
The Embedded I/O Company

TPMC501-S
VxWorks Device

32 Channel 16-bit AD

Version 2.0.x

User Manu
Issue 2.0.1

January 200

TEWS TECHNOLOGIES GmbH TEWS TEC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49 (0) 4101 4058 0
Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com

9190 Doub
Suite 127,
www.tews.
W-42
Driver
C PMC

al

8

HNOLOGIES LLC
le Diamond Parkway,
Reno, NV 89521, USA
com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

TPMC501-SW-42 – VxWorks Device Driver Page 2 of 26

TPMC501-SW-42

VxWorks Device Driver

32 Channel 16-bit ADC PMC

Supported Modules:
TPMC501

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

1999-2008 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue April 15, 1999

1.1 New PCI Configuration July 16, 1999

1.2 Support for x86 target June 19, 2000

1.3 General Revision November 24, 2003

1.3.1 Release.txt added, Issue layout changed March 8, 2005

2.0.0 New driver startup functions, ChangeLog.txt added to file list,
description for tpmc501PciInit changes

January 22, 2007

2.0.1 Function read(): description of parameter maxbytes changed January 11, 2008

TPMC501-SW-42 – VxWorks Device Driver Page 3 of 26

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Include device driver in Tornado IDE project .. 5
2.2 Special installation for Intel x86 based targets..5
2.3 BSP dependent adjustments ...6
2.4 System resource requirement ...6

3 I/O SYSTEM FUNCTIONS.. 7
3.1 tpmc501Drv() ...7
3.2 tpmc501DevCreate() ...9
3.3 tpmc501PciInit() ..12

4 I/O FUNCTIONS ... 13
4.1 open() ...13
4.2 close()...15
4.3 read() ..17
4.4 ioctl() ..20

4.4.1 FIOSTARTSEQ ..22
4.4.2 FIOSTOPSEQ..25

5 APPENDIX.. 26
5.1 Additional Error Codes...26

TPMC501-SW-42 – VxWorks Device Driver Page 4 of 26

1 Introduction
The TPMC501-SW-42 VxWorks device driver software allows the operation of the supported PMC
conforming to the VxWorks I/O system specification. This includes a device-independent basic I/O
interface with open(), close(), read(), and ioctl() functions.

This driver invokes a mutual exclusion and binary semaphore mechanism to prevent simultaneous
requests by multiple tasks from interfering with each other.

The TPMC501-SW-42 device driver supports the following features:

 start AD conversion and read data
 choosing gain, channel, input interface
 correction of input data with board-specific calibration data
 support of ADC sequencer mode

The TPMC501-SW-42 supports the modules listed below:

TPMC501 32(16) Channel - 16-bit ADC (PMC)

In this document all supported modules and devices will be called TPMC501. Specials for a
certain devices will be advised.

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

TPMC501 User manual
TPMC501 Engineering Manual

TPMC501-SW-42 – VxWorks Device Driver Page 5 of 26

2 Installation
Following files are located on the distribution media:

Directory path ‘TPMC501-SW-42’:

tpmc501drv.c TPMC501 device driver source
tpmc501def.h TPMC501 driver include file
tpmc501.h TPMC501 include file for driver and application
tpmc501pci.c TPMC501 PCI MMU mapping for Intel x86 based targets
tpmc501exa.c Example application
include/tdhal.h Hardware dependent interface functions and definitions
TPMC501-SW-42-2.0.1.pdf PDF copy of this manual
ChangeLog.txt Release history
Release.txt Release information

2.1 Include device driver in Tornado IDE project
For including the TPMC501-SW-42 device driver into a Tornado IDE project follow the steps below:

(1) Copy the files from the distribution media into a subdirectory in your project path.
(For example: ./TPMC501)

(2) Add the device drivers C-files to your project.
Make a right click to your project in the ‘Workspace’ window and use the ‘Add Files ...’ topic.
A file select box appears, and the driver files can be selected.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your Tornado User’s
Guide.

2.2 Special installation for Intel x86 based targets
The TPMC501 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU_FAMILY. If the content of this macro is equal to I80X86 special Intel x86 conforming code and
function calls will be included.

The second problem for Intel x86 based platforms can’t be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn’t map PCI memory spaces of devices
which are not used by the BSP, the required device memory spaces can’t be accessed.

To solve this problem a MMU mapping entry has to be added for the required TPMC501 PCI memory
spaces prior the MMU initialization (usrMmuInit()) is done.

The C source file tpmc501pci.c contains the function tpmc501PciInit(). This routine finds out all
TPMC501 devices and adds MMU mapping entries for all used PCI memory spaces. Please insert a
call to this function after the PCI initialization is done and prior to MMU initialization (usrMmuInit()).

The right place to call the function tpmc501PciInit() is at the end of the function sysHwInit() in sysLib.c
(it can be opened from the project Files window).

TPMC501-SW-42 – VxWorks Device Driver Page 6 of 26

Be sure that the function is called prior to MMU initialization otherwise the TPMC501 PCI spaces
remains unmapped and an access fault occurs during driver initialization.

Please insert the following call at a suitable place in sysLib.c:

tpmc501PciInit();

Modifying the sysLib.c file will change the sysLib.c in the BSP path. Remember this for future
projects and recompilations.

2.3 BSP dependent adjustments
The driver includes a file called include/tdhal.h which contains functions and definitions for BSP
adaptation. It may be necessary to modify them for BSP specific settings. Most settings can be made
automatically by switches set by in the BSP header files, but some settings must be set manually.

There are 3 offset definitions (USERDEFINED_MEM_OFFSET, USERDEFINED_IO_OFFSET, and
USERDEFINED_LEV2VEC) that must be set if a matching warning appears while compilation.

An other define allows a simple adaptation for BSPs that supports a pciIntConnect() function to
connect shared (PCI) interrupts. If this function is defined in the used BSP, the definition of
USERDEFINED_SEL_PCIINTCONNECT should be enabled.

Please refer to the BSP to get information about the interuupt connect function and the offset
values.

2.4 System resource requirement
The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement

Memory < 1 KB < 1 KB

Stack < 1 KB ---

Semaphores --- 3

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

TPMC501-SW-42 – VxWorks Device Driver Page 7 of 26

3 I/O system functions
This chapter describes the driver-level interface to the I/O system. The purpose of these functions is to
install the driver in the I/O system, add and initialize devices.

3.1 tpmc501Drv()

NAME

tpmc501Drv() - installs the TPMC501 driver in the I/O system

SYNOPSIS

#include “tpmc501.h”

STATUS tpmc501Drv(void)

DESCRIPTION

This function searches for devices on the PCI bus, installs the TPMC501 driver in the I/O system.

A call to this function is the first thing the user has to do before adding any device to the
system or performing any I/O request.

EXAMPLE

#include "tpmc501.h”

…

STATUS result;
…

/*-------------------
Initialize Driver
-------------------*/

result = tpmc501Drv();
if (result == ERROR)
{

/* Error handling */
}

…

TPMC501-SW-42 – VxWorks Device Driver Page 8 of 26

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

ENXIO No TPMC501 module found

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TPMC501-SW-42 – VxWorks Device Driver Page 9 of 26

3.2 tpmc501DevCreate()

NAME

tpmc501DevCreate() – Add a TPMC501 device to the VxWorks system

SYNOPSIS

#include “tpmc501.h”

STATUS tpmc501DevCreate
(

char *name,
int devIdx,
int funcType,
void *pParam

)

DESCRIPTION

This routine adds the selected device to the VxWorks system. The device hardware will be setup and
prepared for use.

This function must be called before performing any I/O request to this device.

PARAMETER

name

This string specifies the name of the device that will be used to identify the device, for example
for open() calls.

devIdx
This index number specifies the device to add to the system. The device numbers will be
assigned in the order the VxWorks pciFindDevice() function will find the devices. A 0 selects the
first device, a 1 the second, and so on.

funcType
This parameter is unused and should be set to 0.

TPMC501-SW-42 – VxWorks Device Driver Page 10 of 26

pParam
This parameter points to a structure (TPMC501_CONF_BUFFER) containing the default
configuration of the device.

The structure (TPMC501_CONF_BUFFER) has the following layout and is defined in
tpmc501.h:

typedef struct
{

int modelType;
} TPMC501CONF_BUFFER;

modelType

Specifies the model type of the selected device. The following model types are
supported:

Model Type Module Name Gains Voltage Range
10 TPMC501-10 1, 2, 5, 10 +/-10V

11 TPMC501-11 1, 2, 4, 8 +/-10V
12 TPMC501-12 1, 2, 5, 10 0..+10V

13 TPMC501-13 1, 2, 4, 8 0..+10V
20 TPMC501-20 1, 2, 5, 10 +/-10V

21 TPMC501-21 1, 2, 4, 8 +/-10V
22 TPMC501-22 1, 2, 5, 10 0..+10V

23 TPMC501-23 1, 2, 4, 8 0..+10V

EXAMPLE

#include "tpmc501.h”

…

STATUS result;
TPMC501_CONF_BUFFER tpmc501Conf;

…

TPMC501-SW-42 – VxWorks Device Driver Page 11 of 26

…

/*---
Create the device "/tpmc501/0" for the first ADC device

Use TPMC501-11
---*/

tpmc501Conf.moduleType = 11;

result = tpmc501DevCreate("/tpmc501/0",
0,
0,
(void*)&tpmc501Conf);

if (result == OK)
{

/* Device successfully created */
}
else
{

/* Error occurred when creating the device */
}

…

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description
S_ioLib_NO_DRIVER The driver has not been installed (call tpmc501Drv())

ENXIO Specified device not found
EBUSY The specified device has already been created.

ENOTSUP The specified model type is not supported

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TPMC501-SW-42 – VxWorks Device Driver Page 12 of 26

3.3 tpmc501PciInit()

NAME

tpmc501PciInit() – Generic PCI device initialization

SYNOPSIS

void tpmc501PciInit()

DESCRIPTION

This function is required only for Intel x86 VxWorks platforms. The purpose is to setup the MMU
mapping for all required TPMC501 PCI spaces (base address register) and to enable the TPMC501
device for access.

The global variable tpmc501Status obtains the result of the device initialization and can be polled later
by the application before the driver will be installed.

Value Meaning

> 0 Initialization successful completed. The value of tpmc501Status is equal to the
number of mapped PCI spaces

0 No TPMC501 device found
< 0 Initialization failed. The value of (tpmc501Status & 0xFF) is equal to the number

of mapped spaces until the error occurs.
Possible cause: Too few entries for dynamic mappings in sysPhysMemDesc[].
Remedy: Add dummy entries as necessary (syslib.c).

EXAMPLE

extern void tpmc501PciInit();

…

tpmc501PciInit();

…

TPMC501-SW-42 – VxWorks Device Driver Page 13 of 26

4 I/O Functions

4.1 open()

NAME

open() - open a device or file.

SYNOPSIS

int open
(

const char *name,
int flags,
int mode

)

DESCRIPTION

Before I/O can be performed to the TPMC501 device, a file descriptor must be opened by invoking the
basic I/O function open().

PARAMETER

name
Specifies the device which shall be opened, the name specified in tpmc501DevCreate() must be
used

flags

Not used

mode

Not used

TPMC501-SW-42 – VxWorks Device Driver Page 14 of 26

EXAMPLE

int fd;

…

/*--
Open the device named "/tpmc501/0" for I/O
--*/

fd = open("/tpmc501/0", 0, 0);
if (fd == ERROR)
{

/* Handle error */
}

…

RETURNS

A device descriptor number or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - open()

TPMC501-SW-42 – VxWorks Device Driver Page 15 of 26

4.2 close()

NAME

close() – close a device or file

SYNOPSIS

STATUS close
(

int fd
)

DESCRIPTION

This function closes opened devices.

PARAMETER

fd
This file descriptor specifies the device to be closed. The file descriptor has been returned by
the open() function.

EXAMPLE

int fd;
STATUS retval;

…

/*----------------
close the device
----------------*/

retval = close(fd);
if (retval == ERROR)
{

/* Handle error */
}

…

TPMC501-SW-42 – VxWorks Device Driver Page 16 of 26

RETURNS

OK or ERROR. If the function fails, an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - close()

TPMC501-SW-42 – VxWorks Device Driver Page 17 of 26

4.3 read()

NAME

read() – read a value from the specified TPMC501 device.

SYNOPSIS

int read
(

int fd,
char *buffer,
size_t maxbytes

)

DESCRIPTION

This function starts a conversion for one input channel and returns the value.

PARAMETER

fd
This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

buffer

This argument points to a user supplied special I/O buffer. (TP501_IO_BUFFER)

typedef struct
{

int Channel;
int Gain;
unsigned long flags;
long value;

} TP501_IO_BUFFER;

Channel

This argument specifies the ADC channel to use. Allowed values are 1..32 for single-
ended channels and 1..16 for differential channels.

Gain
This argument specifies the input gain that shall be used. Allowed values are 1, 2, 5, 10
or 1, 2, 4, 8 depending on the type of the device.

TPMC501-SW-42 – VxWorks Device Driver Page 18 of 26

flags
This parameter specifies conversion flags setting the input mode. The value is an ORed
value of the following flags:
TP501_DIFFMODE If set differential input interface is used, if not set the

input interface will be single-ended.
TP501_CORRENA If this flag is set input data corrections is enabled and

ADC data will be corrected with factory set correction
data individual for every TPMC501. If the flag is not set
the ADC value will be returned without correction.

value

This value returns the ADC input value. The possible range of the value depends on the
device. If it is a bipolar version, input value is between -32768 (-10V) and 32767 (~+10V).
unipolar versions return a value between 0 (0V) an 65635 (~+10V).

maxbytes

This parameter must be set to the buffer size in bytes.

EXAMPLE

#include “tpmc501.h”

int fd;
TP501_IO_BUFFER buf;
int retval;

…

/*--
Read the actual value of differential channel 1,
the gain shall be 2 and the value shall be corrected
--*/

buf.Channel = 1;
buf.Gain = 2;
buf.flags = TP501_CORRENA | TP501_DIFFMODE;
retval = read(fd, (char*)&buf, sizeof(TP501_IO_BUFFER));
if (retval != ERROR)
{

printf(“ADC value: %ld”, buf.value);
}
else
{

/* handle the read error */
}

…

TPMC501-SW-42 – VxWorks Device Driver Page 19 of 26

RETURNS

Number of bytes read or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set error code described below.

Error code Description

S_tp501Drv_ICHAN Illegal channel number specified
S_tp501Drv_IGAIN Illegal gain specified

S_tp501Drv_MODBUSY The device is in use or the sequencer is active

SEE ALSO

ioLib, basic I/O routine - read()

TPMC501-SW-42 – VxWorks Device Driver Page 20 of 26

4.4 ioctl()

NAME

ioctl() - performs an I/O control function.

SYNOPSIS

#include “tpmc501.h”

int ioctl
(

int fd,
int request,
int arg

)

DESCRIPTION

Special I/O operation that do not fit to the standard basic I/O calls (read, write) will be performed by
calling the ioctl() function.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

request
This argument specifies the function that shall be executed. Following functions are defined:

Function Description
FIOSTARTSEQ Set up and start sequencer mode

FIOSTOPSEQ Stop sequencer mode

arg

This parameter depends on the selected function (request). How to use this parameter is
described below with the function.

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

TPMC501-SW-42 – VxWorks Device Driver Page 21 of 26

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).
Function specific error codes will be described with the function.

SEE ALSO

ioLib, basic I/O routine - ioctl()

TPMC501-SW-42 – VxWorks Device Driver Page 22 of 26

4.4.1 FIOSTARTSEQ

This I/O control function sets up the sequencer channels and cycle time and afterwards starts the
sequencer. The function specific control parameter arg is a pointer on a TP501_IOC_BUF structure
that will be used while the sequencer is active.

typedef struct
{

unsigned short cycletime;
unsigned long act_channels;
TP501_IO_BUFFER *chan_setup;
unsigned long buf_size;
unsigned long buf_stat;
unsigned long putIdx;
unsigned long getIdx;
long *buffer;

} TP501_IOC_BUF

cycletime

This argument specifies the length of one sequencer cycle. This value is specified in 100s
steps. Allowed values are between 1 and 65535. A specified value of 0 enable the continuous
mode.

act_channels
This value specifies the number of active channels.

chan_setup
This parameter points to an array of data structures specifying the channel setup. The used
data structure is the same used by the read command (for more information refer to the
description of the read())

buf_size
This value specifies the size of the input FIFO. The value specifies the number of sequences
that can be handled without reading before the buffer is filled.

buf_stat

This value specifies the current state and errors will be shown in this argument. The state is an
ORed value of the following flags:

TP501_SEQ_BUF_OVERRUN The user supplied FIFO is full and new data can
not be stored

TP501_SEQ_DATA_OVERFLOW Old data not read by the software when new
values are ready

TP501_SEQ_TIMER_ERR The specified cycle time is not long enough to
convert the specified channels

TP501_SEQ_INST_RAM_ERR The sequencer is started, but no channel has
been selected.

TPMC501-SW-42 – VxWorks Device Driver Page 23 of 26

putIdx
This parameter holds the current put index, which specifies the position in the FIFO where the
next data will be written to. This index should just be read for information but never be changed
by the application.

getIdx
This parameter holds the current get index, which specifies the position, where the application
shall read the next value from FIFO. This index must be modified by the application after
reading a value from the FIFO. This index is not changed by the driver.

buffer
This parameter points to the user supplied memory area where the sequencer input data will be
stored in.

EXAMPLE

#include “tpmc501.h”

#define SBUF_SIZE 0x200

int fd;
int retval;
TP501_IOC_BUF seq_buf;
TP501_IO_BUFFER seq_rw_par[2];
long seq_data_buf[SBUF_SIZE];

…

/*---
Start sequencer using channel 1 and 3

Channel 1:
differential, data correction on, gain = 1

Channel 3:
single-ended, data correction off, gain = 5

---*/
seq_buf.cycletime = 10000; /* Cycletime 1s */
seq_buf.buffer = seq_data_buf;
seq_buf.act_channels = 2;
seq_buf.buf_size = SBUF_SIZE / seq_buf.act_channels;
seq_buf.chan_setup = seq_rw_par;

…

TPMC501-SW-42 – VxWorks Device Driver Page 24 of 26

…

seq_rw_par[0].Channel = 1;
seq_rw_par[0].Gain = 1;
seq_rw_par[0].flags = TP501_CORRENA | TP501_DIFFMODE;
seq_rw_par[1].Channel = 3;
seq_rw_par[1].Gain = 5;
seq_rw_par[1].Mode = TP501_CORRDIS | TP501_SNGLMODE;

retval = ioctl(fd, FIOSTARTSEQ, (int)&seq_buf);
if (retval != ERROR)
{

/* sequencer started */
}
else
{

/* handle the error */
}

…

ERROR CODES

Error code Description

S_tp501Drv_MODBUSY The device is currently in use

TPMC501-SW-42 – VxWorks Device Driver Page 25 of 26

4.4.2 FIOSTOPSEQ

This I/O control function stops the sequencer. The function specific control parameter arg is not used
for this function.

EXAMPLE

#include “tpmc501.h”

int fd;
int retval;

…

/*------------------------
Execute ioctl() function
------------------------*/

retval = ioctl(fd, FIOSTOPSEQ, 0);
if (retval != ERROR)
{

/* Sequencer is stopped */
}
else
{

/* handle the error */
}

…

ERROR CODES

Error code Description
S_tp501Drv_MODBUSY The device is currently in use

TPMC501-SW-42 – VxWorks Device Driver Page 26 of 26

5 Appendix

5.1 Additional Error Codes
Error code Error value Description

S_tp501Drv_ICHAN 0x05010001 Illegal channel number specified
S_tp501Drv_IGAIN 0x05010002 Illegal gain specified

S_tp501Drv_MODBUSY 0x05010003 The module is busy
S_tp501Drv_TIMEOUT 0x05010004 The conversion timed out (HW error?)

S_tp501Drv_ICMD 0x05010005 Illegal I/O command specified

	Introduction
	Installation
	Include device driver in Tornado IDE project
	Special installation for Intel x86 based targets
	BSP dependent adjustments
	System resource requirement

	I/O system functions
	tpmc501Drv()
	tpmc501DevCreate()
	tpmc501PciInit()

	I/O Functions
	open()
	close()
	read()
	ioctl()
	FIOSTARTSEQ
	FIOSTOPSEQ

	Appendix
	Additional Error Codes

