
 

The Embedded I/O Company

 
 

TPMC550-S
QNX6 - Neutrino De

8/4 Channel 12 Bit D
 
 
 
 
 
 
 

User Manu
Issue 1.1  Version

November 20
 
 
 
 

 
TEWS TECHNOLOGIES GmbH 
Am Bahnhof 7  25469 Halstenbek / Germany 
Phone: +49-(0)4101-4058-0  Fax: +49-(0)4101-4058-19 
e-mail: info@tews.com www.tews.com 

  
TEWS 
1 E. Lib
Phone:
e-mail:
W-95 
vice Driver 
AC PMC 

al 
 1.0.0 

03 

TECHNOLOGIES LLC 
erty Street, Sixth Floor Reno, Nevada  89504 / USA 
 +1 (775) 686 6077 Fax: +1 (775) 686 6024 
 usasales@tews.com www.tews.com 

mailto:info@tews.com
mailto:usasales@tews.com


 

TPMC550-SW-95 
8/4 Channel 12 Bit DAC PMC 

QNX6-Neutrino Device Driver 

  

This document contains information, which is 
proprietary to TEWS TECHNOLOGIES GmbH. Any 
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any 
effort to ensure that this manual is accurate and 
complete. However TEWS TECHNOLOGIES GmbH 
reserves the right to change the product described 
in this document at any time without notice. 

TEWS TECHNOLOGIES GmbH is not liable for any 
damage arising out of the application or use of the 
device described herein. 

2003 by TEWS TECHNOLOGIES GmbH 

 

Issue Description Date 
1.0 First Issue July 16, 2003 
1.1 Introduction corrected November 10, 2003 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 2 of 24 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 3 of 24 

Table of Content 
1 INTRODUCTION......................................................................................................... 4 
2 INSTALLATION.......................................................................................................... 5 

2.1 Build the device driver ...................................................................................................................5 
2.2 Build the example application .......................................................................................................5 
2.3 Start the driver process..................................................................................................................5 

3 DEVICE INPUT/OUTPUT FUNCTIONS ..................................................................... 7 
3.1 open() ...............................................................................................................................................7 
3.2 close()...............................................................................................................................................8 
3.3 devctl() .............................................................................................................................................9 

3.3.1 DCMD_TPMC550_WRITE.................................................................................................11 
3.3.2 DCMD_TPMC550_GET_CONFIG.....................................................................................13 
3.3.3 DCMD_TPMC550_SEQ_START.......................................................................................15 
3.3.4 DCMD_TPMC550_SEQ_STOP.........................................................................................17 
3.3.5 DCMD_TPMC550_SEQ_CONF ........................................................................................18 
3.3.6 DCMD_TPMC550_SEQ_FILL ...........................................................................................21 
3.3.7 DCMD_TPMC550_RESET ................................................................................................23 

4 PROGRAMMING HINTS .......................................................................................... 24 
4.1 Using the sequencer mode ..........................................................................................................24 

 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 4 of 24 

1 Introduction 
The TPMC550-SW-95 QNX6-Neutrino device driver allows the operation of a TPMC550 - 8(4) 
Channel 12 Bit DAC PMC on QNX6-Neutrino operating systems with Intel or Intel-compatible x86 
CPUs. 

The TPMC550 device driver is basically implemented as a user installable Resource Manager. The 
standard file (I/O) functions (open, close and devctl) provide the basic interface for opening and 
closing a file descriptor and for performing device I/O and control operations. 

To start an I/O request the client process has to send an appropriate message, which contains a 
function code and optional parameter, to the server process. After the I/O operation has finished the 
server process replies the request message with a completion status and optional process data to 
caller. 

The TPMC550 device driver includes the following functions: 

! writing a new DAC output value 
! reading module configuration 
! configuring, starting, stopping and using sequencer mode 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 5 of 24 

2 Installation 
The software is delivered on a PC formatted 3½" HD diskette, stored in a gzipped tar-archive named 
TPMC550-SW-95.tar.gz. This manual is located on the disk too, named TPMC550-SW-95.pdf. 

Following files are stored in the tar-archive: 

/driver/tpmc550.c Driver source code 
/driver/tpmc550.h Definitions and data structures for driver and application 
/driver/tpmc550def.h Device driver include 
/driver/node.c Queue management source code 
/driver/node.h Queue management definitions 
/example/example.c Example application 
 

For installation copy the tar-archive into the /usr/src directory and unpack it (e.g. tar –xvzf 
TPMC550-SW-95.tar.gz). After that the necessary directory structure for the automatic build and 
the source files are available underneath the new directory called tpmc550. 

It is absolutely important to extract the TPMC550 tar archive in the /usr/src directory. Otherwise 
the automatic build with make will fail. 

2.1 

2.2 

2.3 

Build the device driver 
Change to the /usr/src/tpmc550/driver directory 

Execute the Makefile: 

# make install 

After successful completion the driver binary (tpmc550) will be installed in the /bin directory. 

Build the example application 
Change to the /usr/src/tpmc550/example directory 

Execute the Makefile: 

# make install 

After successful completion the example binary (tp550exam) will be installed in the /bin directory. 

 

Start the driver process 
To start the TPMC550 device driver respective you have to enter the process name with optional 
parameter from the command shell or in the startup script. 

tpmc550 [-v] & 

 

 

 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 6 of 24 

The TPMC550 Resource Manager registers created devices in the Neutrinos pathname space under 
following names. 

 
/dev/tpmc550_0 
/dev/tpmc550_1 
… 
/dev/tpmc550_x 

 

This pathname must be used in the application program to open a path to the desired TPMC550 
device. 

 
fd = open(“/dev/tpmc550_0”, O_RDWR); 

 
For debugging you can start the TPMC550 Resource Manager with the –v option. Now the Resource 
Manager will print versatile information about TPMC550 configuration and command execution on the 
terminal window. 

 
tpmc550 –v & 

 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 7 of 24 

3 Device Input/Output functions 
This chapter describes the interface to the device driver I/O system. 

3.1 open() 

NAME 

open() - open a file descriptor 

SYNOPSIS 

#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
 
int open (const char *pathname, int flags) 

DESCRIPTION 

The open function creates and returns a new file descriptor for the TPMC550 named by pathname. 
The flags argument controls how the file is to be opened. TPMC550 devices must be opened 
O_RDWR. 

EXAMPLE 

int fd; 
 
fd = open(“/dev/tpmc550_0”, O_RDWR); 

RETURNS 

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a 
value of –1 is returned. The global variable errno contains the detailed error code. 

ERRORS 

Returns only Neutrino specific error codes, see Neutrino Library Reference. 

SEE ALSO 

Library Reference - open() 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 8 of 24 

3.2 close() 

 

NAME 

close() – close a file descriptor 

SYNOPSIS 

#include <unistd.h> 
 
int close (int filedes) 

DESCRIPTION 

The close function closes the file descriptor filedes. 

EXAMPLE 

int fd; 
 
... 
 
if (close(fd) != 0) 
{ 
 /* handle close error conditions */ 
} 

RETURNS 

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global 
variable errno contains the detailed error code. 

ERRORS 

Returns only Neutrino specific error code, see Neutrino Library Reference. 

SEE ALSO 

Library Reference - close() 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 9 of 24 

3.3 devctl() 

NAME 

devctl() – device control functions 

SYNOPSIS 

#include <sys/types.h> 
#include <unistd.h> 
#include <devctl.h> 
 
int devctl 
( 
 int  filedes, 
 int  dcmd, 
 void  *data_ptr, 
 size_t  n_bytes, 
 int  *dev_info_ptr 
) 

DESCRIPTION 

The devctl function sends a control code directly to a device, specified by filedes, causing the 
corresponding device to perform the requested operation. 

The argument dcmd specifies the control code for the operation. 

The arguments data_ptr and n_bytes depends on the command and will be described for each 
command in detail later in this chapter. Usually data_ptr points to a buffer that passes data between 
the user task and the driver and n_bytes defines the size of this buffer. 

The argument dev_info_ptr is unused for the TPMC550 driver and should be set to NULL. 

The following devctl command codes are defined in tpmc550.h: 

Value Description 
DCMD_TPMC550_WRITE Write a new DAC output value 
DCMD_TPMC550_GET_CONFIG Get the module configuration 
DCMD_TPMC550_SEQ_START Start sequencer mode 
DCMD_TPMC550_SEQ_STOP Stop sequencer mode 
DCMD_TPMC550_SEQ_CONF Configure channel for sequencer mode 
DCMD_TPMC550_SEQ_FILL Fill output data buffer for/in sequencer mode 
DCMD_TPMC550_RESET Perform a module reset 

 

See behind for more detailed information on each control code. 

 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 10 of 24 

 

To use these TPMC550 specific control codes the header file TPMC550.h must be included in 
the application. 

RETURNS 

On success, EOK is returned. In the case of an error, the appropriate error code is returned by the 
function (not in errno!). 

ERRORS 

Returns only Neutrino specific error code, see Neutrino Library Reference. 

Other function dependent error codes will be described for each devoctl code separately. Note, the 
TPMC550 driver always returns standard QNX error codes. 

SEE ALSO 

Library Reference - devctl() 

 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 11 of 24 

3.3.1 DCMD_TPMC550_WRITE 

NAME 

DCMD_TPMC550_WRITE – Write a new DAC output value 

DESCRIPTION 

This function writes a new DAC output value to a specified channel and returns immediately to the 
caller. For this function a TPMC550_IN_WRITE_STRUCT structure must be initialized with 
appropriate data. 

typedef struct 
{ 
 int  channel; // channel number 
 long  value; // new output value 
 long  flags; // output flags 
} TPMC550_IN_WRITE_STRUCT; 
 
channel 

This argument specifies the channel number. Valid channel numbers are 1 up to 8 for 
TPMC550-10/-20 and 1 up to 4 for TPMC550-11/-21. 
 

value 

This argument specifies the new output value. The valid output value ranges depend on the 
module configuration. For channels configured as unipolar outputs (0V - 10V) the valid values 
are between 0 and +4095. For channels configured as bipolar outputs (+/-10V) the valid values 
are between -2048 and +2047. Values out of range will be set to the next valid value. 
 

flags 

This value is an ORed value of the following flags: 
Value Description 
TP550_CORRECTION If this flag is set, the output value will be corrected 

with the factory stored correction data. 
TP550_LATCHED If this flag is set, the output value will be written into 

the channels output register, the conversion will not 
be started until the TP550_SIMCONV flag is set. 
This flag will be used for simultaneous output of all 
channels. 

TP550_SIMCONV If this flag is set a simultaneous conversion of all 
channels will be initiated. The last written value will 
be converted. 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 12 of 24 

EXAMPLE 

int      fd; 
int      result; 
TPMC550_IN_WRITE_STRUCT  writeBuf; 
 
... 
 
/* 
** write value to channel 1 
*/ 
writeBuf.channel = 1; 
writeBuf.value   = 0x042; 
writeBuf.flags   = TP550_CORRECTION; 
  
result = devctl( fd, 
    DCMD_TPMC550_WRITE, 
    &writeBuf, 
    sizeof(writeBuf), 
    NULL); 
if (result == EOK) 
{ 
 /* write successful */ 
} 
 
... 

ERRORS 

ECHRNG Specified channel not supported by attached module. 
EBUSY The channel can not be used, because the module is configured in 

sequencer mode. 
ETIME The module does not complete the busy cycle. 

SEE ALSO  

Library Reference - devctl() 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 13 of 24 

3.3.2 DCMD_TPMC550_GET_CONFIG 

NAME 

DCMD_TPMC550_GET_CONFIG – Get the module configuration 

DESCRIPTION 

This function reads the module configuration of the TPMC550 and returns immediately to the caller. 
This function uses a pointer to the TPMC550_OUT_CONFIG_STRUCT where the configuration values 
are filled in by the driver. 

typedef struct 
{ 
 int  channels; // number of valid channels 
 signed char offsetCorr[8]; // offset correction value 
 signed char gainCorr[8]; // gain correction value 
 char  bipolMode[8]; // bipolar mode enabled? 
} TPMC550_OUT_CONFIG_STRUCT; 
 
channels 

This value returns the number of channels supported by the module. The value will be 8 for 
TPMC550-10/-20 and 4 for TPMC550-11/-21. 
 

offsetCorr[] 

This array returns the offset correction data for the channels. The correction of channel 1 will be 
returned with index 0, channel 2 with index 1 and so on. The data is only valid for existing 
channels. 
 

gainCorr[] 

This array returns the gain correction data for the channels. The correction of channel 1 will be 
returned with index 0, channel 2 with index 1 and so on. The data is only valid for existing 
channels. 
 

bipolMode[] 

This array returns if a channel configured for uni- or bipolar output. If bipolMode[n] is TRUE, the 
channel is configured in bipolar mode (+/-10V output). If bipolMode[n] is FALSE, the channel is 
configured in bipolar mode (0 - 10V output). The value for channel 1 will be returned with  
index 0, channel 2 with index 1 and so on. The values are only valid for existing channels. 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 14 of 24 

EXAMPLE 

int      fd; 
int      result; 
TPMC550_OUT_CONFIG_STRUCT cfgBuf; 
 
... 
 
/* 
** read module configuration 
*/ 
encBuf.channel = 1; 
 
result = devctl( fd, 
    MD_TPMC550_GET_CONFIG, 
    &cfgBuf, 
    sizeof(cfgBuf), 
    NULL); 
if (result == EOK) 
{ 
 /* successful read */ 
} 
 
... 

ERRORS 

EINVAL Invalid argument. This error code is returned if the size of the 
message buffer is too small. 

SEE ALSO  

Library Reference - devctl() 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 15 of 24 

3.3.3 DCMD_TPMC550_SEQ_START 

NAME 

DCMD_TPMC550_SEQ_START – Start sequencer mode 

DESCRIPTION 

This function sets up and starts the sequencer mode, the function returns immediately to the caller. 
For this function the structure TPMC550_IN_SEQSTART_STRUCT must be initialized with 
appropriate data. The channels must be configured for sequencer mode before this call is made. 

typedef struct 
{ 
 unsigned short seqTime; // Sequencer Time 
 unsigned long flags; // TP550_SEQRUNAROUND | TP550_LATCHED 
} TPMC550_IN_SEQSTART_STRUCT; 
 
seqTime 

This argument specifies the sequencer cycle time. This argument will not be used if the 
TP550_SEQRUNAROUND is set. 
 

flags 

This value is an ORed value of the following flags: 
Value Description 
TP550_SEQRUNAROUND If this flag is set, the sequencer starts in continuous 

mode. The conversion will be made as fast as 
possible. 

TP550_LATCHED If this flag is set, the sequencer will output all 
channels synchronously. 

 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 16 of 24 

EXAMPLE 

int      fd; 
int      result; 
TPMC550_IN_SEQSTART_STRUCT seqStartBuf; 
 
... 
 
/* 
** start sequencer mode 
*/ 
seqStartBuf.seqTime = 50; 
seqStartBuf.flags   = TP550_LATCHED; 
 
result = devctl( fd, 
    TPMC550_IN_SEQSTART_STRUCT, 
    &seqStartBuf, 
    sizeof(seqStartBuf), 
    NULL); 
if (result == EOK) 
{ 
 /* sequencer mode started */ 
} 
 
... 

ERRORS 

EBUSY The sequencer mode is already active. 

SEE ALSO  

Library Reference - devctl() 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 17 of 24 

3.3.4 DCMD_TPMC550_SEQ_STOP 

NAME 

DCMD_TPMC550_SEQ_STOP – Stop sequencer mode 

DESCRIPTION 

This function stops the sequencer mode and returns to conventional mode. The function returns 
immediately to the caller. 

EXAMPLE 

int   fd; 
int   result; 
 
... 
 
/* 
** stop sequencer mode 
*/ 
 
result = devctl( fd, 
    DCMD_TPMC550_SEQ_STOP, 
    NULL, 
    0, 
    NULL); 
if (result == EOK) 
{ 
 /* sequencer successfully stopped */ 
} 
 
... 

ERRORS 

ETIME Sequencer-Stop command has been written to the specific register, 
but the sequencer refused to stop. 

SEE ALSO  

Library Reference - devctl() 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 18 of 24 

3.3.5 DCMD_TPMC550_SEQ_CONF 

NAME 

DCMD_TPMC550_SEQ_CONF – Configure channel for sequencer mode 

DESCRIPTION 

This function sets up or disables a channel for sequencer mode, the function returns immediately to 
the caller. For this function the structure TPMC550_IN_IN_SEQCONF_STRUCT must be initialized 
with appropriate data. This function must be called before the sequencer mode is started, changes 
while the mode is active are not possible. For changes the channel must first be removed from the 
sequencer and then configured again. 

typedef struct 
{ 
 int  channel; // Channel number 
 int  bufSize; // Size of Sequencer Data Buffer 
 unsigned long flags; // TP550_CORRECTION | TP550_SEQONESHOT 
 unsigned long timeFactor; // Specify number of ignored cycles before a new 
    // value will be converted 
} TPMC550_IN_SEQCONF_STRUCT; 
 
channel 

This argument specifies the channel number. Valid channel numbers are 1 up to 8 for 
TPMC550-10/-20 and 1 up to 4 for TPMC550-11/-21. 
 

bufSize 

This argument specifies the buffer size (in values) which shall be allocated for data buffering. 
 

flags 

This value is an ORed value of the following flags: 
Value Description 
TP550_CORRECTION If this flag is set, the output value will be corrected 

with the factory stored correction data. 
TP550_SEQONESHOT If this flag is set, the sequencer will use the buffer 

as a FIFO. Each data value will be converted once. 
If every value has been used once, the channel will 
hold the last value. If new data is written the buffer 
is used again, until there is no unused data. 
If this flag is unset, the sequencer will restart with 
the first value after reaching the end of the buffer 
(Always the complete buffer is used also if not the 
complete buffer is filled with data). Data can be 
changed by overwriting the buffer. The first value 
will be written after the written one, if the end of the 
buffer is reached, the first value will be overwritten. 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 19 of 24 

 

TP550_SEQREMOVE If this flag is set, the channel will be removed from 
the sequencer configuration. Only the channel 
argument is valid. 
If this flags is not set, the channel will be added to 
the sequencer configuration. 

 

timeFactor 

This argument specifies how many cycles shall be skipped before a new value will be used. For 
example, the sequencer cycle time is 1 second, but the channel shall update every 10 seconds, 
the argument must be set to 9. 
 

 timeFactor = (channelRefreshTime / sequencerCycleTime) - 1 

 

 

EXAMPLE 

int      fd; 
int      result; 
TPMC550_IN_SEQCONF_STRUCT seqCfgBuf; 
 
... 
 
/* 
** configure channel 1 for sequencer mode 
*/ 
seqCfgBuf.channel    = 1; 
seqCfgbuf.bufSize    = 10; 
seqCfgBuf.flags      = TP550_CORRECTION | TP550_SEQONESHOT; 
seqCfgBuf.timeFactor = 0;     /* no skipped cycles */ 
 
result = devctl( fd, 
    TPMC550_IN_SEQCONF_STRUCT, 
    &seqCfgBuf, 
    sizeof(seqCfgBuf), 
    NULL); 
if (result == EOK) 
{ 
 /* configuration successful */ 
} 
 
... 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 20 of 24 

ERRORS 

EBUSY The sequencer mode is active. No configuration possible. 
ECHRNG Specified channel not supported by attached module. 
EACCES Channel is already configured. It must be removed first. 
EINVAL Invalid argument. This error code is returned if the size of the 

message buffer is too small. 
ENOMEM Not enough memory to allocate buffer of specified size. 

SEE ALSO  

Library Reference - devctl() 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 21 of 24 

3.3.6 DCMD_TPMC550_SEQ_FILL 

NAME 

DCMD_TPMC550_SEQ_FILL – Fill output data buffer for/in sequencer mode 

DESCRIPTION 

This function fills a buffer of a channel, the function returns immediately to the caller. For this function 
the structure TPMC550_IN_SEQFILL_STRUCT must be initialized with appropriate data. The 
channels must be configured for sequencer mode before this call is made. This function can be called 
before and while the sequencer mode is active. Every channel used in sequencer mode shall be filled 
once before the sequencer is started. 

typedef struct 
{ 
 int  channel; // Channel number 
 int  bufSize; // Size of Data Buffer (in long words) 
 long  buffer[TPMC550_MAXBUFSIZE]; // databuffer 
} TPMC550_IN_SEQFILL_STRUCT; 
 
channel 

This argument specifies the channel number. Valid channel numbers are 1 up to 8 for 
TPMC550-10/-20 and 1 up to 4 for TPMC550-11/-21. 
 

bufSize 

Specifies the number of data values specified in buffer. 
 

buffer[] 

This output values stored in the array will be written into the sequencer buffer of the specified 
channel. This buffer must always be smaller or equal to the configured sequencer buffer. The 
maximum size of this array, can be adapted by changing the value of the define 
TPMC550_MAXBUFSIZE in “tpmc550.h”. 
 

The driver and the example must be recompiled and restarted after changing 
TPMC550_MAXBUFSIZE. 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 22 of 24 

EXAMPLE 

int      fd; 
int      result; 
TPMC550_IN_SEQFILL_STRUCT seqFillBuf; 
 
... 
 
/* 
** fill sequencer buffer for channel 1 
*/ 
seqFillBuf.channel   = 1; 
seqFillBuf.bufSize   = 2; 
seqFillBuf.buffer[0] = 0x042; 
seqFillBuf.buffer[1] = 0xFFF; 
 
result = devctl( fd, 
    DCMD_TPMC550_SEQ_FILL, 
    &seqFillBuf, 
    sizeof(seqFillBuf), 
    NULL); 
if (result == EOK) 
{ 
 /* buffer successfully filled */ 
} 
 
... 

ERRORS 

ECHRNG Specified channel not supported by attached module. 
ENOSPC Sequence too big for allocated memory space. 

SEE ALSO  

Library Reference - devctl() 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 23 of 24 

3.3.7 DCMD_TPMC550_RESET 

NAME 

DCMD_TPMC550_RESET – Perform a module reset 

DESCRIPTION 

This devctl function performs a reset of an attached TPMC550 module. The data and control registers 
are overwritten and the sequencer is stopped. No parameters have to be supplied. 

EXAMPLE 

int   fd; 
int   result; 
 
... 
 
/* 
** perform reset of TPMC550 module 
*/ 
 
result = devctl( fd, 
    DCMD_TPMC550_RESET, 
    NULL, 
    0, 
    NULL); 
if (result == EOK) 
{ 
 /* reset successful */ 
} 
 
... 

ERRORS 

ETIME A timeout happened during reset. 

SEE ALSO  

Library Reference - devctl() 

 



 

 

TPMC550-SW-95 – QNX6 - Neutrino Device Driver Page 24 of 24 

4 Programming Hints 
4.1 Using the sequencer mode 

Setup channels for sequencer mode 

Initial fill of the sequencer buffers 

Start the sequencer 

Refill the sequencer buffers 

yes Continue sequencer 
mode 

Stop sequencer mode 

Remove channels from sequencer mode 

 

no 


	Introduction
	Installation
	Build the device driver
	Build the example application
	Start the driver process

	Device Input/Output functions
	open()
	close()
	devctl()
	DCMD_TPMC550_WRITE
	DCMD_TPMC550_GET_CONFIG
	DCMD_TPMC550_SEQ_START
	DCMD_TPMC550_SEQ_STOP
	DCMD_TPMC550_SEQ_CONF
	DCMD_TPMC550_SEQ_FILL
	DCMD_TPMC550_RESET


	Programming Hints
	Using the sequencer mode


