

TPMC500-SW-72
LynxOS Device Driver

TPMC500 – 32/16 12 Bit ADC

Version 1.0.x

Reference Manual
Issue 1.0

November 2001

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7

D-25469 Halstenbek
Germany

Tel.: +49 (0)4101 4058-0
Fax.: +49 (0)4101 4058-19

http://www.tews.com
e-mail: info@tews.com

http://www.tews.com/
mailto:info@tews.com

TPMC500-SW-72
32/16 Channel 12-Bit ADC
LynxOS Device Driver

This document contains information, which is
proprietary to TEWS TECHNOLOGIES. Any
reproduction without written permission is
forbidden.

TEWS TECHNOLOGIES has made any effort
to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES
reserves the right to change the product
described in this document at any time without
notice.

This product has been designed to operate
with PCI Mezzanine Card (PMC) compatible
carriers. Connection to incompatible hardware
is likely to cause serious damage.

TEWS TECHNOLOGIES is not liable for any
damage arising out of the application or use of
the device described herein.

2001 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue November 7, 2001
TPMC500-SW-72 – LynxOS Device Driver page 2

 TPMC500-SW-72 – LynxOS Device Driver page 3

Table of Contents

1 INTRODUCTION .. 4

2 INSTALLATION.. 5
2.1 Device Driver Installation.. 5

2.1.1 Static Installation.. 5
2.1.1.1 Build the driver object ... 5
2.1.1.2 Create Device Information Declaration ... 6
2.1.1.3 Modify the Device and Driver Configuration File ... 6
2.1.1.4 Rebuild the Kernel .. 6

2.1.2 Dynamic Installation... 7
2.1.3 Device Information Definition File... 8
2.1.4 Configuration File: CONFIG.TBL.. 9

3 TPMC500 DEVICE DRIVER PROGRAMMING.. 10
3.1 open() ... 10
3.2 close()... 11
3.3 read() .. 12
3.4 ioctl() .. 15

3.4.1 TP500_READPARAM - (Read Module Parameters) .. 16
3.4.2 TP500_SEQSTOP - (Stop Sequencer Mode)... 17
3.4.3 TP500_SEQSETUP - (Setup and Start Sequencer Mode) 18
3.4.4 TP500_SEQREAD - (Read in Sequencer Mode) ... 20
3.4.5 TP500_SEQIMMREAD - (Immediate Read in Sequencer Mode) 21

4 DEBUGGING.. 22

 TPMC500-SW-72 – LynxOS Device Driver page 4

1 Introduction
The TPMC500-SW-72 LynxOS device driver allows the operation of a TPMC500
32(16) Channel 12 Bit ADC PMC on a PowerPC platform with DRM based PCI
interface.

The standard file (I/O) functions (open, close, read and ioctl) provide the basic interface
for opening and closing a file descriptor and for performing device I/O and control
operations.

The TPMC500 device driver includes the following functions:

! read the ADC value from specified channel
! setup and start the ADC sequencer mode
! read data while sequencer mode is active (synchronous and wsynchronous)
! read module information
! all reads can be made with data correction. using the factory set data

 TPMC500-SW-72 – LynxOS Device Driver page 5

2 Installation
The software is delivered on a PC formatted 3½" HD diskette.

Following files are located on the diskette:

tpmc500.c Driver source code
tpmc500.h Definitions and data structures for driver and

application
tpmc500_info.c Device information definition
tpmc500_info.h Device information definition header
tpmc500.cfg Driver configuration file include
tpmc500.import Linker import file
Makefile Device driver make file
Makefile.dldd Make file for dynamic driver installation
tpmc500-sw-72.pdf This Manual in PDF format

2.1 Device Driver Installation
The two methods of driver installation are as follows:

• Static Installation
• Dynamic Installation (only native LynxOS systems)

2.1.1 Static Installation
With this method, the driver object code is linked with the kernel routines and is
installed during system start-up.

In order to perform a static installation, copy the following files to the target directories:

1. Create a new directory in the system drivers directory path.

For example: /sys/drivers.pp_drm/tpmc500
2. Copy the following files to this directory: tpmc500.c, Makefile
3. Copy tpmc500.h to /usr/include/
4. Copy tpmc500_info.c to /sys/devices/
5. Copy tpmc500_info.h to /sys/dheaders/
6. Copy tpmc500.cfg to /sys/cfg.ppc/

2.1.1.1 Build the driver object

1. Change to the directory /sys/drivers.pp_drm/tpmc500
2. To update the library /sys/lib/libdrivers.a enter:

make install

 TPMC500-SW-72 – LynxOS Device Driver page 6

2.1.1.2 Create Device Information Declaration

1. Change to the directory /sys/devices/
2. Add the following dependencies to the Makefile

DEVICE_FILES_prep = ...tpmc500_info.x

And at the end of the Makefile
...
tpmc500_info.o:$(DHEADERS)/tpmc500_info.h

3. To update the library /sys/lib/libdevices.a enter:

make install

2.1.1.3 Modify the Device and Driver Configuration File

In order to insert the driver object code into the kernel image, an appropriate entry in
file CONFIG.TBL must be created.

1. Change to the directory /sys/lynx.os/
2. Create an entry in the file CONFIG.TBL

Insert the entry after the console driver section

End of console devices
I:tpmc500.cfg

2.1.1.4 Rebuild the Kernel

1. Change to the directory /sys/lynx.os/ (/sys/bsp.pp_drm)
2. To rebuild the kernel enter the following command:

make install

3. Reboot the newly-created operating system by the following command:

reboot –aN

The N flag instructs init to run mknod and create all the nodes mentioned in the
new nodetab.

4. After reboot you should find the following new devices (depends on the device
configuration): /dev/tp500a, [/dev/tp500b, …]

 TPMC500-SW-72 – LynxOS Device Driver page 7

2.1.2 Dynamic Installation
This method allows you to install the driver after the operating system is booted. The
driver object code is attached to the end of the kernel image and the operating system
dynamically adds this driver to its internal structures. The driver can also be removed
dynamically.
Unlike the description of the dynamic installation in the manual “Writing Device Drivers
for LynxOS”, the driver source must be placed in a directory under /sys/drivers.pp_drm/

The following steps describe how to do a dynamic installation:
1. Create a new directory in the system drivers directory path.

For example: /sys/drivers.pp_drm/tpmc500

2. Copy the following files to this directory:
- tpmc500.c
- tpmc500_info.c
- tpmc500_info.h
- tpmc500.import
- Makefile.dldd

3. Copy tpmc500.h to /usr/include

4. Change to the directory /sys/drivers.pp_drm/tpmc500

5. To make the dynamic link-able driver enter :

make –f Makefile.dldd

6. Create a device definition file for one major device

gcc –DDLDD –o tpmc500_info tpmc500_info.c
./tpmc500_info > tp500a

7. To install the driver enter:

drinstall –c tpmc500.obj

If successful drinstall returns a unique <driver-ID>

8. To install the major device enter:

devinstall –c –d <driver-ID> tp500a

The <driver-ID> is returned by the drinstall command

9. To create nodes for the devices enter:

mknod /dev/tp500a c <major_no> 0
...

If all steps are successful completed the TPMC500 is ready to use.

To uninstall the TPMC500 device enter the following commands:

devinstall –u –c <device-ID>
drinstall –u <driver-ID>

 TPMC500-SW-72 – LynxOS Device Driver page 8

2.1.3 Device Information Definition File
The device information definition contains information necessary to install the
TPMC500 major device.
The implementation of the device information definition is done through a C structure
which is defined in the header file tpmc500_info.h.

This structure contains following parameter:

PCIBusNumber Contains the PCI bus number at which the TPMC500 is

connected. Valid bus numbers are in range from 0 to 255.

PCIDeviceNumber Contains the device number (slot) at which the TPMC500 is
connected. Valid device numbers are in range from 0 to 31.

NOTE. If both PCIBusNumber and PCIDeviceNumber are –1
then the driver will auto scan for the TPMC500 device. The first
device found in the scan order will be allocated by the driver for
this major device.
Already allocated devices can’t be allocated twice. This is
important to know if you have more than one TMPC500 major
device.

A device information definition is unique for every TPMC500 major device. The file
tpmc500_info.c on the distribution disk contains two device information declarations,
tp500a_info for the first major device and tp500b_info for the second major device.

If the driver should support more than two major devices it is necessary to copy and
paste an existing declaration and rename it with unique name for example
tp500c_info, tp500d_info and so on.

NOTE. It is also necessary to modify the device and driver configuration file
respectively the configuration include file tpmc500.cfg.

The following device declaration information uses the auto find method to detect the
TPMC500 module on PCI bus.

TP500_INFO tp500a_info = {

-1, /* auto find the TPMC500 on any PCI bus */
-1,

};

 TPMC500-SW-72 – LynxOS Device Driver page 9

2.1.4 Configuration File: CONFIG.TBL
The device and driver configuration file CONFIG.TBL contains entries for device drivers
and its major and minor device declarations. Each time the system is rebuild, the config
utility reads this file and produces a new set of driver and device configuration tables
and a corresponding nodetab.

To install the TPMC500 driver and devices into the LynxOS system, the configuration
include file tpmc500.cfg must be included in the CONFIG.TBL (see also 2.1.1.3).
The file tpmc500.cfg on the distribution disk contains the driver entry (C:tpmc500:\....)
and one enabled major device entry (D:TPMC500 1:tp500a_info::) with one minor
device entry (N: tp500a:0).

If the driver should support more than one major device the following entries for major
and minor devices must be enabled by removing the comment character (#). By copy
and paste an existing major and minor entry and renaming the new entries, it is
possible to add any number of additional TPMC500 device.

NOTE. The name of the device information declaration (info-block-name) must match
to an existing C structure in the file tpmc500_info.c.

This example shows a driver entry with one major device and 8 minor devices:

#Format:
#C:driver-name:open:close:read:write:select:control:install:uninstall
#D:device-name:info-block-name:raw-partner-name
#N:node-name:minor-dev

C:tpmc500:\
:tp500open:tp500close:tp500read::\
::tp500ioctl:tp500install:tp500uninstall

D:TPMC500 1:tp500a_info::
N:tp500a:0

The configuration above creates the following node in the /dev directory.

/dev/tp500a

 TPMC500-SW-72 – LynxOS Device Driver page 10

3 TPMC500 Device Driver Programming
LynxOS system calls are all available directly to any C program. They are implemented
as ordinary function calls to "glue" routines in the system library, which trap to the OS
code.
Note that many system calls use data structures, which should be obtained in a
program from appropriate header files. Necessary header files are listed with the
system call synopsis.

3.1 open()

NAME

open() - open a file

SYNOPSIS

#include <sys/file.h>
#include <sys/types.h>
#include <fcntl.h>

int open (char *path, int oflags[, mode_t mode])

DESCRIPTION

Opens a file (TPMC500 device) named in path for reading and writing. The value of
oflags indicates the intended use of the file. In case of a TPMC500 devices oflags
must be set to O_RDONLY to open the file for reading.
The mode argument is required only when a file is created. Because a TPMC500
device already exists this argument is ignored.

EXAMPLE

int fd

/*
** open the device named "/dev/tp500a" for Input
*/

fd = open ("/dev/tp500a", O_RDONLY);

RETURNS

open returns a file descriptor number if successful, or –1 on error.

SEE ALSO

LynxOS System Call - open()

 TPMC500-SW-72 – LynxOS Device Driver page 11

3.2 close()

NAME

close() – close a file

SYNOPSIS

int close(int fd)

DESCRIPTION

This function closes an opened device.

EXAMPLE
int result;

/*
** close the device
*/

result = close(fd);

RETURNS

close returns 0 (OK) if successful, or –1 on error

SEE ALSO

LynxOS System Call - close()

 TPMC500-SW-72 – LynxOS Device Driver page 12

3.3 read()

NAME

read() - read from a file

SYNOPSIS

#include <tpmc500.h>

int read (int fd, char *buff, int count)

DESCRIPTION

The read function reads an ADC value from the specified channel.
The argument buff contains a pointer to the read buffer (TP500_READ_BUFFER),
which contains information of the desired read operation.
The argument count is not required and should be 0.

The TP500_READ_BUFFER structure has the following layout:

typedef struct
{
 unsigned short channel; /* channel number */
 unsigned short gain; /* selected gain */
 unsigned short flags;
 short value; /* ADC input value */
} TP500_READ_BUFFER, *PTP500_READ_BUFFER;

The parameter channel specifies the ADC channel that will be used. Allowed values
are 1 to 32 for single-ended input and 1 to 16 for differential input.

The parameter gain specifies the input gain that will be used, following table shows the
allowed values. These values are predefined in ‘tpmc500.h’.

Name TPMC500-10/-12/-20/-22 TPMC500-11/-13/-21/-23
TP500_GAIN1 gain = 1 gain = 1
TP500_GAIN2 gain = 2 gain = 2
TP500_GAIN4 not supported gain = 4
TP500_GAIN5 gain = 5 not supported
TP500_GAIN8 not supported gain = 8
TP500_GAIN10 gain = 10 not supported

 TPMC500-SW-72 – LynxOS Device Driver page 13

The parameter flags value is an ORed value of the flags shown in the following table.

Name Meaning
TP500_FL_DIFF If this flag is set, the driver will use differential input

signal.
If the flag is not set, the driver will use single-ended
input signal.

TP500_FL_CORR If this flag is set, the driver will correct the ADC
input value with the factory programmed correction
data.
If this flag is not set, the driver will return the ADC
input.

TP500_FL_FAST If this flag is set, the driver will start a conversion on
the last programmed channel, with the last selected
gain and the last selected input mode. The
parameters gain, channel and the flag
TP500_FL_DIFF will be ignored if this flag is set. If
this flag is used, the hardware coded settling time
is not needed and not used, this makes the access
faster.
If the flag is not set, the driver will work in the
normal mode.

The parameter value returns the converted ADC value.

EXAMPLE
int fd;
int result;
unsigned short value;
TP500_READ_BUFFER ReadBuf;

...

/***
Read channel 5 with differential input
use gain 2
correct the input data
***/
ReadBuf.channel = 5;
ReadBuf.gain = TP500_GAIN2;
ReadBuf.flags = TP500_FL_DIFF | TP500_FL_CORR;

result = read(fd, (char*)&ReadBuf, 0);

/*
** Check the result of the last device I/O operation
*/

if(result == sizeof(TP500_READ_BUFFER)) {
printf(“ADC value = 0x%x\n”, ReadBuf.value);

}
else {
printf("\nRead failed --> Error = %d.\n", errno);

}

 TPMC500-SW-72 – LynxOS Device Driver page 14

RETURNS

When read succeeds, the size of the read buffer is returned. If read fails, -1 (SYSERR)
is returned.

On error, errno will contain a standard read error code (see also LynxOS System Call –
read) or one of the following TPMC500 specific error codes:

ENXIO Invalid minor device specified.

EBUSY Sequencer mode is active. This function can not be called while the

sequencer mode is active.

ETIMEDOUT The maximum allowed time to finish the read request is exhausted.

EINVAL Invalid parameter. Please check the parameter.

SEE ALSO

LynxOS System Call - read()

 TPMC500-SW-72 – LynxOS Device Driver page 15

3.4 ioctl()

NAME

ioctl() - I/O device control

SYNOPSIS

#include <ioctl.h>
#include <tpmc500.h>

int ioctl (int fd, int request, char *arg)

DESCRIPTION

ioctl provides a way of sending special commands to a device driver. The call sends
the value of request and the pointer arg to the device associated with the descriptor
fd.

The following request values are support by a TPMC500 device :

Value Meaning
TP500_READPARAM Read module parameters, this includes the model

type and the correction data
TP500_SEQSTOP Stop sequencer, set module to normal mode
TP500_SEQSETUP Setup and start sequencer, set module in

sequencer mode
TP500_SEQREAD Read sequencer data, synchronize with cycle

time and get values
TP500_SEQIMMREAD Read sequencer data, make an immediate read,

retuning the last converted values

See behind for more detailed information on each control code.

Note

To use these TPMC500 specific control codes the header file
tpmc500.h must be included in the application.

RETURNS

ioctl returns 0 if successful, or –1 on error.
The TPMC500 ioctl function returns always standard error codes. See LynxOS system
call ioctl of a detailed description of possible error codes.

SEE ALSO

LynxOS System Call - ioctl().

 TPMC500-SW-72 – LynxOS Device Driver page 16

3.4.1 TP500_READPARAM - (Read Module Parameters)
The function TP500_READPARAM reads the module parameters of the TPMC500
including the model type and the factory programmed correction data.
The argument arg contains a pointer to the TP500_PARA_BUFFER data structure.

The TP500_PARA_BUFFER structure has the following layout:

typedef struct
{
 int ModuleType; /* TPMC500 variant type */
 signed char OffsCorr[4]; /* Offset correction Data */
 signed char GainCorr[4]; /* Gain correction Data */
} TP500_PARA_BUFFER, *PTP500_PARA_BUFFER;

The entry ModelType returns the model type. A value of 10 specifies a TPMC500-10,
a value of 11 specifies a TPMC500-11 and so on.
The array OffsCorr returns the offset correction data. The index of the array specifies
the gain the value is assigned to. (see table below)
The array GainCorr returns the gain correction data. The index of the array specifies
the gain the value is assigned to. (see table below)

Index TPMC500-10/-12/-20/-22 TPMC500-11/-13/-21/-23
0 Gain = 1 Gain = 1
1 Gain = 2 Gain = 2
2 Gain = 5 Gain = 4
3 Gain = 10 Gain = 8

Note

More information about data correction is printed in the
TPMC500 User Manual

EXAMPLE

int fd;
int result;
TP500_PARA_BUFFER ParamBuf;

...

/*
** Read module parameters
*/
result = ioctl (fd, TP500_READPARAM, (char*)&ParamBuf);

if (result < 0) {
/* handle ioctl error */

}

 TPMC500-SW-72 – LynxOS Device Driver page 17

3.4.2 TP500_SEQSTOP - (Stop Sequencer Mode)
The function TP500_SEQSTOP stops the sequencer and returns the module to normal
mode.
The argument arg is unused and should be set to zero.

EXAMPLE

int fd;
int result;

...

/*
** Get module parameters
*/
result = ioctl (fd, TP500_SEQSTOP, 0);

if (result < 0) {
/* handle ioctl error */

}

 TPMC500-SW-72 – LynxOS Device Driver page 18

3.4.3 TP500_SEQSETUP - (Setup and Start Sequencer Mode)

The function TP500_SEQSETUP sets up the TPMC550 to work in sequencer mode.
The cycle time and the channel configuration are set up.
The argument arg contains a pointer to the TP500_SEQSET_BUFFER data structure.

The TP500_SEQSET_BUFFER structure has the following layout:

typedef struct
{
 unsigned short cycleTime; /* value of cycletime register */
 struct
 {
 unsigned short flags;
 unsigned short gain; /* selected gain */
 } channel[TP500_SNGLCHANS]; /* channel configuration */
} TP500_SEQSET_BUFFER, *PTP500_SEQSET_BUFFER;

The entry cycleTime specifies the cycle time that will be used. The value will be copied
into the sequencer timer register. The value has a resolution of 100µs steps. If this
value is set to zero, the sequencer will work in continuous mode.

The structure channel holds information for the channels. The index of the channel
structure specifies the channel. Index 0 is advised to channel 1, index 1 is advised to
channel 2 and so on. The array has 32 elements. The structure contains the following
entries.

The flags parameter is an ORed value of the following described flags.

Name Meaning
TP500_FL_DIFF If this flag is set, the driver will use differential input

signal.
If the flag is not set, the driver will use single-ended
input signal.

TP500_FL_CORR If this flag is set, the driver will correct the ADC input
value with the factory programmed correction data.
If this flag is not set, the driver will return the ADC
input.

TP500_FL_ENABLE If this flag is set the channel will be used in
sequencer mode.
If this flag is not set, the channel will be ignored in
sequencer mode.

This gain parameter specifies the gain for the channel.

Name TPMC500-10/-12/-20/-22 TPMC500-11/-13/-21/-23
TP500_GAIN1 gain = 1 gain = 1
TP500_GAIN2 gain = 2 gain = 2
TP500_GAIN4 not supported gain = 4
TP500_GAIN5 gain = 5 not supported
TP500_GAIN8 not supported gain = 8
TP500_GAIN10 gain = 10 not supported

 TPMC500-SW-72 – LynxOS Device Driver page 19

EXAMPLE

int fd;
int result;
TP500_SEQSET_BUFFER SeqSetBuf;

...

/***
Start sequencer with a cycle time of 1 sec
Enable following channels:

Channel 1: Gain=1, Correction enabled, single-ended
Channel 6: Gain=2, Correction disabled, differential

SeqSetBuf.cycleTime = 10000; /* 10000 * 100µs */

for (i = 0; i < TP500_SNGLCHANS; i++) {
SeqSetBuf.channel[i].flags = 0; /* disable channel */

}

SeqSetBuf.channel[0].flags = TP500_FL_ENABLE | TP500_FL_CORR;
SeqSetBuf.channel[5].flags = TP500_FL_ENABLE | TP500_FL_DIFF;

SeqSetBuf.channel[0].gain = TP500_GAIN1;
SeqSetBuf.channel[5].gain = TP500_GAIN2;

result = ioctl (fd, TP500_SEQSETUP, (char*)&SeqSetBuf);

if (result < 0) {
/* handle ioctl error */

}

 TPMC500-SW-72 – LynxOS Device Driver page 20

3.4.4 TP500_SEQREAD - (Read in Sequencer Mode)
The function TP500_SEQREAD returns ADC data in sequencer mode. This function
returns if new data is available, it returns immediately, if unread data is present or it
waits until the conversion cycle is completed.
The argument arg contains a pointer to the TP500_SEQREAD_BUFFER data
structure.

The TP500_SEQREAD_BUFFER structure has the following layout:

typedef struct
{
 int overrunCount; /* number of lost cycles */
 int error; /* error flags */
 short values[TP500_SNGLCHANS];
 /* ADC input value */
} TP500_SEQREAD_BUFFER, *PTP500_SEQREAD_BUFFER;

The parameter overrunCount returns the number of lost sequencer cycles. A value of
‘-1’ means there has not been a valid cycle since last read (only in error case), a value
of ‘0’ means no data has been lost. If the value is greater ‘0’, the value specifies the
number of lost cycles.

The error value returns an ORed value of the following error flags. This value should
be checked for every call of the function.

Name Meaning
TP500_FL_HWOVERRUN The hardware has detected an overflow,

the data sequencer has not been serviced
in one cycle time.

TP500_FL_TIMERERR The hardware has signaled, that the
specified cycle time is to short to make the
specified conversions.

TP500_FL_INSTRAMERR The hardware has detected an error in the
instruction RAM. (No channel selected)

TP500_FL_SWOVERRUN The driver can not make the data
corrections in one cycle time.

The array values returns a full set of ADC values. Only the values of the channels
selected in TP500_SEQSETUP will be valid. The index specifies the channel. Index 0
is advised to channel 1, index 1 is advised to channel 2 and so on. The array has 32
elements.

EXAMPLE

int fd;
int result;
TP500_SEQREAD_BUFFER SeqReadBuf;

...

result = ioctl (fd, TP500_SEQREAD, (char*)&SeqReadBuf);

if (result < 0) {
/* handle ioctl error */

}

 TPMC500-SW-72 – LynxOS Device Driver page 21

3.4.5 TP500_SEQIMMREAD - (Immediate Read in Sequencer Mode)
The function TP500_SEQREAD returns ADC data in sequencer mode. This function
returns immediately and returns the last converted data also if it is not actualized since
the last read.
The argument arg contains a pointer to the TP500_SEQREAD_BUFFER data
structure.

The TP500_SEQREAD_BUFFER structure has the following layout:

typedef struct
{
 int overrunCount; /* number of lost cycles */
 int error; /* error flags */
 short values[TP500_SNGLCHANS];
 /* ADC input value */
} TP500_SEQREAD_BUFFER, *PTP500_SEQREAD_BUFFER;

The parameter overrunCount returns the number of lost sequencer cycles. A value of
‘-1’ means there has not been a valid cycle since the last read, the function will return
the same data, a value of ‘0’ means no data has been lost and a data update has
occurred. If the value is greater ‘0’, the value specifies the number of lost cycles.

The error value returns an ORed value of the following error flags. This value should
be checked for every call of the function.

Name Meaning
TP500_FL_HWOVERRUN The hardware has detected an overflow,

the data sequencer has not been serviced
in one cycle time.

TP500_FL_TIMERERR The hardware has signaled, that the
specified cycle time is to short to make the
specified conversions.

TP500_FL_INSTRAMERR The hardware has detected an error in the
instruction RAM. (No channel selected)

TP500_FL_SWOVERRUN The driver can not make the data
corrections in one cycle time.

The array values returns a full set of ADC values. Only the values of the channels
selected in TP500_SEQSETUP will be valid. The index specifies the channel. Index 0
is advised to channel 1, index 1 is advised to channel 2 and so on. The array has 32
elements.

EXAMPLE

int fd;
int result;
TP500_SEQREAD_BUFFER SeqReadBuf;

...

result = ioctl (fd, TP500_SEQIMMREAD, (char*)&SeqReadBuf);

if (result < 0) {
/* handle ioctl error */

}

 TPMC500-SW-72 – LynxOS Device Driver page 22

4 Debugging
This driver was successful tested on a Motorola MVME3600-1 (PMCSPAN) and
MVME2305-900 board in a native LynxOS environment and a Windows Cross
development.

If the driver will not work properly, usually a PCI bus or interrupt problem, you can
enable debug outputs by removing the comments around the symbols DEBUG,
DEBUG_PCI and DEBUG_TPMC. The debug output will appear on the console.

The debug output displays the PCI Header, the address of each base address register
and a memory dump of all mapped memory and I/O spaces of the TPMC500 like this
(see also TPMC500 User Manual – PCI Configuration).

TPMC500 Device Driver Install
Bus = 0 Dev = 16 Func = 0
[00] = 905010B5
[04] = 02800000
[08] = 11800001
[0C] = 00000008
[10] = 02042000
[14] = 0000C001
[18] = 0000D001
[1C] = 02043000
[20] = 00000000
[24] = 00000000
[28] = 00000000
[2C] = 01F41498
[30] = 00000000
[34] = 00000000
[38] = 00000000
[3C] = 00000109
PCI Base Address 0 (PCI_RESID_BAR0)

E8142000 : 01 FF FF 0F 00 F8 FF 0F 00 00 00 00 00 00 00 00
E8142010 : 00 00 00 00 01 00 00 00 01 08 00 00 00 00 00 00
E8142020 : 00 00 00 00 00 00 00 00 42 A9 52 A9 C0 79 33 E9
E8142030 : 00 00 00 00 00 00 00 00 00 00 00 00 41 00 00 00
E8142040 : A1 00 00 00 E1 00 00 00 01 0C 00 00 49 00 00 00
E8142050 : 44 0B 78 18 00 00 00 00 00 00 00 00 00 00 00 00
E8142060 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E8142070 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
PCI Base Address 1 (PCI_RESID_BAR1)

E0108000 : 01 FF FF 0F 00 F8 FF 0F 00 00 00 00 00 00 00 00
E0108010 : 00 00 00 00 01 00 00 00 01 08 00 00 00 00 00 00
E0108020 : 00 00 00 00 00 00 00 00 42 A9 52 A9 C0 79 33 E9
E0108030 : 00 00 00 00 00 00 00 00 00 00 00 00 41 00 00 00
E0108040 : A1 00 00 00 E1 00 00 00 01 0C 00 00 49 00 00 00
E0108050 : 44 0B 78 18 00 00 00 00 00 00 00 00 00 00 00 00
E0108060 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E0108070 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
PCI Base Address 2 (PCI_RESID_BAR2)

E0109000 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E0109010 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E0109020 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E0109030 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E0109040 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E0109050 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E0109060 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E0109070 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 TPMC500-SW-72 – LynxOS Device Driver page 23

PCI Base Address 3 (PCI_RESID_BAR3)

E8143000 : F8 0A F9 09 FA 02 F8 06 FF FF FF FF FF FF FF FF
E8143010 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
E8143020 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
E8143030 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
E8143040 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
E8143050 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
E8143060 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
E8143070 : FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Moduletype TPMC500-10

	Introduction
	Installation
	Device Driver Installation
	Static Installation
	Build the driver object
	Create Device Information Declaration
	Modify the Device and Driver Configuration File
	Rebuild the Kernel

	Dynamic Installation
	Device Information Definition File
	Configuration File: CONFIG.TBL

	TPMC500 Device Driver Programming
	open()
	close()
	read()
	ioctl()
	TP500_READPARAM - (Read Module Parameters)
	TP500_SEQSTOP - (Stop Sequencer Mode)
	TP500_SEQSETUP - (Setup and Start Sequencer Mode)
	TP500_SEQREAD - (Read in Sequencer Mode)
	TP500_SEQIMMREAD - (Immediate Read in Sequencer Mode)

	Debugging

