
The Embedded I/O Company

TPMC501-S
LynxOS Device

Optically Isolated 32 Chan

Version 1.0.x

User Manu
Issue 1.0.0

October 200

TEWS TECHNOLOGIES G
Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49
e-mail: info@tews.com www.tews
W-72
Driver

nel 16 Bit ADC

al

9

mbH
lstenbek, Germany
(0) 4101 4058 19
.com

TPMC501-SW-72 – LynxOS Device Driver Page 2 of 25

TPMC501-SW-72

LynxOS Device Driver

Optically Isolated 32 Channel 16-Bit ADC

Supported Modules:
TPMC501

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2009 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue October 20, 2009

TPMC501-SW-72 – LynxOS Device Driver Page 3 of 25

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Device Driver Installation ...6
2.1.1 Static Installation ..6

2.1.1.1 Build the driver object ...6
2.1.1.2 Create Device Information Declaration ..6
2.1.1.3 Modify the Device and Driver Configuration File ..6
2.1.1.4 Rebuild the Kernel ..7

2.1.2 Dynamic Installation ...7
2.1.2.1 Build the driver object ...7
2.1.2.2 Create Device Information Declaration ..7
2.1.2.3 Uninstall dynamic loaded driver ...8

2.1.3 Device Information Definition File ..8
2.1.4 Configuration File: CONFIG.TBL ...9

3 TPMC501 DEVICE DRIVER PROGRAMMING .. 10
3.1 open() ...10
3.2 close()...12
3.3 ioctl() ..13

3.3.1 TPMC501_READ ...14
3.3.2 TPMC501_SEQSETUP ...17
3.3.3 TPMC501_SEQSTOP..20
3.3.4 TPMC501_SEQREAD ...21

4 DEBUGGING AND DIAGNOSTIC.. 24

TPMC501-SW-72 – LynxOS Device Driver Page 4 of 25

1 Introduction
The TPMC501-SW-72 LynxOS device driver allows the operation of the TPMC501 Digital Input PMC
on LynxOS platforms with DRM based PCI interface.

The standard file (I/O) functions (open, close, ioctl) provide the basic interface for opening and closing
a file descriptor and for performing device I/O and configuration operations.

The TPMC501-SW-72 device driver supports the following features:

 reading ADC data from a specified input channel
 selection of input gain
 support of differential and single-ended input interface
 support of pipeline mode
 input data correction with factory calibration data
 configuration, start and stop of the sequencer
 read of sequencer data sets

The TPMC501-SW-72 device driver supports the modules listed below:

TPMC501-10 32 Channel 16-bit ADC (Front I/O)
(Input Gain: 1,2,5,10) (±10V for gain = 1)

(PMC)

TPMC501-11 32 Channel 16-bit ADC (Front I/O)
(Input Gain: 1,2,4,8) (±10V for gain = 1)

(PMC)

TPMC501-12 32 Channel 16-bit ADC (Front I/O)
(Input Gain: 1,2,5,10) (0V to 10V for gain = 1)

(PMC)

TPMC501-13 32 Channel 16-bit ADC (Front I/O)
(Input Gain: 1,2,4,8) (0V to 10V for gain = 1)

(PMC)

TPMC501-20 32 Channel 16-bit ADC (Back I/O)
(Input Gain: 1,2,5,10) (±10V for gain = 1)

(PMC)

TPMC501-21 32 Channel 16-bit ADC (Back I/O)
(Input Gain: 1,2,4,8) (±10V for gain = 1)

(PMC)

TPMC501-22 32 Channel 16-bit ADC (Back I/O)
(Input Gain: 1,2,5,10) (0V to 10V for gain = 1)

(PMC)

TPMC501-23 32 Channel 16-bit ADC (Back I/O)
(Input Gain: 1,2,4,8) (0V to 10V for gain = 1)

(PMC)

To get more information about the features and use of TPMC501 devices it is recommended to read
the manuals listed below.

TPMC501 User Manual

TPMC501 Engineering Manual

TPMC501-SW-72 – LynxOS Device Driver Page 5 of 25

2 Installation
Following files are located on the distribution media:

Directory path ‘TPMC501-SW-72’:

TPMC501-SW-72-SRC.tar.gz GZIP compressed archive with driver source code
TPMC501-SW-72-1.0.0.pdf PDF copy of this manual
ChangeLog.txt Release history
Release.txt Release information

For installation the files have to be copied to the desired target directory.

The GZIP compressed archive TPMC501-SW-72-SRC.tar.gz contains the following files and
directories:

Directory path ‘tpmc501’:

tpmc501.c TPMC501 device driver source
tpmc501def.h TPMC501 driver include file
tpmc501.h TPMC501 include file for driver and application
tpmc501_info.c TPMC501 Device information definition
tpmc501_info.h TPMC501 Device information definition header
tpmc501.cfg TPMC501 Driver configuration file include
tpmc501.import Linker import file
Makefile Device driver make file
example/tpmc501exa.c Example application
example/Makefile Example application makefile

In order to perform a driver installation, first extract the TAR file to a temporary directory, than follow
the steps below:

1. Create a new directory in the system drivers directory path /sys/drivers.xxx, where xxx represents
the BSP that supports the target hardware.

For example: /sys/drivers.pp_drm/tpmc501 or /sys/drivers.cpci_x86/tpmc501

2. Copy the following files to this directory:
- tpmc501.c
- tpmc501def.h
- tpmc501.import
- Makefile

3. Copy tpmc501.h to /usr/include/

4. Copy tpmc501_info.c to /sys/devices.xxx/ or /sys/devices if /sys/devices.xxx does not exist (xxx
represents the BSP).

5. Copy tpmc501_info.h to /sys/dheaders/

Copy tpmc501.cfg to /sys/cfg.xxx/, where xxx represents the BSP for the target platform. For example:
/sys/cfg.ppc or /sys/cfg.x86

TPMC501-SW-72 – LynxOS Device Driver Page 6 of 25

2.1 Device Driver Installation
The two methods of driver installation are as follows:

(1) Static Installation
(2) Dynamic Installation (only native LynxOS 4 systems)

2.1.1 Static Installation

With this method, the driver object code is linked with the kernel routines and is installed during
system start-up.

2.1.1.1 Build the driver object

1. Change to the directory /sys/drivers.xxx/tpmc501, where xxx represents the BSP that supports the
target hardware.

2. To update the library /sys/lib/libdrivers.a enter:

make install

2.1.1.2 Create Device Information Declaration

1. Change to the directory /sys/devices.xxx/ or /sys/devices if /sys/devices.xxx does not exist (xxx
represents the BSP).

2. Add the following dependencies to the Makefile

DEVICE_FILES_all = … tpmc501_info.x

And at the end of the Makefile

tpmc501_info.o:$(DHEADERS)/tpmc501_info.h

3. To update the library /sys/lib/libdevices.a enter:

make install

2.1.1.3 Modify the Device and Driver Configuration File

In order to insert the driver object code into the kernel image, an appropriate entry in file CONFIG.TBL
must be created.

1. Change to the directory /sys/lynx.os/ respective /sys/bsp.xxx, where xxx represents the BSP that
supports the target hardware.

2. Create an entry at the end of the file CONFIG.TBL

Insert the following entry at the end of this file.

I:tpmc501.cfg

TPMC501-SW-72 – LynxOS Device Driver Page 7 of 25

2.1.1.4 Rebuild the Kernel

1. Change to the directory /sys/lynx.os/ (/sys/bsp.xxx)

2. Enter the following command to rebuild the kernel:

make install

3. Reboot the newly created operating system by the following command (not necessary for KDIs):

reboot –aN

The N flag instructs init to run mknod and create all the nodes mentioned in the new nodetab.

4. After reboot you should find the following new devices (depends on the device configuration):
/dev/tpmc501a, /dev/tpmc501b, …

2.1.2 Dynamic Installation

This method allows you to install the driver after the operating system is booted. The driver object
code is attached to the end of the kernel image and the operating system dynamically adds this driver
to its internal structures. The driver can also be removed dynamically.

2.1.2.1 Build the driver object

1. Change to the directory /sys/drivers.xxx/tpmc501, where xxx represents the BSP that supports the
target hardware.

2. To make the dynamic link-able driver enter:

make dldd

2.1.2.2 Create Device Information Declaration

1. Change to the directory /sys/drivers.xxx/tpmc501, where xxx represents the BSP that supports the
target hardware.

2. To create a device definition file for the major device (this works only on native systems)

make t501info

3. To install the driver enter:

drinstall –c tpmc501.obj

If successful, drinstall returns a unique <driver-ID>

4. To install the major device enter:

devinstall –c –d <driver-ID> t501info

The <driver-ID> is returned by the drinstall command

5. To create the node for the devices enter:

mknod /dev/tpmc501a c <major_no> 0

The <major_no> is returned by the devinstall command.

If all steps are successfully completed, the TPMC501 is ready to use.

TPMC501-SW-72 – LynxOS Device Driver Page 8 of 25

2.1.2.3 Uninstall dynamic loaded driver

To uninstall the TPMC501 device enter the following commands:

devinstall –u –c <device-ID>
drinstall –u <driver-ID>

2.1.3 Device Information Definition File

The device information definition contains information necessary to install the TPMC501 major device.

The implementation of the device information definition is done through a C structure, which is defined
in the header file tpmc501_info.h.

This structure contains the following parameter:

PCIBusNumber Contains the PCI bus number at which the supported device is connected.
Valid bus numbers are in range from 0 to 255.

PCIDeviceNumber Contains the device number (slot) at which the supported device is
connected. Valid device numbers are in range from 0 to 31.

If both PCIBusNumber and PCIDeviceNumber are –1 then the driver will auto scan for
supported devices. The first device found in the scan order will be allocated by the driver for
this major device.

Already allocated devices can’t be allocated twice. This is important to know if there are more
than one TPMC501 major devices.

boardVersion Specifies the used board type. The value depends on the name of the
device. Specify 10 for TPMC501-10(R), 11 for TPMC501-11(R), 20 for
TPMC501-20, and so on.

A device information definition is unique for every TPMC501 major device. The file tpmc501_info.c on
the distribution media contains two device information declarations, tpmc501A for the first major
device and tpmc501B for the second major device.

If the driver should support more than two major devices it is necessary to copy and paste an existing
declaration and rename it with a unique name, for example tpmc501C, tpmc501D and so on.

It is also necessary to modify the device and driver configuration file, respectively the
configuration include file tpmc501.cfg.

The following device declaration information uses the auto find method to detect a supported device
on the PCI bus.

TDRV501_INFO tpmc501A = {

-1, /* Auto find the device on any PCI bus */
-1,
10, /* TPMC501-10 */

};

TPMC501-SW-72 – LynxOS Device Driver Page 9 of 25

2.1.4 Configuration File: CONFIG.TBL

The device and driver configuration file CONFIG.TBL contains entries for device drivers and its major
and minor device declarations. Each time the system is rebuild, the config utility read this file and
produces a new set of driver and device configuration tables and a corresponding nodetab.

To install the TPMC501 driver and devices into the LynxOS system, the configuration include file
tpmc501.cfg must be included in the CONFIG.TBL (see also chapter 2.1.1.3).

The file tpmc501.cfg on the distribution disk contains the driver entry (C:tpmc501:\....) and two major
device entries (D:TPMC501 1:tpmc501A:: and D:TPMC501 2:tpmc501B::).

If the driver should support more than one major device, the following entries for major devices must
be enabled by removing the comment character (#). By copy and paste an existing major and minor
entries and renaming the new entries, it is possible to add any number of additional TPMC501
devices.

This example shows a driver entry with two major devices and one minor device:

Format:
C:driver-name:open:close:read:write:select:control:install:uninstall
D:device-name:info-block-name:raw-partner-name
N:node-name:minor-dev

C:tpmc501:tpmc501open:tpmc501close: \
::: \
::tpmc501ioctl: \
:tpmc501install:tpmc501uninstall
D:TPMC501 1:tpmc501A::
N:tpmc501a:0
D:TPMC501 2:tpmc501B::
N:tpmc501b:0

The configuration above creates the following nodes in the /dev directory.

/dev/tpmc501a /dev/tpmc501b

TPMC501-SW-72 – LynxOS Device Driver Page 10 of 25

3 TPMC501 Device Driver Programming
LynxOS system calls are all available directly to any C program. They are implemented as ordinary
function calls to "glue" routines in the system library, which trap to the OS code.

Note that many system calls use data structures, which should be obtained in a program from
appropriate header files. Necessary header files are listed with the system call synopsis.

3.1 open()

NAME

open() - open a file

SYNOPSIS

#include <sys/file.h>
#include <sys/types.h>
#include <fcntl.h>

int open (char *path, int oflags[, mode_t mode])

DESCRIPTION

Opens a file (TPMC501 device) named in path for reading and writing. The value of oflags indicates
the intended use of the file. In case of a TPMC501 device oflags must be set to O_RDWR to open the
file for both reading and writing.

The mode argument is required only when a file is created. Because a TPMC501 device already
exists this argument is ignored.

EXAMPLE

int fd

fd = open ("/dev/tpmc501a", O_RDWR);
if (fd == -1)
{

/* Handle error */
}

TPMC501-SW-72 – LynxOS Device Driver Page 11 of 25

RETURNS

open returns a file descriptor number if successful, or –1 on error.

SEE ALSO

LynxOS System Call - open()

TPMC501-SW-72 – LynxOS Device Driver Page 12 of 25

3.2 close()

NAME

close() – close a file

SYNOPSIS

int close(int fd)

DESCRIPTION

This function closes an opened device.

EXAMPLE

int result;

result = close(fd);
if (result == -1)
{

/* Handle error */
}

RETURNS

close returns 0 (OK) if successful, or –1 on error

SEE ALSO

LynxOS System Call - close()

TPMC501-SW-72 – LynxOS Device Driver Page 13 of 25

3.3 ioctl()

NAME

ioctl() – I/O device control

SYNOPSIS

#include <ioctl.h>
#include <tpmc501.h>

int ioctl (int fd, int request, char *arg)

DESCRIPTION

ioctl provides a way of sending special commands to a device driver. The call sends the value of
request and the pointer arg to the device associated with the descriptor fd.

The following ioctl codes are supported by the driver and are defined in tpmc501.h:

Symbol Meaning

TPMC501_READ Read state of the digital input lines

TPMC501_SEQSETUP Setup sequencer configuration and start sequencer mode

TPMC501_SEQSTOP Stop sequencer mode

TPMC501_SEQREAD Read sequencer input data

TPMC501_GETINFO Get board specific information

See behind for more detailed information on each control code.

RETURNS

ioctl returns 0 if successful, or –1 on error.

On error, errno will contain a standard error code (see also LynxOS System Call – ioctl).

SEE ALSO

LynxOS System Call - ioctl().

TPMC501-SW-72 – LynxOS Device Driver Page 14 of 25

3.3.1 TPMC501_READ

NAME

TPMC501_READ – Executes an AD conversion and returns the current ADC input value

DESCRIPTION

This function starts an AD conversion on a specified channel and returns the input value. A pointer to
the callers read buffer (TPMC501_READ_BUFFER) must be passed by the parameter arg to the
device.

The function automatically decides if settling time is necessary or not. It will always execute as
fast as possible.

typedef struct
{

int channel;
int gain;
int diffMode;
int pipeMode;
int corrMode;
int value;

} TPMC501_READ_BUFFER;

Members

mode

This argument specifies the ADC channel to use. Allowed values are 1 up to 32 for single-
ended channels and 1 up to 16 for differential channels.

gain

This argument specifies the input gain that shall be used. Allowed values are 1, 2, 5 and 10 or
1, 2, 4 and 8 depending on the type of the used device.

diffMode

This argument specifies the input interface to be used. Symbols for the input interface mode are
defined in tpmc501.h:

Define Description

TPMC501_DIFF This value specifies if differential input interface shall be used.
(Only valid for channel 1 … 16)

TPMC501_SNGL The value specifies that single-ended input interface shall be used.

TPMC501-SW-72 – LynxOS Device Driver Page 15 of 25

pipeMode

This argument specifies if pipeline mode or the standard mode shall be used. Symbols for ‘ON’
and ‘OFF’ are defined in tpmc501.h:

Define Description

TPMC501_OFF If this value is specified, the ADC will be used in normal mode. The
returned value will be the value of the current conversion.

TPMC501_ON If this value is specified, the ADC will be used in pipeline mode.
The returned value will be the value of the previous conversion.

corrMode

This argument specifies if input value correction will be used. Symbols for ‘ON’ and ‘OFF’ are
defined in tpmc501.h:

Define Description

TPMC501_OFF This value specifies that the ADC raw value shall be returned.

TPMC501_ON This value specifies that the ADC raw value shall be corrected with
the factory stored correction data and the corrected value shall be
returned.

value

This parameter is used to return the ADC input value. Returned values are between 0 and
65535 for unipolar module versions and between -32768 and 32767 for bipolar module
versions.

EXAMPLE

#include <tpmc501.h>

int fd;
int result;
TPMC501_READ_BUFFER rdBuf;

/* --- read current input value --- */
rdBuf.channel = 4; /* input channel 4 */
rdBuf.gain = 2; /* input gain 2 */
rdBuf.diffMode = TPMC501_SNGL; /* single-ended input */
rdBuf.pipeMode = TPMC501_OFF; /* no pipelining */
rdBuf.corrMode = TPMC501_ON; /* input value corrrection on */

…

TPMC501-SW-72 – LynxOS Device Driver Page 16 of 25

…

result = ioctl(fd, TPMC501_READ, (char*)&rdBuf);
if (result >= 0)
{

printf("ADC-INPUT: %d\n", rdBuf.value);
}
else
{

/* Read failed */
}

ERRORS

EINTR The function was cancelled.

ETIMEDOUT The maximum allowed time to finish the ADC conversion failed. (no
interrupts or HW-problem)

EINVAL An unsupported input parameter has been specified. Check input
parameters

EBUSY The sequencer mode is active for the device and single channel
conversions are not allowed.

Other returned error codes are system error conditions.

TPMC501-SW-72 – LynxOS Device Driver Page 17 of 25

3.3.2 TPMC501_SEQSETUP

NAME

TPMC501_SEQSETUP – Configure sequencer mode and start execution

DESCRIPTION

This function configures channels and timing for sequencer mode and starts the execution. A pointer
to the callers configuration buffer (TPMC501_SEQSETUP_BUFFER) must be passed by the
parameter arg to the device.

typedef struct
{

int cycleTime;
struct
{

int enable;
int gain;
int diffMode;
int corrMode;

} chanCfg[MAX_NUM_CHANS];
} TPMC501_SEQSETUP_BUFFER, *PTPMC501_SEQSETUP_BUFFER;

Members

cycleTime

This argument specifies the cycle time for sequencer mode. The time is specified in steps of
100µs. Allowed values are 1 up to 32 for single-ended channels and 1 up to 16 for differential
channels. A value of 0 specifies that the sequencer will work in continuous mode.

chanCfg[]

This argument is an array containing the channel configurations. The array element with index 0
specifies the configuration of channel 1, index 1 specifies the configuration of channel 2, and so
on.

chanCfg[].enable

This array element specifies if the assigned channel shall be enabled for sequencer mode.
Symbols for ‘ON’ and ‘OFF’ are defined in tpmc501.h:

Define Description

TPMC501_OFF If this value is specified, the channel will not be used.

TPMC501_ON If this value is specified, the channel will be enabled in sequencer
mode and converted value will be updated with every sequencer
cycle.

TPMC501-SW-72 – LynxOS Device Driver Page 18 of 25

chanCfg[].diffMode

This array element specifies the input interface to be used for the assigned channel. Symbols
for the input interface mode are defined in tpmc501.h:

Define Description

TPMC501_DIFF This value specifies that the differential input interface shall be
used for that channel. (Only valid for channel 1 … 16)

TPMC501_SNGL The value specifies that the single-ended input interface shall be
used.

chanCfg[].corrMode

This array element specifies if input value correction will be used for the assigned channel.
Symbols for ‘ON’ and ‘OFF’ are defined in tpmc501.h:

Define Description

TPMC501_OFF This value specifies that values for the channel will be returned as
a raw value.

TPMC501_ON This value specifies that values for the channel will be returned as
a corrected value.

EXAMPLE

#include <tpmc501.h>

int fd;
int chanIdx;
int result;
TPMC501_SEQSETUP_BUFFER seqBuf;

/* --- initialize structure --- */
for (chanIdx = 0; chanIdx < MAX_NUM_CHANS; chanIdx++)
{

seqBuf.chanCfg[].enable = TPMC501_OFF; /* disable channel */
}

/* --- configure and start sequencer --- */
seqBuf.cycleTime = 5000; /* cycle time: 0.5 sec */

/* Channel 1 */
seqBuf.chanCfg[0].enable = TPMC501_ON; /* enable channel */
seqBuf.chanCfg[0].gain = 2; /* input gain 2 */
seqBuf.chanCfg[0].diffMode = TPMC501_SNGL; /* single-ended input */
seqBuf.chanCfg[0].corrMode = TPMC501_ON; /* corrrection on */

…

TPMC501-SW-72 – LynxOS Device Driver Page 19 of 25

…

/* Channel 10 */
seqBuf.chanCfg[9].enable = TPMC501_ON; /* enable channel */
seqBuf.chanCfg[9].gain = 1; /* input gain 1 */
seqBuf.chanCfg[9].diffMode = TPMC501_DIFF; /* differential input */
seqBuf.chanCfg[9].corrMode = TPMC501_OFF; /* corrrection off */

/* Channel 17 */
seqBuf.chanCfg[16].enable = TPMC501_ON; /* enable channel */
seqBuf.chanCfg[16].gain = 2; /* input gain 2 */
seqBuf.chanCfg[16].diffMode = TPMC501_SNGL; /* single-ended input */
seqBuf.chanCfg[16].corrMode = TPMC501_OFF; /* corrrection off */

result = ioctl(fd, TPMC501_SEQSETUP, (char*)&seqBuf);
if (result >= 0)
{

/* Sequencer mode successfully started */
}
else
{

/* Sequencer mode start failed */
}

ERRORS

EINVAL An unsupported input parameter has been specified. Check input
parameters

EBUSY The sequencer mode is already active for the device. The sequencer
must be stopped.

Other returned error codes are system error conditions.

TPMC501-SW-72 – LynxOS Device Driver Page 20 of 25

3.3.3 TPMC501_SEQSTOP

NAME

TPMC501_SEQSTOP – Stop sequencer mode

DESCRIPTION

This function stops the sequencer mode. The function dependant parameter arg can be set to NULL.

EXAMPLE

#include <tpmc501.h>

int fd;
int result;

/* --- stop sequencer --- */
result = ioctl(fd, TPMC501_SEQSTOP, NULL);
if (result >= 0)
{

/* Sequencer successfully stopped */
}
else
{

/* Sequencer stop failed */
}

TPMC501-SW-72 – LynxOS Device Driver Page 21 of 25

3.3.4 TPMC501_SEQREAD

NAME

TPMC501_SEQREAD – Read sequencer data

DESCRIPTION

This function reads a set of sequencer data if the sequencer is started. A pointer to the callers read
buffer (TPMC501_SEQREAD_BUFFER) must be passed by the parameter arg to the device.

typedef struct
{

int waitMode;
int value[MAX_NUM_CHANS];
unsigned int status;

} TPMC501_SEQREAD_BUFFER, *PTPMC501_SEQREAD_BUFFER;

Members

waitMode

This argument specifies if the function will return immediately, returning the last converted
values, or if function shall wait for completion of the current sequencer cycle and return the new
values. Symbols for ‘ON’ and ‘OFF’ are defined in tpmc501.h:

Define Description

TPMC501_OFF The function returns immediately using the values of the last
sequencer cycle.

TPMC501_ON The function waits for completion of the current sequencer cycle
and will return ‘fresh’ data.

value[]

This argument is an array returning the channels data. Only array elements of enabled channels
will return values, the values of disabled channels will be undefined. The array element with
index 0 specifies the configuration of channel 1, index 1 specifies the configuration of channel 2,
and so on.

TPMC501-SW-72 – LynxOS Device Driver Page 22 of 25

status

This parameter returns the status of the sequencer and the status of the data set. Symbols for
the returned flags are defined in tpmc501.h, The status is a value of OR’ed flags:

Flag Description

TPMC501_FL_HWOVERRUN This TPMC501 signals a hardware overrun error. A set of
data has not been handled before the next set is available.
The TPMC501 will stop the sequencer and software should
execute TPMC501_SEQSTOP to reset this error.

TPMC501_FL_TIMERERR This TPMC501 signals and timer error. This error signals
that the needed conversion time for enabled channels
exceeds the time specified as sequencer cycle time. The
TPMC501 will stop the sequencer and software should
execute TPMC501_SEQSTOP to reset this error.

TPMC501_FL_INSTRAMERR This TPMC501 signals an error in sequencer configuration.
For example there is no enabled channel in sequencer
mode. The TPMC501 will stop the sequencer and software
should execute TPMC501_SEQSTOP to reset this error.

TPMC501_FL_SWOVERRUN This flag signals, that at least one set of data has not been
read by the application and the old data is overwritten. The
sequencer continues execution.

TPMC501_FL_NOVALIDDATA This flag signals, that there has been no sequencer cycle
completed since the last read or the start of the sequencer.
If the flag is set after a sequencer start before a cycle
completed the returned data values are undefined.
If the flag is set after a successful read, the data values of
the last cycle will be returned again.

EXAMPLE

#include <tpmc501.h>

int fd;
int chanIdx;
int result;
TPMC501_SEQREAD_BUFFER seqRdBuf;

/* --- configure and start sequencer --- */
seqRdBuf.waitMode = TPMC501_ON; /* wait for new data */

…

TPMC501-SW-72 – LynxOS Device Driver Page 23 of 25

…

result = ioctl(fd, TPMC501_SEQREAD, (char*)&seqRdBuf);
if (result >= 0)
{

/* Sequencer read successfully*/
for (chanIdx = 0; chanIdx < MAX_NUM_CHANS; chanIdx++)
{

printf("ADC-INPUT [%d]: %d\n", chanIdx + 1, seqRdBuf.value);
}

}
else
{

/* Sequencer read failed */
}

ERRORS

EINTR The function was cancelled.

ETIMEDOUT The wait time has exceeded the maximum time of a sequencer cycle.
(no interrupts or HW-problem)

EINVAL An unsupported input parameter has been specified. Check input
parameters.

EBUSY The sequencer mode has not been started for the device. The
sequencer must be started first.

Other returned error codes are system error conditions.

TPMC501-SW-72 – LynxOS Device Driver Page 24 of 25

4 Debugging and Diagnostic
If the driver will not work properly, please enable debug outputs by defining the symbols DEBUG,
DEBUG_TPMC, and DEBUG_PCI in file tpmc501.c.

The debug output should appear on the console. If not, please check the symbol KKPF_PORT in
uparam.h. This symbol should be configured to a valid COM port (e.g. SKDB_COM1).

The debug output displays the device information data for the current major device like this.

TPMC501: Device Driver Install
Bus = 0 Dev = 16 Func = 0
[00] = 905010B5
[04] = 02800000
[08] = 11800001
[0C] = 00000000
[10] = 80003000
[14] = 00802001
[18] = 00803001
[1C] = 80004000
[20] = 00000000
[24] = 00000000
[28] = 00000000
[2C] = 01F51498
[30] = 00000000
[34] = 00000000
[38] = 00000000
[3C] = 00000109

PCI Base Address 0 (PCI_RESID_BAR0)

70603000 : 01 FF FF 0F 00 F8 FF 0F 00 00 00 00 00 00 00 00
70603010 : 00 00 00 00 01 00 00 00 01 08 00 00 00 00 00 00
70603020 : 00 00 00 00 00 00 00 00 42 A9 52 A9 C0 79 33 E9
70603030 : 00 00 00 00 00 00 00 00 00 00 00 00 41 00 00 00

PCI Base Address 1 (PCI_RESID_BAR1)

PCI Base Address 2 (PCI_RESID_BAR2)

70203000 : 0000 0000 0000 0000 0000 0000 0000 0000
70203010 : 0000 0000 0000 0000 0000 0000 0000 0000
70203020 : 0000 0000 0000 0000 0000 0000 0000 0000
70203030 : 0000 0000 0000 0000 0000 0000 0000 0000
70203040 : 0000 0000 0000 0000 0000 0000 0000 0000
70203050 : 0000 0000 0000 0000 0000 0000 0000 0000
70203060 : 0000 0000 0000 0000 0000 0000 0000 0000

TPMC501-SW-72 – LynxOS Device Driver Page 25 of 25

70203070 : 0000 0000 0000 0000 0000 0000 0000 0000
70203080 : 0000 0000 0000 0000 0000 0000 0000 0000
70203090 : 0000 0000 0000 0000 0000 0000 0000 0000
702030A0 : 0000 0000 0000 0000 0000 0000 0000 0000
702030B0 : 0000 0000 0000 0000 0000 0000 0000 0000
702030C0 : 0000 0000 0000 0000 0000 0000 0000 0000
702030D0 : 0000 0000 0000 0000 0000 0000 0000 0000
702030E0 : 0000 0000 0000 0000 0000 0000 0000 0000
702030F0 : 0000 0000 0000 0000 0000 0000 0000 0000

PCI Base Address 3 (PCI_RESID_BAR3)

70604000 : 00 37 00 F8 00 39 00 F1 00 3E 00 EB 00 46 00 F0
TPMC501: Found TPMC501-xx on Bus 0, Device 16

Correction data: Offset/Gain
248/55
241/57
235/62
240/70

The debug output above is only an example. Debug output on other systems may be different
for addresses and data in some locations.

	Introduction
	Installation
	Device Driver Installation
	Static Installation
	Build the driver object
	Create Device Information Declaration
	Modify the Device and Driver Configuration File
	Rebuild the Kernel

	Dynamic Installation
	Build the driver object
	Create Device Information Declaration
	Uninstall dynamic loaded driver

	Device Information Definition File
	Configuration File: CONFIG.TBL

	TPMC501 Device Driver Programming
	open()
	close()
	ioctl()
	TPMC501_READ
	TPMC501_SEQSETUP
	TPMC501_SEQSTOP
	TPMC501_SEQREAD

	Debugging and Diagnostic

