
The Embedded I/O Company

TIP570-SW
Linux Device D

16/8 Channel 12 bit ADC and 8

Version 1.3.x

User Manu
Issue 1.3.0

April 2009

TEWS TECHNOLOGIES GmbH TEWS TEC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49 (0) 4101 4058 0
Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com

9190 Doub
Suite 127,
www.tews.
-82
river

Channel 12 bit DAC

al

HNOLOGIES LLC
le Diamond Parkway,
Reno, NV 89521, USA
com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

TIP570-SW-82 – Linux Device Driver Page 2 of 21

TIP570-SW-82

Linux Device Driver

16/8 Channel 12 bit ADC
8 Channel 12 bit DAC

Supported Modules:
TIP570

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2001-2009 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue July 15, 2001

1.1 Support for CARRIER CLASS DRIVER, DEVFS and SMP September 25, 2003

1.2.0 Linux Kernel 2.6.x Revision May 4, 2005

1.3.0 General Revision, TIP570-11 support added April 28, 2009

TIP570-SW-82 – Linux Device Driver Page 3 of 21

Table of Contents
1 INTRODUCTION... 4

1.1 Device Driver ...4
1.2 IPAC Carrier Driver ...5

2 INSTALLATION.. 6
2.1 Build and install the device driver...6
2.2 Uninstall the device driver ...7
2.3 Install device driver into the running kernel ..7
2.4 Remove device driver from the running kernel ...8
2.5 Change Major Device Number ...8

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 9
3.1 open() ...9
3.2 close()...11
3.3 read() ..12
3.4 write() ...15
3.5 ioctl() ..18

3.5.1 T570_IOCG_READ_PARAM...20

TIP570-SW-82 – Linux Device Driver Page 4 of 21

1 Introduction

1.1 Device Driver
The TIP570-SW-82 Linux device driver allows the operation of the TIP570 Analog Input and Output
IPAC module conforming to the Linux I/O system specification. This includes a device-independent
basic I/O interface with open(), close(), read(), write() and ioctl() functions.

Because the TIP570 device driver is stacked on the TEWS TECHNOLOGIES IPAC carrier driver, it’s
necessary to install also the appropriate IPAC carrier driver. Please refer to the IPAC carrier driver
user manual for further information.

The TIP570-SW-82 device driver supports the following features:

 start AD conversion and return input value
 support of different ADC input gains
 write values into DAC and output new value
 support of latch and transparent DAC mode
 data correction for ADC and DAC with factory set data
 TEWS TECHNOLOGIES IPAC carrier driver support.

The TIP570-SW-82 device driver supports the modules listed below:

TIP570-10 8 DAC channels
16 ADC channels with gain 1, 2, 5 and 10

IndustryPack® compatible

TIP570-11 8 DAC channels
16 ADC channels with gain 1, 2, 4 and 8

IndustryPack® compatible

To get more information about the features and use of TIP570 devices it is recommended to read the
manuals listed below.

TIP570 User manual

TIP570 Engineering Manual

CARRIER-SW-82 IPAC Carrier User Manual

TIP570-SW-82 – Linux Device Driver Page 5 of 21

1.2 IPAC Carrier Driver
IndustryPack (IPAC) carrier boards have different implementations of the system to IndustryPack bus
bridge logic, different implementations of interrupt and error handling and so on. Also the different byte
ordering (big-endian versus little-endian) of CPU boards will cause problems on accessing the
IndustryPack I/O and memory spaces.

To simplify the implementation of IPAC device drivers which work with any supported carrier board,
TEWS TECHNOLOGIES has designed a so called Carrier Driver that hides all differences of different
carrier boards under a well defined interface.

The TEWS TECHNOLOGIES IPAC Carrier Driver CARRIER-SW-82 is part of this TIP570-SW-82
distribution. It is located in directory CARRIER-SW-82 on the corresponding distribution media.

This IPAC Device Driver requires a properly installed IPAC Carrier Driver. Due to the design of the
Carrier Driver, it is sufficient to install the IPAC Carrier Driver once, even if multiple IPAC Device
Drivers are used.

Please refer to the CARRIER-SW-82 User Manual for a detailed description how to install and setup
the CARRIER-SW-82 device driver, and for a description of the TEWS TECHNOLOGIES IPAC Carrier
Driver concept.

TIP570-SW-82 – Linux Device Driver Page 6 of 21

2 Installation
Following files are located on the distribution media:

Directory path ‘TIP570-SW-82’:

TIP570-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
TIP570-SW-82-1.3.0.pdf PDF copy of this manual
ChangeLog.txt Release history
Release.txt Release information

For installation the files have to be copied to the desired target directory.

The GZIP compressed archive TIP570-SW-82-SRC.tar.gz contains the following files and directories:

Directory path ‘tip570’:

tip570.c Driver source code
tip570def.h Driver include file
tip570.h Driver include file for application program
makenode Script to create device nodes on the file system
Makefile Device driver make file
example/tip570exa.c Example application
example/Makefile Example application make file
include/config.h Driver independent library header file
include/tpmodule.h Kernel independent library header file
include/tpmodule.c Kernel independent library source code file

In order to perform an installation, extract all files of the archive TIP570-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TIP570-SW-82-SRC.tar.gz’ will extract the files into
the local directory.

Before building a new device driver, the TEWS TECHNOLOGIES IPAC carrier driver must be
installed properly, because this driver includes the header file ipac_carrier.h, which is part of
the IPAC carrier driver distribution. Please refer to the IPAC carrier driver user manual in the
directory path CARRIER-SW-82 on the separate distribution media.

2.1 Build and install the device driver
 Login as root

 Change to the target directory

 Copy file tip570.h to /usr/include to allow user application access

 To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

 Also after the first build we have to execute depmod to create a new dependency description
for loadable kernel modules. This dependency file is later used by modprobe to automatically
load the correct IPAC carrier driver modules.

depmod –aq

TIP570-SW-82 – Linux Device Driver Page 7 of 21

2.2 Uninstall the device driver
 Login as root

 Change to the target directory

 To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

 Update kernel module dependency description file

depmod –aq

2.3 Install device driver into the running kernel
 To load the device driver into the running kernel, login as root and execute the following

commands:

modprobe tip570drv

 After the first build or if you are using dynamic major device allocation it is necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a dynamic device file system (devfs or sysfs with udev) then you have to
skip running the makenode script. Instead of creating device nodes from the script the driver
itself takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TIP570 module found. The first
TIP570 can be accessed with device node /dev/tip570_0, the second TIP570 with device node
/dev/tip570_1, the third TIP570 with device node /dev/tip570_2 and so on.

The allocation of device nodes to physical TIP570 modules depends on the search order of the IPAC
carrier driver. Please refer to the IPAC carrier user manual.

Loading of the TIP570 device driver will only work if kernel KMOD support is installed,
necessary carrier board drivers already installed and the kernel dependency file is up to date.
If KMOD support isn’t available you have to build either a new kernel with KMOD installed or
you have to install the IPAC carrier kernel modules manually in the correct order (please refer
to the IPAC carrier driver user manual).

TIP570-SW-82 – Linux Device Driver Page 8 of 21

2.4 Remove device driver from the running kernel
 To remove the device driver from the running kernel login as root and execute the following

command:

modprobe tip570drv –r

If your kernel has enabled a dynamic device file system like devfs or sysfs (udev), all /dev/tip570_...
nodes will be automatically removed from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tip570drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe –r again.

2.5 Change Major Device Number
The TIP570 driver use dynamic allocation of major device numbers by default. If this isn’t suitable for
the application it’s possible to define a major number for the driver. If the kernel has enabled devfs the
driver will not use the symbol TIP570_MAJOR.

To change the major number edit the file tip570drv.c, change the following symbol to appropriate
value and enter make install to create a new driver.

TIP570_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

Example:

#define TIP570_MAJOR 122

TIP570-SW-82 – Linux Device Driver Page 9 of 21

3 Device Input/Output functions
This chapter describes the interface to the device driver I/O system.

3.1 open()

NAME

open() - open a file descriptor

SYNOPSIS

#include <fcntl.h>

int open (const char *filename, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise
OR of the appropriate parameters (using the | operator in C). See also the GNU C Library
documentation for more information about the open function and open flags.

EXAMPLE

int fd;

fd = open(“/dev/tip570_0”, O_RDWR);
if (fd < 0)
{

/* handle open error */
}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

TIP570-SW-82 – Linux Device Driver Page 10 of 21

ERRORS

ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TIP570-SW-82 – Linux Device Driver Page 11 of 21

3.2 close()

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) != 0)
{

/* handle close error conditions */
}

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TIP570-SW-82 – Linux Device Driver Page 12 of 21

3.3 read()

NAME

read() – read from a device

SYNOPSIS

#include <unistd.h>

ssize_t read(int filedes, void *buffer, size_t size)

DESCRIPTION

The read function attempts to start an AD conversion on the specified channel and returns the
converted value in a read buffer to the caller.

A pointer to the callers read buffer (T570_RW_BUFFER) and the size of this structure is passed by the
parameters buffer and size to the device.

typedef struct
{

unsigned int channel;
unsigned int gain;
unsigned int mode;
unsigned int correction;
int data;

} T570_IO_BUFFER, *PT570_IO_BUFFER;

channel

Specifies the ADC channel number from where to read the AD value. Valid channel numbers
are 1..16 if Single-Ended is selected. If differential is selected the valid channel numbers are in
the range of 1..8.

gain

Specifies the gain, which shall be used to read the AD value. Valid gains are:
Value Description

T570_GAIN_1 Select Gain 1

T570_GAIN_2 Select Gain 2

T570_GAIN_4 Select Gain 4 (only TIP570-11)

T570_GAIN_5 Select Gain 5 (only TIP570-10)

T570_GAIN_8 Select Gain 8 (only TIP570-11)

T570_GAIN_10 Select Gain 10 (only TIP570-10)

TIP570-SW-82 – Linux Device Driver Page 13 of 21

mode

Specifies the channel input interface. Allowed values are:
Value Description

T570_SINGLE Input Interface is used in single-ended mode

T570_DIFF Input Interface is used in differential mode

correction

Specifies if data correction with the factory stored calibration data should be performed for the
input value.

Value Description

T570_NOCORR Disable data correction. The raw value will be returned.

T570_CORR Enable data correction. A corrected value will be returned.

data

Analog input value read from the specified ADC channel. The analog data is returned as sign
extended two's complement integer value with 16-bit resolution. The lower four bits are always 0
(see TIP570 Hardware User Manual).

EXAMPLE

#include <tip570.h>

int fd;
ssize_t NumBytes;
T570_IO_BUFFER ADCBuf;

ADCBuf.gain = T570_GAIN_1;
ADCBuf.mode = T570_SINGLE;
ADCBuf.channel = 1;
ADCBuf.correction = T570_CORR;

NumBytes = read(fd, &ioBuf, sizeof(ioBuf));

/* Check the result of the last device I/O operation */
if (NumBytes > 0)
{

printf("ADC Value = %d\n", ADCBuf.data);
}
else
{

printf("Read failed --> Error = %d\n", errno);
}

TIP570-SW-82 – Linux Device Driver Page 14 of 21

RETURNS

On success read returns the size of the structure T570_IO_BUFFER. In the case of an error, a value
of –1 is returned. The global variable errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the size of
the read buffer is too small or if the gain or channel
parameter out of range.

ETIME The conversion was not completed within 20
microseconds. The hardware seems to be faulty or the
device mapping is incorrect.

EFAULT Invalid pointer to the read buffer.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TIP570-SW-82 – Linux Device Driver Page 15 of 21

3.4 write()

NAME

read() – write to a device

SYNOPSIS

#include <unistd.h>

ssize_t write(int filedes, void *buffer, size_t size)

DESCRIPTION

The write function attempts to start a DA conversion on the specified channel.

A pointer to the callers write buffer (T570_RW_BUFFER) and the size of this structure is passed by
the parameters buffer and size to the device.

typedef struct
{

unsigned int channel;
unsigned int gain;
unsigned int mode;
unsigned int correction;
int data;

} T570_IO_BUFFER, *PT570_IO_BUFFER;

channel

Specifies the DAC channel number where to write the DA value. Valid channel numbers are
1..8.

gain

This parameter is not used for the write command.

TIP570-SW-82 – Linux Device Driver Page 16 of 21

mode

Specifies the DAC mode. The following values and bits can be set:
Value Description

T570_TRANS The output will be written in transparent mode. The value will be
written to the specified DAC channel and the output voltage will
change immediately.

T570_LATCH The output will be written in latched mode. The value will be written
to the specified DAC channel, but there will be no change at the
output line. The output line will be set if the T570_CONV bit is set,
independent of the specified channel.

T570_CONV This bit can be set additional to the latched mode.
(T570_LATCH | T570_CONV).
Setting this bit will execute a write as described for the latched
mode, but it will also trigger a conversion of current values stored in
the DACs data registers. The output voltages of all DAC channels
will be updated.

correction

Specifies if data correction with the factory stored and channel dependent calibration data
should be performed for the output value.

Value Description

T570_NOCORR Disable data correction. The specified value will be written to the
DAC.

T570_CORR Enable data correction. A corrected value will be written to the DAC.

data

Analog output value that will be written to the specified DAC channel. The analog data must be
a sign extended two's complement integer value with 16-bit resolution. The lower four bits are
always ignored (see TIP570 Hardware User Manual).

EXAMPLE

#include <tip570.h>

int fd;
ssize_t NumBytes;
T570_IO_BUFFER DACBuf;

DACBuf.data = 0x400; /* 5V output */
DACBuf.mode = T570_TRANS; /* transparent mode */
DACBuf.channel = 1;
DACBuf.correction = T570_CORR;

NumBytes = write(fd, &ioBuf, sizeof(ioBuf));

…

TIP570-SW-82 – Linux Device Driver Page 17 of 21

…

/* Check the result of the last device I/O operation */
if (NumBytes > 0)
{

printf("DAC write OK \n");
}
else
{

printf("write failed --> Error = %d\n", errno);
}

RETURNS

On success read returns a positive value. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the size of
the write buffer is too small or if the gain or channel
parameter out of range.

ETIME The conversion was not completed within 20
microseconds. The hardware seems to be faulty or the
device mapping is incorrect.

EFAULT Invalid pointer to the write buffer.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TIP570-SW-82 – Linux Device Driver Page 18 of 21

3.5 ioctl()

NAME

ioctl() – device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in tip570.h:

Symbol Meaning

T570_IOCG_READ_PARAM Read module parameter

See behind for more detailed information on each control code.

To use these TIP570 specific control codes the header file tip570.h must be included in the
application.

RETURNS

On success, zero is returned. In the case of an error, a value of –1 is returned. The global variable
errno contains the detailed error code.

TIP570-SW-82 – Linux Device Driver Page 19 of 21

ERRORS

EINVAL Invalid argument. This error code is returned if the requested ioctl
function is unknown. Please check the argument request.

Other function dependant error codes will be described for each ioctl code separately. Note, the
TIP570 driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TIP570-SW-82 – Linux Device Driver Page 20 of 21

3.5.1 T570_IOCG_READ_PARAM

NAME

T570_IOCG_READ_PARAM - Read module parameter

DESCRIPTION

This ioctl function attempts to read the module type and calibration data of the TIP570 associated with
the open file descriptor, filedes, into the parameter buffer pointed to by argp.

typedef struct
{

unsigned int ModuleType;
int ADCcalGain[4];
int ADCcalOffs[4];
int DACcalGain[8];
int DACcalOffs[8];

} T570_PARAM_BUFFER, *PT570_PARAM_BUFFER;

ModuleType

Returns the type code of the associated TIP570. (10/11)

ADCcalGain[4]

Receives the gain error of the input amplifier for the possible four gain selections in the unit ¼
LSB (see also TIP570 Hardware User Manual).

ADCcalOffs[4]

Returns the offset (zero) error of the input amplifier for the possible four gain selections in the
unit ¼ LSB (see also TIP570 Hardware User Manual).

DACcalGain[8]

Returns the gain error for all the DAC channels in the unit ¼ LSB (see also TIP570 Hardware
User Manual).

DACcalOffs[8]

Returns the offset (zero) error for all the DAC channels in the unit ¼ LSB (see also TIP570
Hardware User Manual).

TIP570-SW-82 – Linux Device Driver Page 21 of 21

EXAMPLE

#include <tip570.h>

int fd;
int result;
T570_PARAM_BUFFER ParamBuf;

result = ioctl(fd, T570_IOCG_READ_PARAM, &ParamBuf);

/* Check the result of the last device I/O control operation */
if (result >= 0)
{

printf("Read module parameter successful\n");
}
else
{

printf("Read parameter failed --> Error = %d\n", errno);
}

ERRORS

EFAULT Invalid pointer to the read buffer.

SEE ALSO

ioctl man pages

	Introduction
	Device Driver
	IPAC Carrier Driver

	Installation
	Build and install the device driver
	Uninstall the device driver
	Install device driver into the running kernel
	Remove device driver from the running kernel
	Change Major Device Number

	Device Input/Output functions
	open()
	close()
	read()
	write()
	ioctl()
	T570_IOCG_READ_PARAM

