TEWS &

The Embedded I/O Company TECHNOLOGIES

TIP845-SW-82

Linux Device Driver
48 Channel 14-bit A/D Converter

Version 1.0.x

User Manual

Issue 1.0.1
December 2008
TEWS TECHNOLOGIES GmbH TEWS TECHNOLOGIES LLC
Am Bahnhof 7 Phone: +49 (0) 4101 4058 0 9190 Double Diamond Parkway, Phone: +1 (775) 850 5830

25469 Halstenbek, Germany Fax: +49 (0) 4101 4058 19 Suite 127, Reno, NV 89521, USA Fax: +1 (775) 201 0347
www.tews.com e-mail: info@tews.com www.tews.com e-mail: usasales@tews.com

TEWS &<

TECHNOLOGIES

TIP845-SW-82
))) This document contains information, which is
Linux Device Driver proprietary to TEWS TECHNOLOGIES GmbH. Any
48 Channel 14-bit A/D Converter reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

Supported Modules:
TIP845

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

©2005-2008 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0.0 First Issue June 07, 2005
1.0.1 General Revision December 23, 2008

TIP845-SW-82 - Linux Device Driver Page 2 of 21

TEWS &<

TECHNOLOGIES

Table of Contents

1 INTRODUGCTION . ..ttt e e e et e et e e et e e et e e e et e e e et e e eaaneaeannas 4
O R B oA ot B V2= PP UPPRTRRRN 4

A | O O T g T=] g B A=) SRR UTUPPRTRRIN 5

2 INTRODUGCTION. ..ttt e et et e et e et e e et e e aa e eean s 6
2.1 Build and install the deVICE AIVETcoiiiiiii et 6

2.2 UNINStall the deVICE UFIVET ..oiiieiiii ettt ettt e e e et e e e snnaees 7

2.3 Install device driver into the running Kernel ... 7

2.4 Remove device driver from the running Kernel ... 8

2.5 Change Major DeVICE NUMDETociieiiiee et e e e e e s s e e e e s e s s aee e e e e e s e s snnr e e e e e e e s e e snnsrnneeeees 8

3 DEVICE INPUT/OUTPUT FUNCTIONS ..ot 9
1 70 o o 1= o [PR PRPP TSP 9

R 27 o Lo 1=) PR 11

G 20 T T Yo 1) PR 12

3.3.1 T8A5 IOCG_READ_ADCoiiiiiiee ettt sttt ettt e e st e e s bt e e s sbbee e e s nnbeeeeea 14

3.3.2 T845 IOCG_READ_SEQ ...itiiiiiiiieiiiiiieeeeitite ettt ettt e e ettt e e e s sbbe e e e s stbeeeessbbeeeesnnneeeeans 16

3.3.3 T845 IOCG_START_SEQ .iiiiiiiiiieiiiiiieeiiitiie ettt e ettt e ettt e e sttt e e s sbb e e e s sbbeeeesnbbeeeesssbeeeeans 18

3.3.4 TBA5 IOCG_STOP_SEQ ..ooiiiiiiiiieiiiiieeeiiiee e ettt e e sttee e e s sttaeeeastbeeaessstaeasasstaeeesssbaeeessssaeaeans 21

TIP845-SW-82 - Linux Device Driver Page 3 of 21

TEWS &<

TECHNOLOGIES

1 Introduction

1.1 Device Driver

The TIP845-SW-82 Linux device driver allows the operation of a TIP845 14-bit A/D Converter IPAC
module on Linux operating systems.

Because the TIP845 device driver is stacked on the TEWS TECHNOLOGIES IPAC carrier driver, it's
necessary to install also the appropriate IPAC carrier driver. Please refer to the IPAC carrier driver
user manual for further information.

The TIP845 device driver includes the following features:

Read ADC data in normal mode

Read ADC data in sequencer mode

Use of gain 1, 2, 4 or 8 for every channel

Selection of single-ended or differential input interface
Optional data correction with factory stored calibration data
Selectable sequencer cycle time

VVYVYYVY

The TIP845-SW-82 supports the modules listed below:

TIP845-10 48 Channel 14 bit A/D Conversion (IndustryPack ®)
To get more information about the features and use of the supported devices it is recommended to
read the manuals listed below.

TIP845 User Manual
TIP845 Engineering Manual
CARRIER-SW-82 IPAC Carrier User Manual

TIP845-SW-82 - Linux Device Driver Page 4 of 21

TEWS &<

TECHNOLOGIES

1.2 IPAC Carrier Driver

IndustryPack (IPAC) carrier boards have different implementations of the system to IndustryPack bus
bridge logic, different implementations of interrupt and error handling and so on. Also the different byte
ordering (big-endian versus little-endian) of CPU boards will cause problems on accessing the
IndustryPack 1/0 and memory spaces.

To simplify the implementation of IPAC device drivers which work with any supported carrier board,
TEWS TECHNOLOGIES has designed a so called Carrier Driver that hides all differences of different
carrier boards under a well defined interface.

The TEWS TECHNOLOGIES IPAC Carrier Driver CARRIER-SW-82 is part of this TIP845-SW-82
distribution. It is located in directory CARRIER-SW-82 on the corresponding distribution media.

This IPAC Device Driver requires a properly installed IPAC Carrier Driver. Due to the design of the
Carrier Driver, it is sufficient to install the IPAC Carrier Driver once, even if multiple IPAC Device
Drivers are used.

Please refer to the CARRIER-SW-82 User Manual for a detailed description how to install and setup
the CARRIER-SW-82 device driver, and for a description of the TEWS TECHNOLOGIES IPAC Carrier
Driver concept.

TIP845-SW-82 - Linux Device Driver Page 5 of 21

TEWS &<

TECHNOLOGIES

2 Introduction

The directory TIP845-SW-82 on the distribution media contains the following files:

TIP845-SW-82-1.0.1.pdf This manual in PDF format
TIP845-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
ChangelLog.txt Release history

Release.txt Release information

The GZIP compressed archive TIP845-SW-82-SRC.tar.gz contains the following files and directories:
Directory 'tip845™":

tip845.c Driver source code

tip845def.h Driver include file

tip845.h Driver include file for application program
makenode Script to create device nodes on the file system
Makefile Device driver make file

example/tip845exa.c Example application

example/Makefile Example application make file

include/config.h Driver independent library header file
include/tpmodule.h Kernel independent library header file
include/tpmodule.c Kernel independent library source code file

In order to perform an installation, extract all files of the archive TIP845-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TIP845-SW-82-SRC.tar.gz’ will extract the files into
the local directory.

Before building a new device driver, the TEWS TECHNOLOGIES IPAC carrier driver must be
installed properly, because this driver includes the header file ipac_carrier.h, which is part of
the IPAC carrier driver distribution. Please refer to the IPAC carrier driver user manual in the
directory path CARRIER-SW-82 on the distribution media.

2.1 Build and install the device driver

e Login as root
e Change to the target directory

e To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

e Also after the first build we have to execute depmod to create a new dependency description
for loadable kernel modules. This dependency file is later used by modprobe to automatically
load the correct IPAC carrier driver modules.

depmod —aq

TIP845-SW-82 - Linux Device Driver Page 6 of 21

TEWS &<

TECHNOLOGIES

2.2 Uninstall the device driver

e Login as root
e Change to the target directory

e To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

e Update kernel module dependency description file

depmod —aq

2.3 Install device driver into the running kernel

e To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tip845drv

o After the first build or if you are using dynamic major device allocation it is necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a device file system (devfs or sysfs with udev) then you have to skip
running the makenode script. Instead of creating device nodes from the script the driver itself
takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TIP845 module found. The first
TIP845 can be accessed with device node /dev/tip845_0, the second TIP845 with device node
/dev/tip845 1 and so on.

The allocation of device nodes to physical TIP845 modules depends on the search order of the IPAC
carrier driver. Please refer to the IPAC carrier user manual.

Loading of the TIP845 device driver will only work if kernel KMOD support is installed,
necessary carrier board drivers already installed and the kernel dependency file is up to date.
If KMOD support isn’t available you have to build either a new kernel with KMOD installed or
you have to install the IPAC carrier kernel modules manually in the correct order (please refer
to the IPAC carrier driver user manual).

TIP845-SW-82 - Linux Device Driver Page 7 of 21

TEWS &<

TECHNOLOGIES

2.4 Remove device driver from the running kernel

o To remove the device driver from the running kernel login as root and execute the following
command:

modprobe tip845drv —r

If your kernel has enabled a dynamic device file system all /dev/tip845 x nodes will be automatically
removed from your file system after this.

Be sure that the driver isn’'t opened by any application program. If opened you will get the
response “tip845drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe —r again.

2.5 Change Major Device Number

The TIP845 driver uses dynamic allocation of major device numbers by default. If this isn’t suitable for
the application it's possible to define a major number for the driver. If the kernel has enabled devfs the
driver will not use the symbol TIP845 MAJOR.

To change the major number edit the file tip845drv.c, change the following symbol to appropriate
value and enter make install to create a new driver.

TIP845 MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

Example:

#define TI P845_MAJOR 122

TIP845-SW-82 - Linux Device Driver Page 8 of 21

TEWS &<

TECHNOLOGIES

3 Device Input/Output functions

This chapter describes the interface to the device driver I/O system.

3.1 open()

NAME

open() - open a file descriptor

SYNOPSIS
#include <fcntl.h>

int open (const char *filename, int flags)

DESCRIPTION
The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise

OR of the appropriate parameters (using the | operator in C). See also the GNU C Library
documentation for more information about the open function and open flags.

EXAMPLE

int fd;

fd = open(“/dev/tip845 0", O RDWR);
if (fd == -1)
{

/* handl e error condition */

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of —1 is returned. The global variable errno contains the detailed error code.

TIP845-SW-82 - Linux Device Driver Page 9 of 21

TEWS &<

TECHNOLOGIES

ERRORS

ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description — Low-
Level Input/Output.

SEE ALSO

GNU C Library description — Low-Level Input/Output

TIP845-SW-82 - Linux Device Driver Page 10 of 21

TEWS &<

TECHNOLOGIES

3.2 close()

NAME

close() — close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) !'=0)

{

/* handl e cl ose error conditions */
}
RETURNS

The normal return value from close is 0. In the case of an error, a value of —1 is returned. The global
variable errno contains the detailed error code.

ERRORS

ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description — Low-
Level Input/Output.

SEE ALSO

GNU C Library description — Low-Level Input/Output

TIP845-SW-82 - Linux Device Driver Page 11 of 21

TEWS &<

TECHNOLOGIES

3.3 ioctl()

NAME

ioctl() — device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in tip845.h:

Symbol Meaning

T845 IOCG_READ_ADC Execute conversion and read value
T845 |IOCG_READ_SEQ Read sequencer data set

T845 IOCG_START_SEQ Configure and start sequencer
T845 I0CG_STOP_SEQ Stop sequencer

See behind for more detailed information on each control code.

To use these TIP845 specific control codes the header file tip845.h must be included in the
application.

RETURNS

On success, zero is returned. In the case of an error, a value of —1 is returned. The global variable
errno contains the detailed error code.

TIP845-SW-82 - Linux Device Driver Page 12 of 21

TEWS &<

TECHNOLOGIES

ERRORS

EINVAL Invalid argument. This error code is returned if the
requested ioctl function is unknown. Please check
the argument request.

Other function dependent error codes will be described for each ioctl code separately. Note, the
TIP845 driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TIP845-SW-82 - Linux Device Driver Page 13 of 21

TEWS &<

TECHNOLOGIES

3.3.1 T845_|OCG_READ_ADC

NAME

T845 IOCG_READ_ADC - Read ADC input value

DESCRIPTION

This ioctl function starts an AD conversion of a specified channel and reads the result from the TIP845
associated with the open file descriptor, filedes and returns the value in the T845 ADC BUFFER
parameter buffer pointed to by argp.

typedef struct

{
int channel,
int gain;
unsigned long flags;
short value;

} T845_ADC_BUFFER, *PT845 ADC_BUFFER;

channel
This argument specifies the channel number that will be used. Allowed channel numbers for
single-ended input channels are 1 up to 48, for differential input channels allowed channel
numbers are 1 up to 24.

gain
This parameter specifies the input gain. Allowed values are 1, 2, 4, and 8.
flags
This parameter contains flags specifying the input interface and if data correction shall be used
or not. The flags must be ORed. The following flags are valid for this function:
Flag Description
T845_FLAG_ADC_CORR If this flag is set the input value will be corrected using the
factory stored correction data. If this flag is unset, the value
will be untouched.
T845 FLAG_ADC_DIFF This flag selects differential input interface. If this flag is not
set, the input interface will be single-ended.
value

This parameter returns ADC input value (corrected or uncorrected). This value is a sign
extended 14-bit value. The value range is from -8192 to 8191.

TIP845-SW-82 - Linux Device Driver Page 14 of 21

TEWS &<

TECHNOLOGIES

EXAMPLE

#i ncl ude <ti p845. h>

int fd;
int result;
T845 ADC BUFFER adcBuf ;

/* Make an A/ D conversion on differential channel 4 */
/* use gain 2 and make no data correction */

adcBuf . channel = 4;

adcBuf.gain = 2;

adcBuf . flags = T845_FLAG ADC Dl FF;

result = ioctl(fd, T845_ | OCG READ ADC, &adcBuf);
if (result >= 0)

{
I* oK */
printf("Value: %\ n", adcBuf.val ue);
}
el se
{
/* ERROR */
}
ERRORS
EFAULT Invalid pointer to the buffer.
EBUSY The module is in use, sequencer mode is activated.
EINVAL Invalid flags specified
ECHRNG Invalid channel number specified.

TIP845-SW-82 - Linux Device Driver Page 15 of 21

TEWS &<

TECHNOLOGIES

3.3.2 T845 I0CG_READ_SEQ

NAME

T845_IOCG_READ_SEQ - Reads sequencer input data

DESCRIPTION

This ioctl function waits for new data and reads the data from sequencer data RAM of the TIP845
associated with the open file descriptor, filedes and returns the value in the
T845 SEQ_ READ_BUFFER parameter buffer pointed to by argp.

typedef struct

{
short value[48];
unsigned long status;

} T845_SEQ_READ_BUFFER, *PT845_SEQ_READ_BUFFER;

value[]

This array is used to return the read sequencer data. The data assigned an array index with a
channel dependent value. To get the right index, a MACRO T845 SEQ_IDX(diff,chan) is
defined in tip845.h.

For differential input channels you should address the array as follows:
buf.value[T845_ SEQ_IDX(TRUE, <n>)]

TRUE specifies differential input

<n> is the channel number (1...24)

For single-ended input channels you should address the array as follows:
buf.value[T845_SEQ_IDX(FALSE, <n>)]

FALSE specifies differential input

<n> is the channel number (1...48)

status
This parameter returns the sequencer state. If the sequencer has been stopped on error, this
value will contain status flags. The following status flags are defined:
Flag Description

T845_STATUS_IRAM_ERR This flag signals that the sequencer is stopped on an
instruction RAM error.

T845 STATUS TIMER_ERR This flag signals that the sequencer is stopped on a timer
error.

T845_STATUS_OVERFLOW This flag signals that the sequencer found a data overrun
error.

If any status flag is set the returned data values may not be valid.

TIP845-SW-82 - Linux Device Driver Page 16 of 21

TEWS &<

TECHNOLOGIES

EXAMPLE

#i ncl ude <ti p845. h>

int fd;
int result;
T845_SEQ READ BUFFER seqRdBuf ;

/* Read sequencer data */

result = ioctl(fd, T845 | OCG READ SEQ &seqRdBuf);
if (result >= 0)

{
i f (segqRdBuf. status)
{
/* Sequencer stopped by error */
}
el se
{
[* OK */
printf("#1 (sngl): %\ n", seqRdBuf.val ue[T845 SEQ I DX(FALSE, 1)]);
printf("#2 (diff): %\ n", seqRdBuf.val ue[T845 SEQ I DX(TRUE, 2)]);
}
}
el se
{
/* ERROR */
}
ERRORS
EFAULT Invalid pointer to the read buffer
EBUSY The module is not in sequencer mode
ETIME The read request timed out

TIP845-SW-82 - Linux Device Driver Page 17 of 21

TEWS &<

TECHNOLOGIES

3.3.3 T845_|OCG_START_SEQ

NAME

T845_IOCG_START_SEQ — Configures and starts the sequencer

DESCRIPTION

This ioctl function configures and starts the AD conversion sequencer of the TIP845 associated with
the open file descriptor, filedes and returns the value in the T845 SEQ_ START_BUFFER parameter
buffer pointed to by argp.

typedef struct

{
T845 SEQ SETUP_CHAN snglChanConf[48];

T845_SEQ_SETUP_CHAN diffChanConf[24];
unsigned short seqTimer;
long seqReadTimeout;
} T845_SEQ_START_BUFFER, *PT845_SEQ_START_BUFFER;

snglChanConf[]
This array contains the sequencer information for single-ended input channels. The index
specifies the input channel, 0 for channel 1, 1 for channel 2 and so on.
This is an array of a structure T845_SEQ_SETUP_CHAN that is described below.
diffChanConf][]

This array contains the sequencer information for differential input channels. The index specifies
the channel, 0 for channel 1, 1 for channel 2 and so on.
This is an array of a structure T845_SEQ_SETUP_CHAN that is described below.

seqTimer
This parameter specifies the sequencer cycle time. The time is specified in steps of 100us. A
value of 0 selects the continuous mode. (Refer to the TIP845 User Manual)

seqReadTimeout

This parameter specifies the maximum time to wait for sequencer data. The value is specified in
ticks.

Single-ended and differential channels are using the same input lines. It is not possible to use
input lines for single-ended and differential at the same time. (Please refer to the TIP845 User
manual for a description of the input line assignment.)

TIP845-SW-82 - Linux Device Driver Page 18 of 21

TEWS &<

TECHNOLOGIES

typedef struct

{
int gain;
unsigned long flags;

} T845_SEQ_SETUP_CHAN, *PT845_SEQ_SETUP_CHAN;

gain
This value specifies the input gain that should be used for the associated channel. Valid gains
arel, 2,4, and 8.
flags
This parameter specifies contains flags specifying if data correction shall be used or not and if
the associated channel shall be used or not. The flags must be ORed. The following flags are
valid for this function:
Flag Description
T845 FLAG_ADC_CORR If this flag is set the input value will be corrected using the
factory stored correction data. If this flag is unset, the value
will be untouched.
T845 FLAG_ADC_ENABLE If this flag is set the associated channel will used in
sequencer mode, if no set the channel will not be used.
EXAMPLE

#i ncl ude <ti p845. h>

int fd;

int result;

T845 SEQ START BUFFER seqBuf;
int i;

[* Start sequencer with: */

/* cycle tine: 1 sec */

/* timeout: 2000 ticks */

/* Use single-ended channels: 1,2 */
/* Use differential channels: 8,9 */
seqBuf . seqTi ner = 10000;

seqBuf . seqReadTi meout = 2000;

for (i =0; i < 48; i++) /[* Initialize single-ended array */
seqBuf. sngl ChanConf[i].flags = O;

/* Singl e-Ended Channel 1: gain=2, no data corrrection */

seqBuf . sngl ChanConf[0] .gain = 2;
seqBuf. sngl ChanConf[0].flags = T845 FLAG ADC ENABLE;

TIP845-SW-82 - Linux Device Driver Page 19 of 21

TEWS &<

TECHNOLOGIES

/* Singl e-Ended Channel 2: gain=8, data corrrection */
seqBuf. sngl ChanConf[1] .gain = 8;
seqBuf. sngl ChanConf[1] .flags = T845 FLAG ADC ENABLE | T845 FLAG ADC CORR;

for (i =0; i < 24; i++) [* Initialize differential array */
seqBuf . di ff ChanConf[i].flags = O;

/* Differential Channel 8: gain=1, no data corrrection */
seqBuf. sngl ChanConf[7].gain = 1;
seqBuf. sngl ChanConf[7] .flags = T845 FLAG ADC ENABLE;

[* Differential Channel 9: gain=4, data corrrection */
seqBuf. sngl ChanConf[8].gain = 4;
seqBuf. sngl ChanConf[8].flags = T845_FLAG ADC ENABLE | T845 FLAG ADC CORR;

result = ioctl(fd, T845 | OCG START SEQ &seqBuf);
if (result >= 0)

{
I* oK */
}
el se
{
/* ERROR */
}
ERRORS

EFAULT Invalid pointer to the buffer.

EBUSY Sequencer mode is already activated or enabled
channels (single-ended/differential) share an input
line.

EINVAL Invalid flags or gain specified

TIP845-SW-82 - Linux Device Driver Page 20 of 21

TEWS &<

TECHNOLOGIES

3.3.4 T845_|0CG_STOP_SEQ

NAME

T845_IOCG_STOP_SEQ - Stops the sequencer

DESCRIPTION

This ioctl function stops the sequencer of the TIP845 associated with the open file descriptor, filedes.
No parameter buffer is needed, argp should be set NULL.

EXAMPLE

#i ncl ude <ti p845. h>

int fd;
int result;

/*

** Stop sequencer

*/

result = ioctl(fd, T845_ | OCG STOP_SEQ NULL);
if (result >= 0)

{

I* oK */
}
el se
{

/* ERROR */
}
ERRORS

EBUSY The sequencer mode is not active.

TIP845-SW-82 - Linux Device Driver Page 21 of 21

	Introduction
	Device Driver
	IPAC Carrier Driver

	Introduction
	Build and install the device driver
	Uninstall the device driver
	Install device driver into the running kernel
	Remove device driver from the running kernel
	Change Major Device Number

	Device Input/Output functions
	open()
	close()
	ioctl()
	T845_IOCG_READ_ADC
	T845_IOCG_READ_SEQ
	T845_IOCG_START_SEQ
	T845_IOCG_STOP_SEQ

