
The Embedded I/O Company

TPMC551-S
VxWorks Device

8/4 Channel 16 B

Version 2.0.x

User Manu
Issue 2.0.0

March 2007

TEWS TECHNOLOGIES GmbH TEWS TEC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49 (0) 4101 4058 0
Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com

9190 Doub
Suite 127,
www.tews.
W-42
Driver

it D/A

al

HNOLOGIES LLC
le Diamond Parkway,
Reno, NV 89521, USA
com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

TPMC551-SW-42 – VxWorks Device Driver Page 2 of 30

TPMC551-SW-42

VxWorks Device Driver

8/4 Channel 16 Bit D/A

Supported Modules:
TPMC551

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

1999-2007 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue July 15, 1999

1.1 Support for Intel x86 based targets June 19, 2000

1.2 General Revision November 28, 2003

1.3.0 File list changed (Release.txt added) August 10, 2005

2.0.0 New Parameter Interfaces tpmc551Drv(), tpmc551DevCreate()
File list changed (ChangeLog.txt added)

March 7, 2007

TPMC551-SW-42 – VxWorks Device Driver Page 3 of 30

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Include device driver in Tornado IDE project .. 5
2.2 Special installation for Intel x86 based targets..5
2.3 BSP dependent adjustments ...6
2.4 System resource requirement ...7

3 I/O SYSTEM FUNCTIONS.. 8
3.1 tpmc551Drv() ...8
3.2 tpmc551DevCreate() ...10
3.3 tpmc551PciInit() ..12

4 I/O FUNCTIONS ... 13
4.1 open() ...13
4.2 close()...15
4.3 write() ...17
4.4 ioctl() ..20

4.4.1 FIO_TP551_READ_CONV ..22
4.4.2 FIO_TP551_SEQ_START ...24
4.4.3 FIO_TP551_SEQ_STOP ...27
4.4.4 FIO_TP551_SEQ_WRITE ...28

5 APPENDIX.. 30
5.1 Additional Error Codes...30

TPMC551-SW-42 – VxWorks Device Driver Page 4 of 30

1 Introduction
The TPMC551-SW-42 VxWorks device driver software allows the operation of the supported PMC
conforming to the VxWorks I/O system specification. This includes a device-independent basic I/O
interface with open(), close(), write(), and ioctl() functions.

Special I/O operation that do not fit to the standard I/O calls will be performed by calling the ioctl()
function with a specific function code and an optional function dependent argument.

This driver invokes a mutual exclusion and binary semaphore mechanism to prevent simultaneous
requests by multiple tasks from interfering with each other.

The TPMC551-SW-42 device driver supports the following features:

 Setting DAC output value
 Configure, start, and stop DAC-sequencer
 Use of data correction for simple conversion and in sequencer mode
 Reading TPMC551 configuration (number of channels and uni-/bipolar output)

The TPMC551-SW-42 supports the modules listed below:

TPMC551-x0 8 channel 16-bit D/A (PMC)
TPMC551-x1 4 channel 16-bit D/A (PMC)

In this document all supported modules and devices will be called TPMC551. Specials for
certain devices will be advised.

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

TPMC551User manual
TPMC551 Engineering Manual

TPMC551-SW-42 – VxWorks Device Driver Page 5 of 30

2 Installation
Following files are located on the distribution media:

Directory path ‘TPMC551-SW-42’:

tpmc551drv.c TPMC551 device driver source
tpmc551def.h TPMC551 driver include file
tpmc551.h TPMC551 include file for driver and application
tpmc551pci.c TPMC551 PCI MMU mapping for Intel x86 based targetst
tpmc551exa.c Example application
include/tdhal.h Hardware dependent interface functions and definitions
TPMC551-SW-42-2.0.0.pdf PDF copy of this manual
ChangeLog.txt Release history
Release.txt Release information

2.1 Include device driver in Tornado IDE project
For including the TPMC551-SW-42 device driver into a Tornado IDE project follow the steps below:

(1) Copy the files from the distribution media into a subdirectory in your project path.
(For example: ./TPMC551)

(2) Add the device drivers C-files to your project.
Make a right click to your project in the ‘Workspace’ window and use the ‘Add Files ...’ topic.
A file select box appears, and the driver files can be selected.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your Tornado User’s
Guide.

2.2 Special installation for Intel x86 based targets
The TPMC551 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU_FAMILY. If the content of this macro is equal to I80X86 special Intel x86 conforming code and
function calls will be included.

The second problem for Intel x86 based platforms can’t be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn’t map PCI memory spaces of devices
which are not used by the BSP, the required device memory spaces can’t be accessed.

To solve this problem a MMU mapping entry has to be added for the required TPMC551 PCI memory
spaces prior the MMU initialization (usrMmuInit()) is done.

The C source file tpmc551pci.c contains the function tpmc551PciInit(). This routine finds out all
TPMC551 devices and adds MMU mapping entries for all used PCI memory spaces. Please insert a
call to this function after the PCI initialization is done and prior to MMU initialization (usrMmuInit()).

TPMC551-SW-42 – VxWorks Device Driver Page 6 of 30

The right place to call the function tpmc551PciInit() is at the end of the function sysHwInit() in sysLib.c
(it can be opened from the project Files window).

Be sure that the function is called prior to MMU initialization otherwise the TPMC551 PCI spaces
remain unmapped and an access fault occurs during driver initialization.

Please insert the following call at a suitable place in sysLib.c:

tpmc551PciInit();

Modifying the sysLib.c file will change the sysLib.c in the BSP path. Remember this for future
projects and recompilations.

2.3 BSP dependent adjustments
The driver includes a file called include/tdhal.h which contains functions and definitions for BSP
adaptation. It may be necessary to modify them for BSP specific settings. Most settings can be made
automatically by conditional compilation set by the BSP header files, but some settings must be
configured manually. There are two way of modification, first you can change the include/tdhal.h and
define the corresponding definition and its value, or you can do it, using the command line option –D.

There are 3 offset definitions (USERDEFINED_MEM_OFFSET, USERDEFINED_IO_OFFSET, and
USERDEFINED_LEV2VEC) that must be configured if a corresponding warning message appears
during compilation. These definitions always need values. Definition values can be assigned by
command line option -D<definition>=<value>.

definition description
USERDEFINED_MEM_OFFSET The value of this definition must be set to the offset

between CPU-Bus and PCI-Bus Address for PCI
memory space access

USERDEFINED_IO_OFFSET The value of this definition must be set to the offset
between CPU-Bus and PCI-Bus Address for PCI I/O
space access

USERDEFINED_LEV2VEC The value of this definition must be set to the
difference of the interrupt vector (used to connect the
ISR) and the interrupt level (stored to the PCI header)

Another definition allows a simple adaptation for BSPs that utilize a pciIntConnect() function to
connect shared (PCI) interrupts. If this function is defined in the used BSP, the definition of
USERDEFINED_SEL_PCIINTCONNECT should be enabled. The definition by command line option is
made by -D<definition>.

Please refer to the BSP documentation and header files to get information about the interrupt
connection function and the required offset values.

TPMC551-SW-42 – VxWorks Device Driver Page 7 of 30

2.4 System resource requirement
The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement

Memory < 1 KB < 1 KB

Stack < 1 KB ---

Semaphores --- 2

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

TPMC551-SW-42 – VxWorks Device Driver Page 8 of 30

3 I/O system functions
This chapter describes the driver-level interface to the I/O system. The purpose of these functions is to
install the driver in the I/O system, add and initialize devices.

3.1 tpmc551Drv()

NAME

tpmc551Drv() - installs the TPMC551 driver in the I/O system

SYNOPSIS

#include “tpmc551.h”

STATUS tpmc551Drv(void)

DESCRIPTION

This function searches for devices on the PCI bus, installs the TPMC551 driver in the I/O system.
Found devices are initialized.

A call to this function is the first thing the user has to do before adding any device to the
system or performing any I/O request.

EXAMPLE

#include "tpmc551.h”

STATUS result;

/*-------------------
Initialize Driver
-------------------*/

result = tpmc551Drv();
if (result == ERROR)
{

/* Error handling */
}

TPMC551-SW-42 – VxWorks Device Driver Page 9 of 30

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

ENXIO No TPMC551 device found

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TPMC551-SW-42 – VxWorks Device Driver Page 10 of 30

3.2 tpmc551DevCreate()

NAME

tpmc551DevCreate() – Add a TPMC551 device to the VxWorks system

SYNOPSIS

#include “tpmc551.h”

STATUS tpmc551DevCreate
(

char *name,
int devIdx,
int funcType,
void *pParam

)

DESCRIPTION

This routine adds the selected device to the VxWorks system. The device hardware will be setup and
prepared for use.

This function must be called before performing any I/O request to this device.

PARAMETER

name

This string specifies the name of the device that will be used to identify the device, for example
for open() calls.

devIdx
This index number specifies the device to add to the system.
The device numbers will be assigned in the order the VxWorks pciFindDevice() function will find
the devices.

funcType
This parameter is unused and should be set to 0.

pParam
This parameter is unused and should be set to NULL.

TPMC551-SW-42 – VxWorks Device Driver Page 11 of 30

EXAMPLE

#include "tpmc551.h”

STATUS result;

/*---
Create the device "/tpmc551/0" for the first device
---*/

result = tpmc551DevCreate("/tpmc551/0",
0,
0,
0);

if (result == OK)
{

/* Device successfully created */
}
else
{

/* Error occurred when creating the device */
}

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

S_ioLib_NO_DRIVER Driver not installed, tpmc551Drv() has not been executed

ENXIO Specified module not installed
EBUSY The device has been created.

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TPMC551-SW-42 – VxWorks Device Driver Page 12 of 30

3.3 tpmc551PciInit()

NAME

tpmc551PciInit() – Generic PCI device initialization

SYNOPSIS

void tpmc551PciInit()

DESCRIPTION

This function is required only for Intel x86 VxWorks platforms. The purpose is to setup the MMU
mapping for all required TPMC551 PCI spaces (base address register) and to enable the TPMC551
device for access.

The global variable tpmc551Status obtains the result of the device initialization and can be polled later
by the application before the driver will be installed.

Value Meaning

> 0 Initialization successful completed. The value of tpmc551Status is equal to the
number of mapped PCI spaces

0 No TPMC551 device found

< 0 Initialization failed. The value of (tpmc551Status & 0xFF) is equal to the number
of mapped spaces until the error occurs.
Possible cause: Too few entries for dynamic mappings in sysPhysMemDesc[].
Remedy: Add dummy entries as necessary (syslib.c).

EXAMPLE

extern void tpmc551PciInit();

…

tpmc551PciInit();

TPMC551-SW-42 – VxWorks Device Driver Page 13 of 30

4 I/O Functions

4.1 open()

NAME

open() - open a device or file.

SYNOPSIS

int open
(

const char *name,
int flags,
int mode

)

DESCRIPTION

Before I/O can be performed to the TPMC551 device, a file descriptor must be opened by invoking the
basic I/O function open().

PARAMETER

name
Specifies the device which shall be opened, the name specified in tpmc551DevCreate() must be
used

flags

Not used

mode

Not used

TPMC551-SW-42 – VxWorks Device Driver Page 14 of 30

EXAMPLE

int fd;

/*--
Open the device named "/tpmc551/0" for I/O
--*/

fd = open("/tpmc551/0", 0, 0);
if (fd == ERROR)
{

/* Handle error */
}

RETURNS

A device descriptor number or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - open()

TPMC551-SW-42 – VxWorks Device Driver Page 15 of 30

4.2 close()

NAME

close() – close a device or file

SYNOPSIS

STATUS close
(

int fd
)

DESCRIPTION

This function closes opened devices.

PARAMETER

fd
This file descriptor specifies the device to be closed. The file descriptor has been returned by
the open() function.

EXAMPLE

int fd;
STATUS retval;

/*----------------
close the device
----------------*/

retval = close(fd);
if (retval == ERROR)
{

/* Handle error */
}

TPMC551-SW-42 – VxWorks Device Driver Page 16 of 30

RETURNS

OK or ERROR. If the function fails, an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - close()

TPMC551-SW-42 – VxWorks Device Driver Page 17 of 30

4.3 write()

NAME

write() – write new output value to the specified TPMC551 device

SYNOPSIS

int write
(

int fd,
char *buffer,
size_t nbytes

)

DESCRIPTION

This function writes a new value to a specified channel.

PARAMETER

fd
This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

buffer

This argument points to a user supplied buffer (TP551_RW_ARGS) specifying channel and the
new output value.

typedef struct
{

unsigned long Flags;
long Channel;
long Value;

} TP551_RW_ARGS;

Flags

This parameter specifies how to make the conversion. The following flags are allowed for
this function and can be ORed binary.
TP551_CORR This flag specifies, that the output value shall be corrected

with the board dependent correction data.

TP551_LATCHED The DAC will be loaded in latched mode.
TP551_SIMCONV This flag starts a simultaneous conversion.

TPMC551-SW-42 – VxWorks Device Driver Page 18 of 30

Channel
This parameter specifies the channel number. The first channel is specified with 1, the
second with 2 and so on.

Value

This argument specifies the new output value. Allowed values are 0…65535 for channels
configured in unipolar mode (0..10V), and -32768…32767 in bipolar mode (+/-10V).

nbytes
This parameter is not used.

EXAMPLE

#include “tpmc551.h”

int fd;
int retval;
TP551_RW_ARGS dac_par;

/*--
Set channel 3 to 0x6000 and use correction data

---*/
dac_par.Channel = 3;
dac_par.Flags = TP551_CORR;
dac_par.Value = 0x6000;

retval = write (fd, &dac_par, 0);
if (retval != ERROR)
{

printf(“New DAC value set\n”, retval);
}
else
{

/* handle the write error */
}

RETURNS

Number of bytes written (2) or ERROR. If the function fails an error code will be stored in errno.

TPMC551-SW-42 – VxWorks Device Driver Page 19 of 30

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below.

Error code Description

S_tp551Drv_CHANERR An unsupported channel number has been specified
S_tp551Drv_MODBUSY The TPMC551 is busy, sequencer is running

S_tp551Drv_TIMEOUT The sequencer has not finished conversion in the
expected time

SEE ALSO

ioLib, basic I/O routine - write()

TPMC551-SW-42 – VxWorks Device Driver Page 20 of 30

4.4 ioctl()

NAME

ioctl() - performs an I/O control function.

SYNOPSIS

#include “tpmc551.h”

int ioctl
(

int fd,
int request,
int arg

)

DESCRIPTION

Special I/O operation that do not fit to the standard basic I/O calls (read, write) will be performed by
calling the ioctl() function.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

request
This argument specifies the function that shall be executed. Following functions are defined:

Function Description
FIO_TP551_READ_CONV Read module configuration

FIO_TP551_SEQ_START Start sequencer mode
FIO_TP551_SEQ_WRITE Update sequencer output data

FIO_TP551_SEQ_STOP Stop sequencer mode

arg

This parameter depends on the selected function (request). How to use this parameter is
described below with the function.

TPMC551-SW-42 – VxWorks Device Driver Page 21 of 30

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).
Function specific error codes will be described with the function.

SEE ALSO

ioLib, basic I/O routine - ioctl()

TPMC551-SW-42 – VxWorks Device Driver Page 22 of 30

4.4.1 FIO_TP551_READ_CONV

This I/O control function returns the hardware configuration of the TPMC551. The function specific
control parameter arg is a pointer on a TP551_CONF_ARGS structure.

typedef struct
{

unsigned long Channels;
unsigned long Voltage_1_4;
unsigned long Voltage_5_8;

} TP551_CONF_ARGS;

Channels
Returns the number of channels supported by the specified device.

Voltage_1_4
Returns the output mode of channel 1 up to channel 4. Possible values are:

TP551_0_10 This value specifies the channel are configured for a voltage
range between 0V and +10V.

TP551_10_10 This value specifies the channel are configured for a voltage
range between –10V and +10V.

Voltage_5_8
Returns the output mode of channel 5 up to channel 8. Possible values are:

TP551_0_10 This value specifies the channel are configured for a voltage
range between 0V and +10V.

TP551_10_10 This value specifies the channel are configured for a voltage
range between –10V and +10V.

EXAMPLE

#include “tpmc551.h”

int fd;
TP551_CONF_ARGS confBuf;
int retval;

…

TPMC551-SW-42 – VxWorks Device Driver Page 23 of 30

…

/*---------------------------
Read hardware configuration
---------------------------*/

retval = ioctl(fd, FIO_TP551_READ_CONV, (int)&confBuf);
if (retval != ERROR)
{

printf(“Number of channels: %d\n”, confBuf.Channels);
}
else
{

/* handle the error */
}

TPMC551-SW-42 – VxWorks Device Driver Page 24 of 30

4.4.2 FIO_TP551_SEQ_START

This I/O control function sets up and start the TPMC551 to work in sequencer mode. The function
specific control parameter arg is a pointer on a TP551_SEQ_START_ARGS structure.

typedef struct
{

unsigned short Time;
TP551_CHANNEL_ARGS ChannelA[8];
TP551_CHANNEL_ARGS ChannelB[8];

} TP551_SEQ_START_ARGS;

Time

The argument specifies the cycle time of the sequencer. The time is scaled to 100s steps.

ChannelA[]
The array specifies the values for the first cycle. The array is an array of the data structure
TP551_CHANNEL_ARGS. The array index specifies the channel, index 0 for channel 1, index 1
for channel 2, and so on.

ChannelB[]
The array specifies the values for the second cycle. The array is an array of the data structure
TP551_CHANNEL_ARGS. The array index specifies the channel, index 0 for channel 1, index 1
for channel 2, and so on.

typedef struct
{

unsigned long Flags;
long Value;

} TP551_CHANNEL_ARGS;

Flags
The parameter specifies the flags for this channel that can be ORed. Allowed Flags are:

TP551_CORR This flag specifies, that the output value shall be corrected with the
board dependent correction data.

TP551_UPDATE This flag must be set to allow a new conversion for the channel. If
this flag is not set, the output of the channel will not change. This
value is only used for ChannelB data.

TP551_ENABLE This flag enables this channel to be used by the sequencer. This
flag is only valid for ChannelA data. The value of a channel which is
not enabled will be never changed after starting the sequencer.

Value
This parameter specifies the new output value of the channel.

TPMC551-SW-42 – VxWorks Device Driver Page 25 of 30

EXAMPLE

#include “tpmc551.h”

int fd;
TP551_SEQ_START_ARGS seqBuf;
int retval;

/*------------------------------------
Start sequencer: cycle time: 0.5 sec
------------------------------------*/

seqBuf.Time = 5000; /* 5000 * 100µs */

/* Channel 1: correction enabled */
seqBuf.ChannelA[0].Flags = TP551_ENABLE | TP551_CORR;
seqBuf.ChannelA[0].Value = 0x100;
seqBuf.ChannelB[0].Flags = TP551_UPDATE | TP551_CORR;
seqBuf.ChannelB[0].Value = 0x200;

/* Channel 3: correction disabled */
seqBuf.ChannelA[2].Flags = TP551_ENABLE;
seqBuf.ChannelA[2].Value = 0x400;
seqBuf.ChannelB[2].Flags = TP551_UPDATE;
seqBuf.ChannelB[2].Value = 0x700;

/* Disable the other channels */
seqBuf.ChannelA[1].Flags = 0;
seqBuf.ChannelA[3].Flags = 0;
seqBuf.ChannelA[4].Flags = 0;
seqBuf.ChannelA[5].Flags = 0;
seqBuf.ChannelA[6].Flags = 0;
seqBuf.ChannelA[7].Flags = 0;

retval = ioctl(fd, FIO_TP551_SEQ_START, (int)&seqBuf);
if (retval != ERROR)
{

/* function succeeded */
}
else
{

/* handle the error */
}

TPMC551-SW-42 – VxWorks Device Driver Page 26 of 30

ERROR CODES

Error code Description
S_tp551Drv_MODBUSY The sequencer is already in use

TPMC551-SW-42 – VxWorks Device Driver Page 27 of 30

4.4.3 FIO_TP551_SEQ_STOP

This I/O control function stops the TPMC551 sequencer mode. The function specific control parameter
arg is not used for this function.

EXAMPLE

#include “tpmc551.h”

int fd;
int retval;

/*--------------
Stop sequencer
--------------*/

retval = ioctl(fd, FIO_TP551_SEQ_STOP, 0);
if (retval != ERROR)
{

/* function succeeded */
}
else
{

/* handle the error */
}

TPMC551-SW-42 – VxWorks Device Driver Page 28 of 30

4.4.4 FIO_TP551_SEQ_WRITE

This I/O control function updates the output data. The specified values will be used for the next
sequencer cycle. The function specific control parameter arg is a pointer on a TP551_SEQ_ ARGS
structure.

typedef struct
{

TP551_CHANNEL_ARGS Channel[8];
} TP551_SEQ_ ARGS;

Channel[]

The array specifies the values for the next cycle. The array is an array of the data structure
TP551_CHANNEL_ARGS. The array index specifies the channel, index 0 for channel 1, index 1
for channel 2, and so on.

typedef struct
{

unsigned long Flags;
long Value;

} TP551_CHANNEL_ARGS;

Flags

The parameter specifies the flags for this channel that can be ORed. Allowed Flags are:
TP551_CORR This flag specifies, that the output value shall be corrected with the

board dependent correction data.
TP551_UPDATE This flag must be set to allow a new conversion for the channel. If

this flag is not set, the output of the channel will not change. This
value is only used for ChannelB data.

Value
This parameter specifies the new output value of the channel.

EXAMPLE

#include “tpmc551.h”

int fd;
TP551_SEQ_ ARGS seqBuf;
int retval;

…

TPMC551-SW-42 – VxWorks Device Driver Page 29 of 30

…

/*---------------------
Update sequencer data
---------------------*/

/* Channel 1: correction enabled */
seqBuf.Channel[0].Flags = TP551_UPDATE | TP551_CORR;
seqBuf.Channel[0].Value = 0x300;

/* Channel 3: correction disabled */
seqBuf.Channel[2].Flags = TP551_UPDATE;
seqBuf.Channel[2].Value = 0x1234;

retval = ioctl(fd, FIO_TP551_SEQ_WRITE, (int)&seqBuf);
if (retval != ERROR)
{

/* function succeeded */
}
else
{

/* handle the error */
}

ERROR CODES

Error code Description
S_tp551Drv_SEQOFF The sequencer is not started

TPMC551-SW-42 – VxWorks Device Driver Page 30 of 30

5 Appendix

5.1 Additional Error Codes
Error code Error value Description

S_tp551Drv_CHANERR 0x05510005 An unsupported channel number has been
specified

S_tp551Drv_MODBUSY 0x05510006 The sequencer is already in use, TPMC551 is
busy, sequencer is running

S_tp551Drv_TIMEOUT 0x05510007 The sequencer has not finished conversion in
the expected time

S_tp551Drv_ICMD 0x05510008 An illegal ioctl() command has been specified
S_tp551Drv_SEQOFF 0x0551000A The sequencer is disabled

	Introduction
	Installation
	Include device driver in Tornado IDE project
	Special installation for Intel x86 based targets
	BSP dependent adjustments
	System resource requirement

	I/O system functions
	tpmc551Drv()
	tpmc551DevCreate()
	tpmc551PciInit()

	I/O Functions
	open()
	close()
	write()
	ioctl()
	FIO_TP551_READ_CONV
	FIO_TP551_SEQ_START
	FIO_TP551_SEQ_STOP
	FIO_TP551_SEQ_WRITE

	Appendix
	Additional Error Codes

