

The Embedded I/O Company

TIP850-SW
Linux Device D

16 Channel 12 bit A/D + 4 Ch
Version 1.0.x

User Manu
Issue 1.0.0

November 20

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek / Germany
Phone: +49-(0)4101-4058-0 Fax: +49-(0)4101-4058-19
e-mail: info@tews.com www.tews.com

TEWS
1 E. Lib
Phone:
e-mail:
-82
river
annel 12 bit D/A

al

04

TECHNOLOGIES LLC
erty Street, Sixth Floor Reno, Nevada 89504 / USA
 +1 (775) 686 6077 Fax: +1 (775) 686 6024
 usasales@tews.com www.tews.com

mailto:info@tews.com
mailto:usasales@tews.com

TIP500-SW-82 - Linux Device Driver Page 2 of 19

TIP850-SW-82
16 Channel 12 bit A/D + 4 Channel 12 bit D/A

Linux Device Driver

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2004 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0.0 First Issue November 29, 2004

TIP500-SW-82 - Linux Device Driver Page 3 of 19

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Build and install the device driver...5
2.2 Uninstall the device driver ...5
2.3 Install device driver into the running kernel ..6
2.4 Remove device driver from the running kernel ...6
2.5 Change Major Device Number ...7

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 8
3.1 open() ...8
3.2 close()...10
3.3 read() ..11
3.4 write() ...14
3.5 ioctl() ..16

3.5.1 T850_IOCG_READ_PARAM...18

TIP500-SW-82 - Linux Device Driver Page 4 of 19

1 Introduction
The TIP850-SW-82 Linux device driver allows the operation of a TIP850 IPAC module on Linux
operating systems.

Because the TIP850 device driver is stacked on the TEWS TECHNOLOGIES IPAC carrier driver, it’s
necessary to install also the appropriate IPAC carrier driver. Please refer to the IPAC carrier driver
user manual for further information.

The TIP850 device driver includes the following features:

! Reading converted AD values from a specified analog input channel with or without data
correction

! Writing DA values to a specified analog output channel with or without data correction
! Reading module type and correction values out of the ID PROM

TIP500-SW-82 - Linux Device Driver Page 5 of 19

2 Installation
The directory TIP850-SW-82 on the distribution media contains the following files:

TIP850-SW-82.pdf This manual in PDF format
TIP850-SW-82.tar.gz GZIP compressed archive with driver source code

The GZIP compressed archive TIP850-SW-82.tar.gz contains the following files and directories:

tip850/tip850.c Driver source code
tip850/tip850def.h Driver include file
tip850/tip850.h Driver include file for application program
tip850/tpmodule.c Driver independent library
tip850/tpmodule.h Driver independent library header file
tip850/makenode Script to create device nodes on the file system
tip850/Makefile Device driver make file
tip850/example/example.c Example application
tip850/example/Makefile Example application make file

In order to perform an installation, extract all files of the archive TIP850-SW-82.tar.gz to the desired
target directory.

Before building a new device driver, the TEWS TECHNOLOGIES IPAC carrier driver must be
installed properly, because this driver includes the header file ipac_carrier.h, which is part of
the IPAC carrier driver distribution. Please refer to the IPAC carrier driver user manual in the
directory path CARRIER-SW-82 on the distribution media.

2.1 Build and install the device driver
• Login as root

• Change to the target directory

• To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

• Also after the first build we have to execute depmod to create a new dependency description
for loadable kernel modules. This dependency file is later used by modprobe to automatically
load the correct IPAC carrier driver modules.

depmod –aq

2.2 Uninstall the device driver
• Login as root

• Change to the target directory

• To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

TIP500-SW-82 - Linux Device Driver Page 6 of 19

• Update kernel module dependency description file

depmod –aq

2.3 Install device driver into the running kernel
• To load the device driver into the running kernel, login as root and execute the following

commands:

modprobe tip850drv

• After the first build or if you are using dynamic major device allocation it’s necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled the new device file system (devfs) then you have to skip running the
makenode script. Instead of creating device nodes from the script the driver itself takes creating
and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TIP850 module found. The first
TIP850 can be accessed with device node /dev/tip850_0, the second TIP850 or the second channel of
the first TIP850 with device node /dev/tip850_1 and so on.

The allocation of device nodes to physical TIP850 modules depends on the search order of the IPAC
carrier driver. Please refer to the IPAC carrier user manual.

Loading of the TIP850 device driver will only work if kernel KMOD support is installed,
necessary carrier board drivers already installed and the kernel dependency file is up to date.
If KMOD support isn’t available you have to build either a new kernel with KMOD installed or
you have to install the IPAC carrier kernel modules manually in the correct order (please refer
to the IPAC carrier driver user manual).

2.4 Remove device driver from the running kernel
• To remove the device driver from the running kernel login as root and execute the following

command:

modprobe tip850drv –r

If your kernel has enabled devfs, all /dev/tip850_... nodes will be automatically removed from your file
system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tip850drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe –r again.

TIP500-SW-82 - Linux Device Driver Page 7 of 19

2.5 Change Major Device Number
The TIP850 driver use dynamic allocation of major device numbers by default. If this isn’t suitable for
the application it’s possible to define a major number for the driver. If the kernel has enabled devfs the
driver will not use the symbol TIP850_MAJOR.

To change the major number edit the file tip850drv.c, change the following symbol to appropriate
value and enter make install to create a new driver.

TIP850_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means dynamic
number allocation.

Example:

#define TIP850_MAJOR 122

TIP500-SW-82 - Linux Device Driver Page 8 of 19

3 Device Input/Output functions
This chapter describes the interface to the device driver I/O system.

3.1 open()

NAME

open() - open a file descriptor

SYNOPSIS

#include <fcntl.h>

int open (const char *filename, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise
OR of the appropriate parameters (using the | operator in C). See also the GNU C Library
documentation for more information about the open function and open flags.

TIP500-SW-82 - Linux Device Driver Page 9 of 19

EXAMPLE

{
 int fd;

 fd = open(“/dev/tip850_0”, O_RDWR);
}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

ERRORS

ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TIP500-SW-82 - Linux Device Driver Page 10 of 19

3.2 close()

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

{
 int fd;

 if (close(fd) != 0) {
 /* handle close error conditions */
 }
}

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TIP500-SW-82 - Linux Device Driver Page 11 of 19

3.3 read()

NAME

read() – read from a device

SYNOPSIS

#include <unistd.h>

ssize_t read(int filedes, void *buffer, size_t size)

DESCRIPTION

The read function attempts to start an AD conversion on the specified channel and returns the
converted value in a read buffer to the caller.

A pointer to the callers read buffer (T850_READ_BUFFER) and the size of this structure is passed by
the parameters buffer and size to the device.

typedef struct
{
 unsigned int channel;
 unsigned int gain;
 unsigned int mode;
 unsigned int correction;
 int data;
 long timeout;
} T850_READ_BUFFER, *PT850_READ_BUFFER;

channel
Specifies the channel number at which to read the AD value. Valid channel numbers are 1..16 if
Single-Ended is selected for, if differential is selected the valid channel numbers are in the
range of 1..8.

gain
Specifies the gain, which shall be used to read the AD value. Valid gains are:

T850_GAIN_1 Select Gain 1x Valid for TIP850-10/-11
T850_GAIN_10 Select Gain 10x Valid for TIP850-10
T850_GAIN_100 Select Gain 100x Valid for TIP850-10
T850_GAIN_2 Select Gain 2x Valid for TIP850-11
T850_GAIN_4 Select Gain 4x Valid for TIP850-11
T850_GAIN_8 Select Gain 8x Valid for TIP850-11

TIP500-SW-82 - Linux Device Driver Page 12 of 19

mode
Specifies the channel input interface. If it should be used with a differential interface, this
member must have the value T850_DIFF, otherwise the value should be T850_SINGLE, if it
should be used with a single-ended input.

correction
If this parameter is T850_CORR the driver performs an automatic offset and gain correction with
factory calibration data stored in the TIP850 ID-PROM, otherwise the value should be
T850_NOCORR.

data
Analog input value read from the specified ADC channel. The analog data is returned as sign
extended two's complement integer value with 16-bit resolution. The range is
T850_MIN_ADC_VALUE to T850_MAX_ADC_VALUE (See tip850.h). The corresponding
voltage value depends on the selected gain. (See TIP850 hardware manual for further details)

timeout
This parameter describes the maximum time the user is willing to wait for an ADC conversion
ready event. A value of 0 means wait for ever.

TIP500-SW-82 - Linux Device Driver Page 13 of 19

EXAMPLE

{
 int fd;
 ssize_t num_bytes;
 T850_READ_BUFFER r_buf;
 ...
 r_buf.gain = T850_GAIN_1;
 r_buf.mode = T850_SINGLE;
 r_buf.channel = 1;
 r_buf.correction = T850_CORR;
 r_buf.timeout = 10;

 num_bytes = read(fd, &r_buf, sizeof(r_buf));

 /*
 ** Check the result of the last device I/O operation
 */
 if (num_bytes > 0) {
 printf("ADC Value = %d\n", r_buf.data);
 }
 else {
 printf("Read failed --> Error = %d\n", errno);
 }

 ...

}

RETURNS

On success read returns the size of the structure T850_READ_BUFFER. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the
size of the read buffer is too small or if the gain or
channel parameter out of range.

ETIME The conversion was not completed within the given
timeout. The hardware seems to be faulty or the
device mapping is incorrect.

EFAULT Invalid pointer to the read buffer.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TIP500-SW-82 - Linux Device Driver Page 14 of 19

3.4 write()

NAME

write() – write to a device

SYNOPSIS

#include <unistd.h>

ssize_t write(int filedes, void *buffer, size_t size)

DESCRIPTION

This function attempts to write to the specified DAC channel of the TIP850 associated with the file
descriptor filedes from a structure (T850_WRITE_BUFFER) pointed by buffer. The argument size
specifies the length of the buffer and must be set to the length of the structure
T850_WRITE_BUFFER.

The T850_WRITE_BUFFER structure has the following layout:

typedef struct
{
 int data[4];
 unsigned int correction[4];
 unsigned int refresh[4];
} T850_WRITE_BUFFER, *PT850_WRITE_BUFFER;

data
This array parameter contains the output values for all DAC channels. The data for DAC X
(0…3) is accessed through data[X].

Output Mode data range voltage range
Bipolar -2048...2047 -10V...10V

correction
Set parameter correction[X] to T850_CORR to perform an automatic gain and offset correction
for DAC channel X (0…3) with calibration data stored in the IDPROM. T850_NOCORR means
do not perform any correction and write directly to the certain DAC output.

refresh
This array parameter enables or disables the certain DAC channel. To enable updating of DAC
channel X (0…3) set refresh[X] to T850_REFRESH otherwise set it to T850_NOREFRESH.

TIP500-SW-82 - Linux Device Driver Page 15 of 19

EXAMPLE

int fd;
ssize_t num_bytes;
T850_WRITE_BUFFER w_buf;

/* write to DAC channel 0, precondition: w_buf is zeroed */
w_buf.data[0] = 1024; /* set DAC 0 output to +5V */
w_buf.correction[0] = T850_NOCORR; /* no data correction */
w_buf.refresh[0] = T850_REFRESH; /* enable channel 0 */

num_bytes = write(fd, &w_buf, sizeof(w_buf));

if (num_bytes != sizeof(w_buf)) {
 // process error;
}

RETURNS

On success write returns the size of T850_WRITE_BUFFER. In the case of an error, a value of –1 is
returned. The global variable errno contains the detailed error code.

ERRORS

EINVAL This error code is returned if the size of the buffer is
too small.

EFAULT The pointer to the user buffer is not valid.
EBUSY Another concurrent process is writing to the device

at the moment.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TIP500-SW-82 - Linux Device Driver Page 16 of 19

3.5 ioctl()

NAME

ioctl() – device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in TIP850.h:

Symbol Meaning
T850_IOCG_READ_PARAM Read module parameter

See behind for more detailed information on each control code.

To use these TIP850 specific control codes the header file TIP850.h must be included in the
application.

TIP500-SW-82 - Linux Device Driver Page 17 of 19

RETURNS

On success, zero is returned. In the case of an error, a value of –1 is returned. The global variable
errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the
requested ioctl function is unknown. Please check
the argument request.

Other function dependant error codes will be described for each ioctl code separately. Note, the
TIP850 driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TIP500-SW-82 - Linux Device Driver Page 18 of 19

3.5.1 T850_IOCG_READ_PARAM

NAME

T850_IOCG_READ_PARAM - Read module parameter

DESCRIPTION

This ioctl function attempts to read the module type and calibration data of the TIP850 associated with
the open file descriptor, filedes, into the parameter buffer pointed to by argp.

The parameter buffer (T850_PARAM_BUFFER) has the following layout:

typedef struct {
 unsigned int model;
 unsigned int revision;
 T850_CAL_BUFFER dac_cal[4];
 T850_CAL_BUFFER adc_cal[4];
} T850_PARAM_BUFFER, *PT850_PARAM_BUFFER;

typedef struct
{
 int offset;
 int gain;
} T850_CAL_BUFFER;

model
This parameter receives the model code of the associated TIP850. (0x09 = TIP850-10, 0x11 =
TIP850-11)

revision
This parameter receives the revision code of the associated TIP850. (0x10 = V 1.0, 0x11 =
V1.1+)

dac_cal
This parameter receives four T850_CAL_BUFFER structures for each DAC chip mounted on
the certain TIP850. The gain error of the output amplifier for DAC X (0..3) is accessed through
dac_cal[X].gain. The offset (zero) error of the output amplifier for DAC X (0..3) is accessed
through dac_cal[X].offset. The T850_CAL_BUFFER values are stored in the unit ¼ LSB (see
also Hardware User Manual).

adc_cal
This parameter receives four T850_CAL_BUFFER structures for all possible ADC gain stages
used on the certain TIP850. The gain error of the input amplifier for T850_GAIN_X is accessed
through adc_cal[T850_GAIN_X].gain. The offset (zero) error of the input amplifier for
T850_GAIN_X is accessed through adc_cal[T850_GAIN_X].offset. The T850_CAL_BUFFER
values are stored in the unit ¼ LSB (see also Hardware User Manual).

TIP500-SW-82 - Linux Device Driver Page 19 of 19

EXAMPLE

{
 int fd;
 int result;
 T850_PARAM_BUFFER ParamBuf;

 ...

 result = ioctl(fd, T850_IOCG_READ_PARAM, &ParamBuf);

 /*

 ** Check the result of the last device I/O control operation
 */
 if (result >= 0) {
 printf("Read module parameter successful\n");
 }
 else {
 printf("Read parameter failed --> Error = %d\n", errno);
 }

 ...

}

ERRORS

EFAULT Invalid pointer to the read buffer.

SEE ALSO

ioctl man pages

	Introduction
	Installation
	Build and install the device driver
	Uninstall the device driver
	Install device driver into the running kernel
	Remove device driver from the running kernel
	Change Major Device Number

	Device Input/Output functions
	open()
	close()
	read()
	write()
	ioctl()
	T850_IOCG_READ_PARAM

