2.1.1 Static Installation ..................................................................................................................5 

2.1.1.1 Build the driver object ...................................................................................................5 
2.1.1.2 Create Device Information Declaration ........................................................................6 
2.1.1.3 Modify the Device and Driver Configuration File..........................................................6 
2.1.1.4 Rebuild the Kernel ........................................................................................................6 

2.1.2 Dynamic Installation .............................................................................................................7 
2.1.3 Device Information Definition File ........................................................................................8 
2.1.4 Configuration File: CONFIG.TBL .........................................................................................9 

3 TIP570 DEVICE DRIVER PROGRAMMING............................................................. 10 
3.1 open() .............................................................................................................................................10 
3.2 close().............................................................................................................................................12 
3.3 read() ..............................................................................................................................................13 
3.4 write() .............................................................................................................................................16 

4 DEBUGGING AND DIAGNOSTIC............................................................................ 18 



 

 

TIP570-SW-72 – LynxOS Device Driver Page 4 of 19 

1  Introduction 
The TIP570-SW-72 LynxOS device driver allows the operation of a TIP570 16/8 Channel 12 Bit ADC 
and 8 Channel 12 Bit DAC IP on PowerPC platforms. 

The standard file (I/O) functions (open, close, read) provide the basic interface for opening and closing 
a file descriptor and for performing device input operations. 

The TIP570 device driver includes the following functions: 

! Reading analog input value from a specified ADC channel 
! Select input gains 
! Using pipeline mode for input 
! Support of single-ended and differential input 
! Auto correction of input values with factory stored correction data 
! Writing analog output value to a specified DAC channel 
! Using latched mode for output 
! Auto correction of output values with factory stored correction data 
 

To understand all features of this device driver, it is recommended to read the TIP570 User Manual. 



 

 

TIP570-SW-72 – LynxOS Device Driver Page 5 of 19 

2 Installation 
The software is delivered on a PC formatted 3½" HD diskette. 

Following files are located on the diskette: 

tip570.c Driver source code 
tip570.h Definitions and data structures for driver and application 
tip570def.h Definitions and data structures for the driver 
tip570_info.c Device information definition 
tip570_info.h Device information definition header 
tip570.cfg Driver configuration file include 
tip570.import Linker import file 
Makefile Device driver make file 
Makefile.dldd Make file for dynamic driver installation 
example/example.c Example application source 
tip570-sw-72.pdf This Manual in PDF format 

2.1 Device Driver Installation 
The two methods of driver installation are as follows: 

! Static Installation 
! Dynamic Installation (only native LynxOS systems) 

2.1.1 Static Installation 
With this method, the driver object code is linked with the kernel routines and is installed during 
system start-up. 

In order to perform a static installation, copy the following files to their target directories: 

1. Create a new directory in the system driver directory path /sys/drivers.xxx, where xxx 
represents the BSP that supports the target hardware. For example: 
/sys/drivers.pp_drm/tip570 

2. Copy the following files to this directory: tip570.c, tip570def.h, Makefile  

3. Copy tip570.h to /usr/include/ 

4. Copy tip570_info.c to /sys/devices.xxx/ or /sys/devices if /sys/devices.xxx does not exist 
(xxx represents the BSP). 

5. Copy tip570_info.h to /sys/dheaders/ 

6. Copy tip570.cfg to /sys/cfg.ppc/ 

2.1.1.1 Build the driver object 
1. Change to the directory  /sys/drivers.xxx/tip570, where xxx represents the BSP that supports 

the target hardware. 

2. To update the library /sys/lib/libdrivers.a enter: 

 make install 



 

 

TIP570-SW-72 – LynxOS Device Driver Page 6 of 19 

2.1.1.2 Create Device Information Declaration 
1. Change to the directory /sys/devices.xxx or /sys/devices if /sys/devices.xxx does not exist 

(xxx represents the BSP). 

2. Add the following dependencies to the Makefile  

 DEVICE_FILES_all = ... tip570_info.x 

3. And at the end of the Makefile 

 Tip570_info.o:$(DHEADERS)/tip570_info.h 

4. To update the library /sys/lib/libdevices.a enter: 

 make install 

2.1.1.3 Modify the Device and Driver Configuration File 
In order to insert the driver object code into the kernel image, an appropriate entry in file CONFIG.TBL 
must be created. 

1. Change to the directory /sys/lynx.os/ respective /sys/bsp.xxx, where xxx represents the BSP 
that supports the target hardware. 

2. Create an entry at the end of the file CONFIG.TBL 

 I:tip570.cfg 

2.1.1.4 Rebuild the Kernel 
1. Change to the directory /sys/lynx.os/ (/sys/bsp.xxx) 

2. Enter the following command to rebuild the kernel: 

 make install 

3. Reboot the newly created operating system by the following command (not necessary for 
KDIs): 

 reboot –aN 

4. The N flag instructs init to run mknod and create all the nodes mentioned in the new nodetab. 

5. After reboot you should find the following new devices (depends on the device configuration): 
/dev/t570a1, …] 



 

 

TIP570-SW-72 – LynxOS Device Driver Page 7 of 19 

2.1.2 Dynamic Installation 
This method allows you to install the driver after the operating system is booted. The driver object 
code is attached to the end of the kernel image and the operating system dynamically adds this driver 
to its internal structures. The driver can also be removed dynamically. 

The following steps describe how to do a dynamic installation: 

1. Create a new directory in the system driver directory path /sys/drivers.xxx, where xxx 
represents the BSP that supports the target hardware. For example: 
/sys/drivers.pp_drm/tip570 

1. Copy the following files to this directory: 

tip570.c 
tip570def.h 
tip570_info.c 
tip570_info.h 
tip570.import 
Makefile.dldd 

 
2. Copy tip570.h to /usr/include 

3. Change to the directory /sys/drivers.xxx/tip570 

4. To make the dynamic link-able driver enter: 

  make –f Makefile.dldd 

5. Create a device definition file for one major device 

  gcc –DDLDD –o tip570_info tip570_info.c 

  ./tip570_info > t570a_info 

6. To install the driver enter:  

  drinstall –c tip570.obj 

  If successful drinstall returns a unique <driver-ID> 

7. To install the major device enter: 

  devinstall –c –d <driver-ID> t570a_info 

 The <driver-ID> is returned by the drinstall command 

8. To create nodes for the devices enter: 

  mknod /dev/t570a1 c <major_no> 0... 

If all steps are successful completed the TIP570 is ready to use. 

To uninstall the TIP570 device enter the following commands: 

 devinstall –u –c <device-ID> 

 drinstall –u <driver-ID> 



 

 

TIP570-SW-72 – LynxOS Device Driver Page 8 of 19 

2.1.3 Device Information Definition File 
The device information definition contains information necessary to install the TIP570 major device. 

The implementation of the device information definition is done through a C structure, which is defined 
in the header file tip570_info.h. 

This structure contains the following parameter: 

IpIoVirtualAddress 
This parameter contains the kernel virtual address of the IP I/O space. This address depends 
on the configuration of the IP carrier board. In case of a VMEbus carrier this space usually 
appears in the VMEbus short I/O space A16/D16. 

IpIdVirtualAddress 
This parameter contains the kernel virtual address of the IP ID space (ID-PROM). This address 
depends on the configuration of the IP carrier board. In case of a VMEbus carrier this space 
usually appears in the VMEbus short I/O space A16/D16. 

If the TIP570 is plugged on a VMEbus carrier be sure that the appropriate VMEbus driver uvme 
or vme is started (CONFIG.TBL). See also Chapter 5 – Accessing Hardware in the "Writing 
Device Drivers for LynxOS" manual and the man pages uvmedrvr and vmedrvr for information 
about the VMEbus configuration and mapping. Be sure that the used VME addressing modes 
(A16/D32) are enabled. 

A device information definition is unique for every TIP570 major device. The file tip570_info.c on the 
distribution disk contains a device information declaration. 

If the driver should support more major devices it is necessary to copy and paste an existing 
declaration and rename it with unique name for example t570b_info, t570c_info and so on.  

It is also necessary to modify the device and driver configuration file, respectively the 
configuration include file tip570.cfg. 

The following device declaration information expected that the IP spaces appear at virtual address 
0xCFFF8000 for IP I/O and at virtual address 0xCFFF8080 for IP ID space  

T570_INFO t570a_info = 
{ 
 
 0xCfff8000  /*  IP I/O Space     */ 
 0xCfff8080  /*  IP ID Space      */ 
}; 



 

 

TIP570-SW-72 – LynxOS Device Driver Page 9 of 19 

2.1.4 Configuration File: CONFIG.TBL 
The device and driver configuration file CONFIG.TBL contains entries for device drivers and its major 
and minor device declarations. Each time the system is rebuild, the config utility reads the file and 
produces a new set of driver and device configuration tables and a corresponding nodetab. 

To install the TIP570 driver and devices into the LynxOS system, the configuration include file 
tip570.cfg must be included in the CONFIG.TBL (see also ). 

The file tip570.cfg on the distribution disk contains the driver entry (C:tip570:\....) and one enabled 
major device entry ( D:TIP570 1:t570a_info:: ) with one minor device entry (N: t570a1:0).  

If the driver should support more than one major device (TIP570) the following entries for major and 
minor devices must be enabled by removing the comment character (#). By copy and paste an 
existing major and minor entry and renaming the new entries, it is possible to add any number of 
additional TIP570 devices. 

The name of the device information declaration (info-block-name) must match to an existing C 
structure in the file tip570_info.c. 

This example shows a driver entry with one major device: 

# Format: 
# C:driver-name:open:close:read:write:select:control:install:uninstall 
# D:device-name:info-block-name:raw-partner-name 
# N:node-name:minor-dev 
 
C:tip570:\ 
 :t570open:t570close:t570read:::::t570install:t570uninstall 
D:TIP570 1:t570a_info:: 
N:t570a1:0 
 

The configuration above creates the following node in the /dev directory. 

/dev/t570a1 



 

 

TIP570-SW-72 – LynxOS Device Driver Page 10 of 19 

3 TIP570 Device Driver Programming 
LynxOS system calls are all available directly to any C program. They are implemented as ordinary 
function calls to "glue" routines in the system library, which trap to the OS code.  

Note that many system calls use data structures, which should be obtained in a program from 
appropriate header files. Necessary header files are listed with the system call synopsis. 

3.1 open() 

NAME 

open() - open a file 

SYNOPSIS 

#include <sys/file.h> 
#include <sys/types.h> 
#include <fcntl.h> 
 
int open (char *path, int oflags[, mode_t mode]) 

DESCRIPTION 

Opens a file (TIP570 device) named in path for reading and writing. The value of oflags indicates the 
intended use of the file. In case of a TIP570 devices oflags must be set to O_RDWR to open the file 
for both reading and writing. 

The mode argument is required only when a file is created. Because a TIP570 device already exists 
this argument is ignored. 

EXAMPLE 

int  fd 
 
... 
 
/* 
**  open the device named "/dev/t570a1" for I/O 
*/ 
fd = open ("/dev/t570a1", O_RDWR); 
 
... 



 

 

TIP570-SW-72 – LynxOS Device Driver Page 11 of 19 

RETURNS 

open returns a file descriptor number if successful, or –1 on error. 

SEE ALSO 

LynxOS System Call - open() 



 

 

TIP570-SW-72 – LynxOS Device Driver Page 12 of 19 

3.2 close() 

NAME 

close() – close a file 

SYNOPSIS 

int close( int fd ) 

DESCRIPTION 

This function closes an opened device. 

EXAMPLE 

int result; 
 
... 
 
/* 
** close the device 
*/ 
result = close(fd); 
 
... 

RETURNS 

close returns 0 (OK) if successful, or –1 on error 

SEE ALSO 

LynxOS System Call - close() 



 

 

TIP570-SW-72 – LynxOS Device Driver Page 13 of 19 

3.3 read() 

NAME 

read() - read from a file  

SYNOPSIS 

#include <tip570.h> 
 
int read ( int fd, char *buff, int count ) 

DESCRIPTION 

The read function reads an analog input value from the specified channel. A pointer to the callers 
message buffer (T570_READ_BUF) and the size of this structure, is passed by the parameters buff 
and count to the device. 

The function will use the fasted possible mode. If it is necessary to wait a settling time after changing 
channel, gain or input interface, the driver will do it, if the parameters do not change, the settling time 
will be ignored. 

The T570_READ_BUF structure has the following layout: 

typedef struct 
{ 
 int  channel; 
 int  gain; 
 int  flags; 
 long  value; 
} T570_READ_BUF, *PT570_READ_BUF; 

channel 
This parameter specifies the ADC channel number for conversion. Allowed channel numbers 
are 1 up to 8 for differential mode and 1 up to 16 for single-ended mode. 

gain 
This value specifies the input gain. Allowed values are 1, 2, 5 and 10. 



 

 

TIP570-SW-72 – LynxOS Device Driver Page 14 of 19 

flags 
This parameter is ORed value of the defines, that enables or disables special features. 

Input interface T570_FL_SNGL The conversion will be executed on a 
single-ended input 

 T570_FL_DIFF The conversion will be executed on a 
differential input 

Data correction T570_FL_RAWDATA Returns the converted data without any 
data correction 

 T570_FL_CORRECTION Make a data correction with the 
converted data and the factory stored 
correction data. Return the corrected 
value. 

Pipeline mode T570_FL_NOPIPELINE The pipeline mode is disabled. 
 T570_FL_PIPELINE The pipeline mode is enabled. 

value 
This parameter returns the converted data value. Values are between -2048 and +2047. 

EXAMPLE 

int   fd; 
int   result; 
T570_READ_BUF ReadBuf; 
 
... 
 
ReadBuf.channel = 5;    /* Use channel 5 */ 
ReadBuf.gain =  2;    /* Gain: 2 (max. 5V) */ 
ReadBuf.flags = T570_FL_RAWDATA; /* Do not make data correction */ 
ReadBuf.flags |= T570_FL_DIFF;  /* Use differential interface */ 
ReadBuf.flags |= T570_FL_NOPIPELINE; /* The pipline mode is disabled */ 
 
result = read(fd, (char*)&ReadBuf, sizeof(ReadBuf)); 
 
/* 
**  Check the result of the last device I/O operation 
*/ 
if( result == sizeof(T570_READ_BUF)) 
{ 
 /* OK */ 
 printf(“Input value: %d\n”, ReadBuf.value); 
} 
else 
{ 
 printf( "\nRead failed --> Error = %d.\n", errno ); 
} 
 
... 



 

 

TIP570-SW-72 – LynxOS Device Driver Page 15 of 19 

RETURNS 

When read succeeds, the size of the read value is returned. If read fails, -1 (SYSERR) is returned. 

On error, errno will contain a standard read error code (see also LynxOS System Call – read) 

SEE ALSO 

LynxOS System Call - read() 

TIP570 example application 



 

 

TIP570-SW-72 – LynxOS Device Driver Page 16 of 19 

3.4 write() 

NAME 

write() – write to a file  

SYNOPSIS 

#include <tip570.h> 
 
int write ( int fd, char *buff, int count ) 

DESCRIPTION 

The write function writes a new value to a specified DAC output channel. A pointer to the callers 
message buffer (T570_WRITE_BUF) and the size of this structure, is passed by the parameters buff 
and count to the device. 

The T570_WRITE_BUF structure has the following layout: 

typedef struct 
{ 
 int  channel; 
 int  flags; 
 long  value; 
} T570_WRITE_BUF, *PT570_WRITE_BUF; 

channel 
This parameter specifies the DAC channel number for conversion. Allowed channel numbers 
are 1 up to 8. 

flags 
This parameter is ORed value of the defines, that enables or disables special features. 

Data correction T570_FL_RAWDATA Write the specified new output value 
without correction. 

 T570_FL_CORRECTION Use the factory stored correction data 
to correct the specified new output 
data. 

Latched mode T570_FL_NOLATCH Write the specified data in transparent 
mode. 

 T570_FL_LATCH Write the specified data into the DAC 
register, but don not output the new 
value, use the latched mode. 

 T570_FL_LATCH_CONV Use the latched mode and output all 
last written values. 

value 
This specifies the new output data. Valid values are between -2048 and +2047. 



 

 

TIP570-SW-72 – LynxOS Device Driver Page 17 of 19 

EXAMPLE 

int    fd; 
int    result; 
T570_WRITE_BUF  WriteBuf; 
 
... 
 
WriteBuf.channel = 5;    /* Use channel 5 */ 
WriteBuf.flags = T570_FL_RAWDATA; /* Do not make data correction */ 
WriteBuf.value = 0x400;   /* output ~5V */ 
 
result = write(fd, (char*)&WriteBuf, sizeof(WriteBuf)); 
 
/* 
**  Check the result of the last device I/O operation 
*/ 
if( result == sizeof(T570_WRITE_BUF)) 
{ 
 /* OK */ 
} 
else 
{ 
 printf( "\nWrite failed --> Error = %d.\n", errno ); 
} 
 
... 

RETURNS 

When write succeeds, the size of the write value is returned. If write fails, -1 (SYSERR) is returned. 

On error, errno will contain a standard write error code (see also LynxOS System Call – write) 

SEE ALSO 

LynxOS System Call - write() 

TIP570 example application 



 

 

TIP570-SW-72 – LynxOS Device Driver Page 18 of 19 

4 Debugging and Diagnostic 
This driver was successful tested on a Motorola MVME2306-900 board with a Windows Cross 
development with LynxOS V4.0.0. 

If the driver will not work properly please enable debug outputs by removing the comments around the 
symbol DEBUG.  

The debug output should appear on the console. If not please check the symbol KKPF_PORT in 
uparam.h. This symbol should be configured to a valid COM port (e.g. SKDB_COM1). 

The debug output displays the device information data for the current major device, a memory dump 
of the IP ID space (contents of the ID-PROM) and a memory dump of the IP I/O space (registers) like 
this, followed by the factory programmed correction data for the ADC and DAC channels. 

TIP570 Device Driver Install 
IP I/O Virtual Address   = CFFF8000 
IP ID  Virtual Address   = CFFF8080 
 
IP ID  space (ID-PROM)... 
CFFF8080 : 00 49 00 50 00 41 00 43 00 B3 00 2C 00 10 00 00 
CFFF8090 : 00 00 00 00 00 0D 00 08 00 0A 00 FF 00 FF 00 FF 
CFFF80A0 : 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 
CFFF80B0 : 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 
 
IP I/O space (Registers)... 
CFFF8000 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
CFFF8010 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
CFFF8020 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
CFFF8030 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
CFFF8040 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
CFFF8050 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
CFFF8060 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
CFFF8070 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
CFFF8080 : 00 49 00 50 00 41 00 43 00 B3 00 2C 00 10 00 00 
CFFF8090 : 00 00 00 00 00 0D 00 08 00 0A 00 FF 00 FF 00 FF 
CFFF80A0 : 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 
CFFF80B0 : 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 
CFFF80C0 : 00 21 00 00 00 21 00 00 00 21 00 00 00 21 00 00 
CFFF80D0 : 00 21 00 00 00 21 00 00 00 21 00 00 00 21 00 00 
CFFF80E0 : 00 21 00 00 00 21 00 00 00 21 00 00 00 21 00 00 
CFFF80F0 : 00 21 00 00 00 21 00 00 00 21 00 00 00 21 00 00 
 
...



 

 

TIP570-SW-72 – LynxOS Device Driver Page 19 of 19 

... 
 
Correctiondata: [gain/offset] 
    ADC[0]   4/-2 
    ADC[1]   4/-2 
    ADC[2]   4/-2 
    ADC[3]   7/-2 
    DAC[0]  -7/-1 
    DAC[1]   0/-4 
    DAC[2]  -1/-1 
    DAC[3]  -2/-3 
    DAC[4]   1/1 
    DAC[5]  -5/-2 
    DAC[6]  -2/-1 
    DAC[7]  -4/-3 

The debug output above is only an example. Debug output on other systems may be different 
for addresses and data in some locations. 


	Introduction
	Installation
	Device Driver Installation
	Static Installation
	Build the driver object
	Create Device Information Declaration
	Modify the Device and Driver Configuration File
	Rebuild the Kernel

	Dynamic Installation
	Device Information Definition File
	Configuration File: CONFIG.TBL


	TIP570 Device Driver Programming
	open()
	close()
	read()
	write()

	Debugging and Diagnostic

