
The Embedded I/O Company

TPMC500-S
VxWorks Device

32 Channel 12-bit A

Version 4.0.x

User Manu

Issue 4.0.0

September 20

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-42
Driver

DC PMC

al

10

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TPMC500-SW-42 – VxWorks Device Driver Page 2 of 57

TPMC500-SW-42

VxWorks Device Driver

32 Channel 12-bit ADC PMC

Supported Modules:
TPMC500

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

1999-2010 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue November, 1999

1.1 General Revision November 24, 2003

2.0.0 New Device Initialization Parameters, File list modified,
Support for Intel x86 added

October 29, 2004

3.0.0 New driver startup functions, File list changed, new prefix for defines
and structures, read() function replaced by a new ioctl() function

October 1, 2007

4.0.0 Implementation of VxBus Driver, tpmc500init() function added, API
added

September 14, 2010

TPMC500-SW-42 – VxWorks Device Driver Page 3 of 57

Table of Contents

1 INTRODUCTION... 4

1.1 Device Driver ...4

2 INSTALLATION.. 5

2.1 Legacy vs. VxBus Driver ..6

2.2 VxBus Driver Installation ...6

2.2.1 Direct BSP Builds...7
2.3 Legacy Driver Installation ..8

2.3.1 Include device driver in VxWorks projects ...8
2.3.2 Special installation for Intel x86 based targets ..8
2.3.3 BSP dependent adjustments ...9

2.4 System resource requirement ...10

3 API DOCUMENTATION ... 11

3.1 General Functions...11

3.1.1 tpmc500Open() ..11
3.1.2 tpmc500Close()..13

3.2 Device Access Functions...15

3.2.1 tpmc500SetModelType ..15
3.2.2 tpmc500ReadSE ..17
3.2.3 tpmc500ReadCorrSE...20
3.2.4 tpmc500ReadDiff ...23
3.2.5 tpmc500ReadCorrDiff ..26
3.2.6 tpmc500StartSequencer ..29
3.2.7 tpmc500StopSequencer...35

4 LEGACY I/O SYSTEM FUNCTIONS.. 37

4.1 tpmc500Drv() ...37

4.2 tpmc500DevCreate() ...39

4.3 tpmc500PciInit() ..41

4.4 tpmc500Init()..42

5 BASIC I/O FUNCTIONS ... 44

5.1 open() ...44

5.2 close()...46

5.3 ioctl() ..48

5.3.1 FIO_TPMC500MODULTYPE ..50
5.3.2 FIO_TPMC500READ...52
5.3.3 FIO_TPMC500STARTSEQ ...54
5.3.4 FIO_TPMC500STOPSEQ..57

TPMC500-SW-42 – VxWorks Device Driver Page 4 of 57

1 Introduction

1.1 Device Driver

The TPMC500-SW-42 VxWorks device driver software allows the operation of the supported PMC
conforming to the VxWorks I/O system specification.

The TPMC500-SW-42 release contains independent driver sources for the old legacy (pre-VxBus) and
the new VxBus-enabled driver model. The VxBus-enabled driver is recommended for new
developments with later VxWorks 6.x release and mandatory for VxWorks SMP systems.

Both drivers, legacy and VxBus, share the same application programming interface (API) and device-
independent basic I/O interface with open(), close() and ioctl() functions. The basic I/O interface is only
for backward compatibility with existing applications and should not be used for new developments.

Both drivers invoke a mutual exclusion and binary semaphore mechanism to prevent simultaneous
requests by multiple tasks from interfering with each other.

The TPMC500-SW-42 device driver supports the following features:

 start AD conversion and read data
 choosing gain, channel, input interface
 correction of input data with board-specific calibration data
 support of ADC sequencer mode

The TPMC500-SW-42 supports the modules listed below:

TPMC500 32(16) Channel - 12-bit ADC (PMC)

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

TPMC500 User Manual

TPMC500 Engineering Manual

TPMC500-SW-42 – VxWorks Device Driver Page 5 of 57

2 Installation
Following files are located on the distribution media:

Directory path ‘TPMC500-SW-42’:

TPMC500-SW-42-4.0.0.pdf PDF copy of this manual
TPMC500-SW-42-VXBUS.zip Zip compressed archive with VxBus driver sources
TPMC500-SW-42-LEGACY.zip Zip compressed archive with legacy driver sources
ChangeLog.txt Release history
Release.txt Release information

The archive TPMC500-SW-42-VXBUS.zip contains the following files and directories:

Directory path ‘./tews/tpmc500’:

tpmc500drv.c TPMC500 device driver source
tpmc500def.h TPMC500 driver include file
tpmc500.h TPMC500 include file for driver and application
tpmc500api.c TPMC500 API file
Makefile Driver Makefile
40tpmc500.cdf Component description file for VxWorks development tools
tpmc500.dc Configuration stub file for direct BSP builds
tpmc500.dr Configuration stub file for direct BSP builds
include/tvxbHal.h Hardware dependent interface functions and definitions
apps/tpmc500exa.c Example application

The archive TPMC500-SW-42-LEGACY.zip contains the following files and directories:

Directory path ‘./tpmc500’:

tpmc500drv.c TPMC500 device driver source
tpmc500def.h TPMC500 driver include file
tpmc500.h TPMC500 include file for driver and application
tpmc500pci.c TPMC500 device driver source for x86 based systems
tpmc500api.c TPMC500 API file
tpmc500exa.c Example application
include/tdhal.h Hardware dependent interface functions and definitions

TPMC500-SW-42 – VxWorks Device Driver Page 6 of 57

2.1 Legacy vs. VxBus Driver

In later VxWorks 6.x releases, the old VxWorks 5.x legacy device driver model was replaced by
VxBus-enabled device drivers. Legacy device drivers are tightly coupled with the BSP and the board
hardware. The VxBus infrastructure hides all BSP and hardware differences under a well defined
interface, which improves the portability and reduces the configuration effort. A further advantage is
the improved performance of API calls by using the method interface and bypassing the VxWorks
basic I/O interface.

VxBus-enabled device drivers are the preferred driver interface for new developments.

The checklist below will help you to make a decision which driver model is suitable and possible for
your application:

Legacy Driver VxBus Driver

 VxWorks 5.x releases

 VxWorks 6.5 and earlier
releases

 VxWorks 6.x releases without
VxBus PCI bus support

 VxWorks 6.6 and later releases
with VxBus PCI bus

 SMP systems (only the VxBus
driver is SMP safe!)

TEWS TECHNOLOGIES recommends not using the VxBus Driver before VxWorks release 6.6.
In previous releases required header files are missing and the support for 3

rd
-party drivers may

not be available.

2.2 VxBus Driver Installation

Because Wind River doesn’t provide a standard installation method for 3
rd

party VxBus device drivers
the installation procedure needs to be done manually.

In order to perform a manual installation extract all files from the archive TPMC500-SW-42-VXBUS.zip
to the typical 3

rd
party directory installDir/vxworks-6.x/target/3rdparty (whereas installDir must be

substituted by the VxWorks installation directory).

After successful installation the TPMC500 device driver is located in the vendor and driver-specific
directory installDir/vxworks-6.x/target/3rdparty/tews/tpmc500.

At this point the TPMC500 driver is not configurable and cannot be included with the kernel
configuration tool in a Wind River Workbench project. To make the driver configurable the driver library
for the desired processor (CPU) and build tool (TOOL) must be built in the following way:

(1) Open a VxWorks development shell (e.g. C:\WindRiver\wrenv.exe -p vxworks-6.7)

(2) Change into the driver installation directory
installDir/vxworks-6.x/target/3rdparty/tews/tpmc500

(3) Invoke the build command for the required processor and build tool
make CPU=cpuName TOOL=tool

TPMC500-SW-42 – VxWorks Device Driver Page 7 of 57

For Windows hosts this may look like this:

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc500

C:> make CPU=PENTIUM4 TOOL=diab

To compile SMP-enabled libraries, the argument VXBUILD=SMP must be added to the command line

C:> make CPU=PENTIUM4 TOOL=diab VXBUILD=SMP

To integrate the TPMC500 driver with the VxWorks development tools (Workbench), the component
configuration file 40tpmc500.cdf must be copied to the directory
installDir/vxworks-6.x/target/config/comps/VxWorks.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc500

C:> copy 40tpmc500.cdf \Windriver\vxworks-6.7\target\config\comps\vxWorks

In VxWorks 6.7 and newer releases the kernel configuration tool scans the CDF file automatically and
updates the CxrCat.txt cache file to provide component parameter information for the kernel
configuration tool as long as the timestamp of the copied CDF file is newer than the one of the
CxrCat.txt. If your copy command preserves the timestamp, force to update the timestamp by a utility,
such as touch.

In earlier VxWorks releases the CxrCat.txt file may not be updated automatically. In this case, remove
or rename the original CxrCat.txt file and invoke the make command to force recreation of this file.

C:> cd \Windriver\vxworks-6.7\target\config\comps\vxWorks

C:> del CxrCat.txt

C:> make

After successful completion of all steps above and restart of the Wind River Workbench, the TPMC500
driver can be included in VxWorks projects by selecting the “TEWS TPMC500 Driver“ component in
the “hardware (default) - Device Drivers” folder with the kernel configuration tool.

2.2.1 Direct BSP Builds

In development scenarios with the direct BSP build method without using the Workbench or the vxprj
command-line utility, the TPMC500 configuration stub files must be copied to the directory
installDir/vxworks-6.x/target/config/comps/src/hwif. Afterwards the vxbUsrCmdLine.c file must be
updated by invoking the appropriate make command.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc500

C:> copy tpmc500.dc \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> copy tpmc500.dr \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> cd \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> make vxbUsrCmdLine.c

TPMC500-SW-42 – VxWorks Device Driver Page 8 of 57

2.3 Legacy Driver Installation

2.3.1 Include device driver in VxWorks projects

For including the TPMC500-SW-42 device driver into a VxWorks project (e.g. Tornado IDE or
Workbench) follow the steps below:

(1) Extract all files from the archive TPMC500-SW-42-LEGACY.zip to your project directory.

(2) Add the device driver’s C-files to your project.
Make a right click to your project in the ‘Workspace’ window and use the ‘Add Files ...’ topic.
A file select box appears, and the driver files in the tpmc500 directory can be selected.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your VxWorks User’s
Guide (e.g. Tornado, Workbench, etc.)

2.3.2 Special installation for Intel x86 based targets

The TPMC500 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU_FAMILY. If the content of this macro is equal to I80X86 special Intel x86 conforming code and
function calls will be included.

The second problem for Intel x86 based platforms can’t be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn’t map PCI memory spaces of devices
which are not used by the BSP, the required device memory spaces can’t be accessed.

To solve this problem an MMU mapping entry has to be added for the required TPMC500 PCI memory
spaces prior the MMU initialization (usrMmuInit()) is done.

The C source file tpmc500pci.c contains the function tpmc500PciInit(). This routine finds out all
TPMC500 devices and adds MMU mapping entries for all used PCI memory spaces. Please insert a
call to this function after the PCI initialization is done and prior to MMU initialization (usrMmuInit()).

The right place to call the function tpmc500PciInit() is at the end of the function sysHwInit() in sysLib.c
(it can be opened from the project Files window):

tpmc500PciInit();

Be sure that the function is called prior to MMU initialization otherwise the TPMC500 PCI spaces
remains unmapped and an access fault occurs during driver initialization.

Modifying the sysLib.c file will change the sysLib.c in the BSP path. Remember this for future
projects and recompilations.

TPMC500-SW-42 – VxWorks Device Driver Page 9 of 57

2.3.3 BSP dependent adjustments

The driver includes a file called include/tdhal.h which contains functions and definitions for BSP
adaptation. It may be necessary to modify them for BSP specific settings. Most settings can be made
automatically by conditional compilation set by the BSP header files, but some settings must be
configured manually. There are two ways of modification, first you can change the include/tdhal.h and
define the corresponding definition and its value, or you can do it, using the command line option –D.

There are 3 offset definitions (USERDEFINED_MEM_OFFSET, USERDEFINED_IO_OFFSET, and
USERDEFINED_LEV2VEC) that must be configured if a corresponding warning message appears
during compilation. These definitions always need values. Definition values can be assigned by
command line option -D<definition>=<value>.

definition description

USERDEFINED_MEM_OFFSET The value of this definition must be set to the offset
between CPU-Bus and PCI-Bus Address for PCI
memory space access

USERDEFINED_IO_OFFSET The value of this definition must be set to the offset
between CPU-Bus and PCI-Bus Address for PCI I/O
space access

USERDEFINED_LEV2VEC The value of this definition must be set to the
difference of the interrupt vector (used to connect the
ISR) and the interrupt level (stored to the PCI header)

Another definition allows a simple adaptation for BSPs that utilize a pciIntConnect() function to
connect shared (PCI) interrupts. If this function is defined in the used BSP, the definition of
USERDEFINED_SEL_PCIINTCONNECT should be enabled. The definition by command line option is
made by -D<definition>.

Please refer to the BSP documentation and header files to get information about the interrupt
connection function and the required offset values.

TPMC500-SW-42 – VxWorks Device Driver Page 10 of 57

2.4 System resource requirement

The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement

Memory < 1 KB < 1 KB

Stack < 1 KB ---

Semaphores --- 2

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

TPMC500-SW-42 – VxWorks Device Driver Page 11 of 57

3 API Documentation

3.1 General Functions

3.1.1 tpmc500Open()

Name

tpmc500Open() – opens a device.

Synopsis

TPMC500_DEV tpmc500Open
(

char *DeviceName
)

Description

Before I/O can be performed to a device, a file descriptor must be opened by a call to this function.

Parameters

DeviceName

This parameter points to a null-terminated string that specifies the name of the device. The first
TPMC500 device is named “/tpmc500/0”, the second device is named “/tpmc500/1” and so on.

Example

#include “tpmc500.h”

TPMC500_DEV pDev;

/*

** open file descriptor to device

*/

pDev = tpmc500Open(“/tpmc500/0”);

if (pDev == NULL)

{

/* handle open error */

}

TPMC500-SW-42 – VxWorks Device Driver Page 12 of 57

RETURNS

A device descriptor pointer, or NULL if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TPMC500-SW-42 – VxWorks Device Driver Page 13 of 57

3.1.2 tpmc500Close()

Name

tpmc500Close() – closes a device.

Synopsis

int tpmc500Close
(

TPMC500_DEV pDev
)

Description

This function closes previously opened devices.

Parameters

pDev

This value specifies the file descriptor pointer to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tpmc500.h”

TPMC500_DEV pDev;

int result;

/*

** close file descriptor to device

*/

result = tpmc500Close(pDev);

if (result < 0)

{

/* handle close error */

}

TPMC500-SW-42 – VxWorks Device Driver Page 14 of 57

RETURNS

Zero, or -1 if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TPMC500-SW-42 – VxWorks Device Driver Page 15 of 57

3.2 Device Access Functions

3.2.1 tpmc500SetModelType

Name

tpmc500SetModelType – configures the TPMC500 board type

Synopsis

STATUS tpmc500SetModelType
(

TPMC500_DEV pDev,
int modType

)

Description

This function configures the TPMC500 board type.

This function must be called after initialization of the ADC device, before any other function
accesses the device.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

modType

This parameter specifies the model type of the TPMC500. The following model types are
supported.

Model type Description

10 TPMC500-10 --- input range +/- 10V, gains: 1,2,5,10, front panel I/O

11 TPMC500-11 --- input range +/- 10V, gains: 1,2,4,8, front panel I/O

12 TPMC500-12 --- input range 0…10V, gains: 1,2,5,10, front panel I/O

13 TPMC500-13 --- input range 0…10V, gains: 1,2,4,8, front panel I/O

20 TPMC500-20 --- input range +/- 10V, gains: 1,2,5,10, back I/O

21 TPMC500-21 --- input range +/- 10V, gains: 1,2,4,8, back I/O

22 TPMC500-22 --- input range 0…10V, gains: 1,2,5,10, back I/O

23 TPMC500-23 --- input range 0…10V, gains: 1,2,4,8, back I/O

TPMC500-SW-42 – VxWorks Device Driver Page 16 of 57

Example

#include “tpmc500.h”

TPMC500_DEV pDev;

STATUS result;

/*

** tell the driver, this is a TPMC500-10

*/

result = tpmc500SetModelType(pDev,

10);

if (result == ERROR)

{

/* handle error */

}

else

{

/* succesful */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL A NULL pointer is referenced for an input value

EBADF The device handle is invalid

ENOTSUP Unsupported or invalid TPMC500 model type specified

S_tpmc500Drv_MODBUSY The module is busy

TPMC500-SW-42 – VxWorks Device Driver Page 17 of 57

3.2.2 tpmc500ReadSE

Name

tpmc500ReadSE – make AD conversion and read value from a single-ended channel

Synopsis

STATUS tpmc500ReadSE
(

TPMC500_DEV pDev,
int channel,
int gain,
BOOL fastConv,
int *pAdcVal

)

Description

This function executes an AD conversion on a specified single-ended input channel and returns the
value.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

channel

This argument specifies the input channel. Allowed values are 1 up to 32 corresponding to the
single-ended channel name.

gain

This argument specifies the input gain that shall be used. Allowed values are 1, 2, 5, 10 or 1, 2,
4, 8 depending on the module type.

TPMC500-SW-42 – VxWorks Device Driver Page 18 of 57

fastConv

This argument specifies if fast reads shall be enabled ore not.

Value Description

FALSE The standard (interrupt driven) mode will be used. Waiting the
settling time (if necessary) and conversion time will be done
interrupt driven. The driver task will be pending, waiting for a
semaphore. The processor will be able to handle other tasks
and interrupts.

TRUE The fast (polled) mode will be used. The driver will not use
interrupts, instead it will wait in a busy loop until the settling
time (if necessary) and the conversion is finished. Conversions
using this mode will be handled faster, but the processor
executes a busy loop and other tasks will not be handled
during the loops.

pAdcVal

This argument points to a buffer where the AD value will be returned.

Example

#include “tpmc500.h”

TPMC500_DEV pDev;

STATUS result;

int in_value;

/*

** read AD value from channel 5 with gain = 2 (use interrupts)

*/

result = tpmc500ReadSE (pDev,

5,

2,

FALSE,

&in_value);

if (result == ERROR)

{

/* handle error */

}

else

{

printf(“ADC #5: %d\n”, in_value);

}

TPMC500-SW-42 – VxWorks Device Driver Page 19 of 57

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL A NULL pointer is referenced for an input value

EBADF The device handle is invalid

S_tpmc500Drv_ICHAN Invalid channel number specified

S_tpmc500Drv_IGAIN Invalid gain specified

S_tpmc500Drv_MODBUSY The module is busy

S_tpmc500Drv_TIMEOUT The conversion timed out

S_tpmc500Drv_UNKNOWNTYPE Unknown TPMC500 model type

TPMC500-SW-42 – VxWorks Device Driver Page 20 of 57

3.2.3 tpmc500ReadCorrSE

Name

tpmc500ReadCorrSE – make AD conversion and read corrected value from a single-ended channel

Synopsis

STATUS tpmc500ReadCorrSE
(

TPMC500_DEV pDev,
int channel,
int gain,
BOOL fastConv,
int *pAdcVal

)

Description

This function executes an AD conversion on a specified single-ended input channel and returns a
corrected value. The raw value read after the conversion has completed will be corrected with factory
set correction data.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

channel

This argument specifies the input channel. Allowed values are 1 up to 32 corresponding to the
single-ended channel name.

gain

This argument specifies the input gain that shall be used. Allowed values are 1, 2, 5, 10 or 1, 2,
4, 8 depending on the module type.

TPMC500-SW-42 – VxWorks Device Driver Page 21 of 57

fastConv

This argument specifies if fast reads shall be enabled ore not.

Value Description

FALSE The standard (interrupt driven) mode will be used. Waiting the
settling time (if necessary) and conversion time will be done
interrupt driven. The driver task will be pending, waiting for a
semaphore. The processor will be able handle other tasks and
interrupts.

TRUE The fast (polled) mode will be used. The driver will not use
interrupts, instead it will wait in a busy loop until the settling
time (if necessary) and the conversion is finished. Conversions
using this mode will be handled faster, but the processor
executes a busy loop and other tasks will not be handled
during the loops.

pAdcVal

This argument points to a buffer where the corrected AD value will be returned.

Example

#include “tpmc500.h”

TPMC500_DEV pDev;

STATUS result;

int in_value;

/*

** read corrected AD value from channel 5 with gain = 2 (fast)

*/

result = tpmc500ReadCorrSE (pDev,

5,

2,

TRUE,

&in_value);

if (result == ERROR)

{

/* handle error */

}

else

{

printf(“ADC #5: %d\n”, in_value);

}

TPMC500-SW-42 – VxWorks Device Driver Page 22 of 57

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL A NULL pointer is referenced for an input value

EBADF The device handle is invalid

S_tpmc500Drv_ICHAN Invalid channel number specified

S_tpmc500Drv_IGAIN Invalid gain specified

S_tpmc500Drv_MODBUSY The module is busy

S_tpmc500Drv_TIMEOUT The conversion timed out

S_tpmc500Drv_UNKNOWNTYPE Unknown TPMC500 model type

TPMC500-SW-42 – VxWorks Device Driver Page 23 of 57

3.2.4 tpmc500ReadDiff

Name

tpmc500ReadDiff – make AD conversion and read value from a differential channel

Synopsis

STATUS tpmc500ReadDiff
(

TPMC500_DEV pDev,
int channel,
int gain,
BOOL fastConv,
int *pAdcVal

)

Description

This function executes an AD conversion on a specified differential input channel and returns the
value.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

channel

This argument specifies the input channel. Allowed values are 1 up to 16 corresponding to the
differential channel name.

gain

This argument specifies the input gain that shall be used. Allowed values are 1, 2, 5, 10 or 1, 2,
4, 8 depending on the module type.

TPMC500-SW-42 – VxWorks Device Driver Page 24 of 57

fastConv

This argument specifies if fast reads shall be enabled ore not.

Value Description

FALSE The standard (interrupt driven) mode will be used. Waiting the
settling time (if necessary) and conversion time will be done
interrupt driven. The driver task will be pending, waiting for a
semaphore. The processor will be able handle other tasks and
interrupts.

TRUE The fast (polled) mode will be used. The driver will not use
interrupts, instead it will wait in a busy loop until the settling
time (if necessary) and the conversion is finished. Conversions
using this mode will be handled faster, but the processor
executes a busy loop and other tasks will not be handled
during the loops.

pAdcVal

This argument points to a buffer where the AD value will be returned.

Example

#include “tpmc500.h”

TPMC500_DEV pDev;

STATUS result;

int in_value;

/*

** read AD value from channel 5 with gain = 2 (use interrupts)

*/

result = tpmc500ReadDiff (pDev,

5,

2,

FALSE,

&in_value);

if (result == ERROR)

{

/* handle error */

}

else

{

printf(“ADC #5: %d\n”, in_value);

}

TPMC500-SW-42 – VxWorks Device Driver Page 25 of 57

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL A NULL pointer is referenced for an input value

EBADF The device handle is invalid

S_tpmc500Drv_ICHAN Invalid channel number specified

S_tpmc500Drv_IGAIN Invalid gain specified

S_tpmc500Drv_MODBUSY The module is busy

S_tpmc500Drv_TIMEOUT The conversion timed out

S_tpmc500Drv_UNKNOWNTYPE Unknown TPMC500 model type

TPMC500-SW-42 – VxWorks Device Driver Page 26 of 57

3.2.5 tpmc500ReadCorrDiff

Name

tpmc500ReadCorrDiff – make AD conversion and read corrected value from a differential channel

Synopsis

STATUS tpmc500ReadCorrDiff
(

TPMC500_DEV pDev,
int channel,
int gain,
BOOL fastConv,
int *pAdcVal

)

Description

This function executes an AD conversion on a specified differential input channel and returns a
corrected value. The raw value read after the conversion has completed will be corrected with factory
set correction data.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

channel

This argument specifies the input channel. Allowed values are 1 up to 16 corresponding to the
single-ended channel name.

gain

This argument specifies the input gain that shall be used. Allowed values are 1, 2, 5, 10 or 1, 2,
4, 8 depending on the module type.

TPMC500-SW-42 – VxWorks Device Driver Page 27 of 57

fastConv

This argument specifies if fast reads shall be enabled ore not.

Value Description

FALSE The standard (interrupt driven) mode will be used. Waiting the
settling time (if necessary) and conversion time will be done
interrupt driven The driver task will be pending, waiting for a
semaphore. The processor will be able handle other tasks and
interrupts.

TRUE The fast (polled) mode will be used. The driver will not use
interrupts, instead it will wait in a busy loop until the settling
time (if necessary) and the conversion is finished. Conversions
using this mode will be handled faster, but the processor
executes a busy loop and other tasks will not be handled
during the loops.

pAdcVal

This argument points to a buffer where the corrected AD value will be returned.

Example

#include “tpmc500.h”

TPMC500_DEV pDev;

STATUS result;

int in_value;

/*

** read corrected AD value from channel 5 with gain = 2 (fast)

*/

result = tpmc500ReadCorrDiff (pDev,

5,

2,

TRUE,

&in_value);

if (result == ERROR)

{

/* handle error */

}

else

{

printf(“ADC #5: %d\n”, in_value);

}

TPMC500-SW-42 – VxWorks Device Driver Page 28 of 57

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL A NULL pointer is referenced for an input value

EBADF The device handle is invalid

S_tpmc500Drv_ICHAN Invalid channel number specified

S_tpmc500Drv_IGAIN Invalid gain specified

S_tpmc500Drv_MODBUSY The module is busy

S_tpmc500Drv_TIMEOUT The conversion timed out

S_tpmc500Drv_UNKNOWNTYPE Unknown TPMC500 model type

TPMC500-SW-42 – VxWorks Device Driver Page 29 of 57

3.2.6 tpmc500StartSequencer

Name

tpmc500StartSequencer – configure TPMC500 for sequencer mode and start it.

Synopsis

STATUS tpmc500StartSequencer
(

TPMC500_DEV pDev,
TPMC500_SEQ_BUFFER *pSeqBuf

)

Description

This function configures the sequencer mode and starts its execution.

The data will be stored into a ring buffer. The put and get index will indicate the start of a set of data (a
set over all enabled channels). The wrap around will be made if there is not enough space in the
buffer to store a complete set, e.g. there is memory for only one value, but we have two active
channels, the data will be stored at index 0. Below is a simple example of a buffer which shall show
how the buffer is organized. The buffer has a size for 7 values, 2 channels are active.

Buffer
index

get/put
index

Value
(after start)

Value
(1

st
wraparound)

Value
(2

nd
wraparound)

0 0 1
st

value #1 4
th

value #1 7
th

value #1

1 1
st

value #2 4
th

value #2 7
th

value #2

2 1 2
nd

value #1 5
th

value #1 …

3 2
nd

value #2 5
th

value #2 …

4 2 3
rd

value #1 6
th

value #1 …

5 3
rd

value #2 6
th

value #2 …

6 Never used Never used Never used

TPMC500-SW-42 – VxWorks Device Driver Page 30 of 57

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pSeqBuf

This argument points to a structure containing the configuration and buffers for sequencer
mode.

typedef struct

{

unsigned short cycletime;

unsigned long act_channels;

TPMC500_IO_BUFFER *chan_setup;

unsigned long buf_size;

unsigned long buf_stat;

unsigned long putIdx;

unsigned long getIdx;

int *buffer;

} TPMC500_SEQ_BUF

cycletime

This argument specifies the length of one sequencer cycle. This value is specified in
100s steps. Allowed values are between 1 and 65535. A specified value of 0 enables
the continuous mode.

act_channels

This value specifies the number of active channels. Valid values are 1 to 32.

chan_setup

This parameter points to an array of data structures specifying the channel setup. The
used data structure TPMC500_IO_BUFFER will be described below.

buf_size

This value specifies the size of the input FIFO. The value specifies the number of
sequences that can be handled without reading before the buffer is filled.

TPMC500-SW-42 – VxWorks Device Driver Page 31 of 57

buf_stat

This value specifies the current state and errors will be shown in this argument. The state
is an ORed value of the following flags:

Flags Description

TPMC500_SEQ_BUF_OVERRUN The user supplied FIFO is full and new data
cannot be stored

TPMC500_SEQ_DATA_OVERFLOW Old data not read by the software when new
values are ready

TPMC500_SEQ_TIMER_ERR The specified cycle time is not long enough to
convert the specified channels

TPMC500_SEQ_INST_RAM_ERR The sequencer is started, but no channel has
been selected.

putIdx

This parameter holds the current put index, which specifies the position in the FIFO
where the next data will be written to. This index should just be read for information but
never be changed by the application.

getIdx

This parameter holds the current get index, which specifies the position, where the
application shall read the next value from FIFO. This index must be modified by the
application after reading a value from the FIFO. This index is not changed by the driver.

buffer

This parameter points to the user supplied memory area where the sequencer input data
will be stored in.

data structure TPMC500_IO_BUFFER:

typedef struct

{

int Channel;

int Gain;

unsigned long flags;

int value;

} TPMC500_IO_BUFFER;

Channel

This argument specifies the ADC channel to use. Allowed values are 1..32 for single-
ended channels and 1..16 for differential channels.

Gain

This argument specifies the input gain that shall be used. Allowed values are 1, 2, 5, 10
or 1, 2, 4, 8 depending on the type of the device.

TPMC500-SW-42 – VxWorks Device Driver Page 32 of 57

flags

This parameter specifies conversion flags setting the input mode. The value is an ORed
value of the following flags:

Flags Description

TPMC500_DIFFMODE If set differential input interface is used, if not set the input
interface will be single-ended.

TPMC500_CORRENA If this flag is set input data corrections is enabled and
ADC data will be corrected with factory set correction data
individual for every TPMC500. If the flag is not set the
ADC value will be returned without correction.

value

This argument will be unused.

Example

#include “tpmc500.h”

#define SBUF_SIZE 0x200

TPMC500_DEV pDev;

STATUS result;

TPMC500_SEQ_BUF seq_buf;

TPMC500_IO_BUFFER seq_rw_par[2];

long seq_data_buf[SBUF_SIZE];

int oldIndex;

int i;

int arrayOff;

/*

** Start sequencer using channel 1 and 3

** Channel 1:

** differential, data correction on, gain = 1

** Channel 3:

** single-ended, data correction off, gain = 5

*/

seq_buf.cycletime = 10000; /* Cycletime 1s */

seq_buf.buffer = seq_data_buf;

seq_buf.act_channels = 2;

seq_buf.buf_size = SBUF_SIZE / seq_buf.act_channels;

seq_buf.chan_setup = seq_rw_par;

…

TPMC500-SW-42 – VxWorks Device Driver Page 33 of 57

…

seq_rw_par[0].Channel = 1;

seq_rw_par[0].Gain = 1;

seq_rw_par[0].flags = TPMC500_CORRENA | TPMC500_DIFFMODE;

seq_rw_par[1].Channel = 3;

seq_rw_par[1].Gain = 5;

seq_rw_par[1].Mode = TPMC500_CORRDIS | TPMC500_SNGLMODE;

result = tpmc500StartSequencer(pDev,

&seq_buf);

if (result == ERROR)

{

/* handle error */

}

else

{

/* operation successful ==> read data from buffer */

oldIndex = seq_buf.putIdx;

while (1)

{

taskDelay(2);

/* Check if error occurred */

if (seq_buf.buf_stat)

{

printf("\n\nERROR: status = %08lXh\n", seq_buf.buf_stat);

break; /* Error occurred ==> exit loop */

}

/* New data available ? */

if (oldIndex != seq_buf.putIdx)

{

arrayOff = (seq_buf.getIdx * seq_buf.act_channels);

/* Loop over channels */

for (i = 0; i < seq_buf.act_channels; i++)

{

printf("%d", seq_data_buf[arrayOff + i]);

}

seq_buf.getIdx++;

…

TPMC500-SW-42 – VxWorks Device Driver Page 34 of 57

…

/* Wrap around ? */

if (seq_buf.getIdx >= seq_buf.buf_size)

{

seq_buf.getIdx = 0;

}

oldIndex = seq_buf.putIdx;

}

}

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL A NULL pointer is referenced for an input value

EBADF The device handle is invalid

S_tpmc500Drv_ICHAN Invalid channel number specified

S_tpmc500Drv_IGAIN Invalid gain specified

S_tpmc500Drv_MODBUSY The module is busy

S_tpmc500Drv_UNKNOWNTYPE Unknown TPMC500 model type

TPMC500-SW-42 – VxWorks Device Driver Page 35 of 57

3.2.7 tpmc500StopSequencer

Name

tpmc500StopSequencer – stops sequencer mode of specified device

Synopsis

STATUS tpmc500StopSequencer
(

TPMC500_DEV pDev
)

Description

This function stops execution of the sequencer mode on the specified device.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tpmc500.h”

TPMC500_DEV pDev;

STATUS result;

/*

** stop sequencer mode

*/

result = tpmc500StopSequencer(pDev);

if (result == ERROR)

{

/* handle error */

}

else

{

/* succesful */

}

TPMC500-SW-42 – VxWorks Device Driver Page 36 of 57

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL A NULL pointer is referenced for an input value

EBADF The device handle is invalid

S_tpmc500Drv_MODBUSY The module is busy

TPMC500-SW-42 – VxWorks Device Driver Page 37 of 57

4 Legacy I/O system functions
This chapter describes the legacy driver-level interface to the I/O system. The purpose of these
functions is to install the driver in the I/O system, add and initialize devices.

The legacy I/O system functions are only relevant for the legacy TPMC500 driver. For the
VxBus-enabled TPMC500 driver, the driver will be installed automatically in the I/O system and
devices will be created as needed for detected modules.

4.1 tpmc500Drv()

NAME

tpmc500Drv() - installs the TPMC500 driver in the I/O system

SYNOPSIS

#include “tpmc500.h”

STATUS tpmc500Drv(void)

DESCRIPTION

This function searches for devices on the PCI bus, installs the TPMC500 driver in the I/O system.

A call to this function is the first thing the user has to do before adding any device to the
system or performing any I/O request.

EXAMPLE

#include "tpmc500.h”

STATUS result;

/*-------------------

Initialize Driver

-------------------*/

result = tpmc500Drv();

if (result == ERROR)

{

/* Error handling */

}

TPMC500-SW-42 – VxWorks Device Driver Page 38 of 57

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

ENXIO No TPMC500 module found

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TPMC500-SW-42 – VxWorks Device Driver Page 39 of 57

4.2 tpmc500DevCreate()

NAME

tpmc500DevCreate() – Add a TPMC500 device to the VxWorks system

SYNOPSIS

#include “tpmc500.h”

STATUS tpmc500DevCreate
(

char *name,
int devIdx,
int funcType

)

DESCRIPTION

This routine adds the selected device to the VxWorks system. The device hardware will be setup and
prepared for use.

This function must be called before performing any I/O request to this device.

PARAMETER

name

This string specifies the name of the device that will be used to identify the device, for example
for open() calls.

devIdx

This index number specifies the device to add to the system. The device numbers will be
assigned in the order the VxWorks pciFindDevice() function will find the devices. A 0 selects the
first device, a 1 the second, and so on.

funcType

This parameter is unused and should be set to 0.

TPMC500-SW-42 – VxWorks Device Driver Page 40 of 57

EXAMPLE

#include "tpmc500.h”

STATUS result;

/*---

Create the device "/tpmc500/0" for the first TPMC500 device

---*/

result = tpmc500DevCreate("/tpmc500/0",

0,

0);

if (result == OK)

{

/* Device successfully created */

}

else

{

/* Error occurred when creating the device */

}

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

S_ioLib_NO_DRIVER The driver has not been installed (call tpmc500Drv())

ENXIO Specified device not found

EBUSY The specified device has already been created.

ENOTSUP The specified model type is not supported

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TPMC500-SW-42 – VxWorks Device Driver Page 41 of 57

4.3 tpmc500PciInit()

NAME

tpmc500PciInit() – Generic PCI device initialization

SYNOPSIS

void tpmc500PciInit()

DESCRIPTION

This function is required only for Intel x86 VxWorks platforms. The purpose is to setup the MMU
mapping for all required TPMC500 PCI spaces (base address register) and to enable the TPMC500
device for access.

The global variable tpmc500Status obtains the result of the device initialization and can be polled later
by the application before the driver will be installed.

Value Meaning

> 0 Initialization successful completed. The value of tpmc500Status is equal to the
number of mapped PCI spaces

0 No TPMC500 device found

< 0 Initialization failed. The value of (tpmc500Status & 0xFF) is equal to the number
of mapped spaces until the error occurs.

Possible cause: Too few entries for dynamic mappings in sysPhysMemDesc[].

Remedy: Add dummy entries as necessary (syslib.c).

EXAMPLE

extern void tpmc500PciInit();

…

tpmc500PciInit();

TPMC500-SW-42 – VxWorks Device Driver Page 42 of 57

4.4 tpmc500Init()

NAME

tpmc500Init() – initialize TPMC500 driver and devices

SYNOPSIS

#include “tpmc500.h”

STATUS tpmc500Init(void)

DESCRIPTION

This function is used by the TPMC500 example application to install the driver and to add all available
devices to the VxWorks system.

See also 3.1.1 tpmc500Open() for the device naming convention for legacy devices.

After calling this function it is not necessary to call tpmc500Drv() and tpmc500DevCreate()
explicitly.

EXAMPLE

#include "tpmc500.h”

STATUS result;

result = tpmc500Init();

if (result == ERROR)

{

/* Error handling */

}

TPMC500-SW-42 – VxWorks Device Driver Page 43 of 57

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

Error codes are only set by system functions. The error codes are stored in errno and can be read with
the function errnoGet().

See 4.1 tpmc500Drv() and 4.2 tpmc500DevCreate() for a description of possible error codes.

TPMC500-SW-42 – VxWorks Device Driver Page 44 of 57

5 Basic I/O Functions
The VxWorks basic I/O interface functions are useable with the TPMC500 legacy and VxBus-enabled
driver in a uniform manner.

5.1 open()

NAME

open() - open a device or file.

SYNOPSIS

int open
(

const char *name,
int flags,
int mode

)

DESCRIPTION

Before I/O can be performed to the TPMC500 device, a file descriptor must be opened by invoking the
basic I/O function open().

PARAMETER

name

Specifies the device which shall be opened, the name specified in tpmc500DevCreate() must be
used

flags

Not used

mode

Not used

TPMC500-SW-42 – VxWorks Device Driver Page 45 of 57

EXAMPLE

int fd;

/*--

Open the device named "/tpmc500/0" for I/O

--*/

fd = open("/tpmc500/0", 0, 0);

if (fd == ERROR)

{

/* Handle error */

}

RETURNS

A device descriptor number or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - open()

TPMC500-SW-42 – VxWorks Device Driver Page 46 of 57

5.2 close()

NAME

close() – close a device or file

SYNOPSIS

STATUS close
(

int fd
)

DESCRIPTION

This function closes opened devices.

PARAMETER

fd

This file descriptor specifies the device to be closed. The file descriptor has been returned by
the open() function.

EXAMPLE

int fd;

STATUS retval;

/*----------------

close the device

----------------*/

retval = close(fd);

if (retval == ERROR)

{

/* Handle error */

}

RETURNS

OK or ERROR. If the function fails, an error code will be stored in errno.

TPMC500-SW-42 – VxWorks Device Driver Page 47 of 57

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - close()

TPMC500-SW-42 – VxWorks Device Driver Page 48 of 57

5.3 ioctl()

NAME

ioctl() - performs an I/O control function.

SYNOPSIS

#include “tpmc500.h”

int ioctl
(

int fd,
int request,
int arg

)

DESCRIPTION

Special I/O operation that do not fit to the standard basic I/O calls (read, write) will be performed by
calling the ioctl() function.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

request

This argument specifies the function that shall be executed. Following functions are defined:

Function Description

FIO_TPMC500READ Set up and start sequencer mode

FIO_TPMC500STARTSEQ Set up and start sequencer mode

FIO_TPMC500STOPSEQ Stop sequencer mode

FIO_TPMC500MODULTYPE Specify TPMC500 model type

arg

This parameter depends on the selected function (request). How to use this parameter is
described below with the function.

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

TPMC500-SW-42 – VxWorks Device Driver Page 49 of 57

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).
Function specific error codes will be described with the function.

SEE ALSO

ioLib, basic I/O routine - ioctl()

TPMC500-SW-42 – VxWorks Device Driver Page 50 of 57

5.3.1 FIO_TPMC500MODULTYPE

This I/O control function specifies the model type of TPMC500. The function specific control parameter
arg is a pointer to a TPMC500_CONF_BUFFER.

This function must be called before any other I/O access is done to the specified device.

typedef struct

{

int modelType; /* specifies the model type of the TPMC500 (TPMC500-<xx>) */

} TPMC500_CONF_BUFFER;

modelType

This parameter specifies the model type of the TPMC500. The following model types are
supported.

Model type Description

10 TPMC500-10 --- input range +/- 10V, gains: 1,2,5,10, front panel I/O

11 TPMC500-11 --- input range +/- 10V, gains: 1,2,4,8, front panel I/O

12 TPMC500-12 --- input range 0…10V, gains: 1,2,5,10, front panel I/O

13 TPMC500-13 --- input range 0…10V, gains: 1,2,4,8, front panel I/O

20 TPMC500-20 --- input range +/- 10V, gains: 1,2,5,10, back I/O

21 TPMC500-21 --- input range +/- 10V, gains: 1,2,4,8, back I/O

22 TPMC500-22 --- input range 0…10V, gains: 1,2,5,10, back I/O

23 TPMC500-23 --- input range 0…10V, gains: 1,2,4,8, back I/O

EXAMPLE

#include “tpmc500.h”

int fd;

TPMC500_CONF_BUFFER confBuf;

int retval;

/*---

Identify the TPMC500 device as TPMC500-11

---*/

confBuf.modelType = 11;

…

TPMC500-SW-42 – VxWorks Device Driver Page 51 of 57

…

retval = ioctl(fd, FIO_TPMC500MODULTYPE, (int)&confBuf);

if (retval != ERROR)

{

/* function succeeded */

}

else

{

/* handle the error */

}

ERROR CODES

Error code Description

ENOTSUP Unsupported or invalid TPMC500 model type specified

S_tpmc500Drv_MODBUSY The module is busy

TPMC500-SW-42 – VxWorks Device Driver Page 52 of 57

5.3.2 FIO_TPMC500READ

This I/O control function starts a conversion for one input channel and returns the value. The function
specific control parameter arg is a pointer on a TPMC500_IO_BUF structure specifying the conversion
parameters.

typedef struct

{

int Channel;

int Gain;

unsigned long flags;

long value;

} TPMC500_IO_BUFFER;

Channel

This argument specifies the ADC channel to use. Allowed values are 1..32 for single-ended
channels and 1..16 for differential channels.

Gain

This argument specifies the input gain that shall be used. Allowed values are 1, 2, 5, 10 or 1, 2,
4, 8 depending on the type of the device.

flags

This parameter specifies conversion flags setting the input mode. The value is an ORed value
of the following flags:

Flags Description

TPMC500_DIFFMODE If set differential input interface is used, if not set the input
interface will be single-ended.

TPMC500_CORRENA If this flag is set input data corrections is enabled and ADC data
will be corrected with factory set correction data individual for
every TPMC500. If the flag is not set the ADC value will be
returned without correction.

value

This value returns the ADC input value. The possible range of the value depends on the device.
If it is a bipolar version, input values are between -2048 (-10V) and 2047 (~+10V), unipolar
versions return values between 0 (0V) and 4095 (~+10V).

TPMC500-SW-42 – VxWorks Device Driver Page 53 of 57

EXAMPLE

#include “tpmc500.h”

int fd;

TPMC500_IO_BUFFER read_buf;

int retval;

/*--

Read the current value of differential channel 1,

the gain shall be 2 and the value shall be corrected

--*/

read_buf.Channel = 1;

read_buf.Gain = 2;

read_buf.flags = TPMC500_CORRENA | TPMC500_DIFFMODE;

retval = ioctl(fd, FIO_TPMC500READ, (int)&read_buf);

if (retval != ERROR)

{

/* read successful */

printf(“ADC value: %ld”, read_buf.value);

}

else

{

/* handle the error */

}

ERROR CODES

Error code Description

S_tpmc500Drv_ICHAN Illegal channel number specified

S_tpmc500Drv_IGAIN Illegal gain specified

S_tpmc500Drv_MODBUSY The device is in use or the sequencer is active

TPMC500-SW-42 – VxWorks Device Driver Page 54 of 57

5.3.3 FIO_TPMC500STARTSEQ

This I/O control function sets up the sequencer channels and cycle time and afterwards starts the
sequencer. The function specific control parameter arg is a pointer on a TPMC500_SEQ_BUF
structure that will be used while the sequencer is active.

Data organization with in the buff is described in 3.2.6 tpmc500StartSequencer.

typedef struct

{

unsigned short cycletime;

unsigned long act_channels;

TPMC500_IO_BUFFER *chan_setup;

unsigned long buf_size;

unsigned long buf_stat;

unsigned long putIdx;

unsigned long getIdx;

long *buffer;

} TPMC500_SEQ_BUF

cycletime

This argument specifies the length of one sequencer cycle. This value is specified in 100s
steps. Allowed values are between 1 and 65535. A specified value of 0 enables the continuous
mode.

act_channels

This value specifies the number of active channels. Valid values are 1 to 32.

chan_setup

This parameter points to an array of data structures specifying the channel setup. The used
data structure is the same used by the read command (for more information refer to the
description of the ioctl() function FIO_TPMC500READ (5.3.2))

buf_size

This value specifies the size of the input FIFO. The value specifies the number of sequences
that can be handled without reading before the buffer is filled.

TPMC500-SW-42 – VxWorks Device Driver Page 55 of 57

buf_stat

This value specifies the current state and errors will be shown in this argument. The state is an
ORed value of the following flags:

Flags Description

TPMC500_SEQ_BUF_OVERRUN The user supplied FIFO is full and new data
cannot be stored

TPMC500_SEQ_DATA_OVERFLOW Old data not read by the software when new
values are ready

TPMC500_SEQ_TIMER_ERR The specified cycle time is not long enough to
convert the specified channels

TPMC500_SEQ_INST_RAM_ERR The sequencer is started, but no channel has
been selected.

putIdx

This parameter holds the current put index, which specifies the position in the FIFO where the
next data will be written to. This index should just be read for information but never be changed
by the application.

getIdx

This parameter holds the current get index, which specifies the position, where the application
shall read the next value from FIFO. This index must be modified by the application after
reading a value from the FIFO. This index is not changed by the driver.

buffer

This parameter points to the user supplied memory area where the sequencer input data will be
stored in.

EXAMPLE

#include “tpmc500.h”

#define SBUF_SIZE 0x200

int fd;

int retval;

TPMC500_SEQ_BUF seq_buf;

TPMC500_IO_BUFFER seq_rw_par[2];

long seq_data_buf[SBUF_SIZE];

…

TPMC500-SW-42 – VxWorks Device Driver Page 56 of 57

…

/*---

Start sequencer using channel 1 and 3

Channel 1:

differential, data correction on, gain = 1

Channel 3:

single-ended, data correction off, gain = 5

---*/

seq_buf.cycletime = 10000; /* Cycletime 1s */

seq_buf.buffer = seq_data_buf;

seq_buf.act_channels = 2;

seq_buf.buf_size = SBUF_SIZE / seq_buf.act_channels;

seq_buf.chan_setup = seq_rw_par;

seq_rw_par[0].Channel = 1;

seq_rw_par[0].Gain = 1;

seq_rw_par[0].flags = TPMC500_CORRENA | TPMC500_DIFFMODE;

seq_rw_par[1].Channel = 3;

seq_rw_par[1].Gain = 5;

seq_rw_par[1].Mode = TPMC500_CORRDIS | TPMC500_SNGLMODE;

retval = ioctl(fd, FIO_TPMC500STARTSEQ, (int)&seq_buf);

if (retval != ERROR)

{

/* sequencer started */

/* reading data from buffer, see 3.2.6 tpmc500StartSequencer */

}

else

{

/* handle the error */

}

ERROR CODES

Error code Description

S_tpmc500Drv_MODBUSY The device is currently in use

TPMC500-SW-42 – VxWorks Device Driver Page 57 of 57

5.3.4 FIO_TPMC500STOPSEQ

This I/O control function stops the sequencer. The function specific control parameter arg is not used
for this function.

EXAMPLE

#include “tpmc500.h”

int fd;

int retval;

/*------------------------

Stop Sequencer

------------------------*/

retval = ioctl(fd, FIO_TPMC500STOPSEQ, 0);

if (retval != ERROR)

{

/* Sequencer is stopped */

}

else

{

/* handle the error */

}

ERROR CODES

Error code Description

S_tpmc500Drv_MODBUSY The device is currently in use

	1	Introduction
	1.1	Device Driver

	2	Installation
	2.1	Legacy vs. VxBus Driver
	2.2	VxBus Driver Installation
	2.2.1	Direct BSP Builds

	2.3	Legacy Driver Installation
	2.3.1	Include device driver in VxWorks projects
	2.3.2	Special installation for Intel x86 based targets
	2.3.3	BSP dependent adjustments

	2.4	System resource requirement

	3	API Documentation
	3.1	General Functions
	3.1.1	tpmc500Open()
	3.1.2	tpmc500Close()

	Device Access Functions
	3.2.1	tpmc500SetModelType
	3.2.2	tpmc500ReadSE
	3.2.3	tpmc500ReadCorrSE
	3.2.4	tpmc500ReadDiff
	3.2.5	tpmc500ReadCorrDiff
	3.2.6	tpmc500StartSequencer
	3.2.7	tpmc500StopSequencer

	4	Legacy I/O system functions
	4.1	tpmc500Drv()
	4.2	tpmc500DevCreate()
	4.3	tpmc500PciInit()
	4.4	tpmc500Init()

	5	Basic I/O Functions
	5.1	open()
	5.2	close()
	5.3	ioctl()
	5.3.1	FIO_TPMC500MODULTYPE
	5.3.2	FIO_TPMC500READ
	5.3.3	FIO_TPMC500STARTSEQ
	5.3.4	FIO_TPMC500STOPSEQ

