
The Embedded I/O Company

TPMC551-S
LynxOS Device

8/4 Channels of Isolate

Version 1.0.x

User Manu
Issue 1.0.0

November 20

TEWS TECHNOLOGIES G
Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49
e-mail: info@tews.com www.tews
W-72
Driver

d 16 Bit D/A

al

09

mbH
lstenbek, Germany
(0) 4101 4058 19
.com

TPMC551-SW-72 – LynxOS Device Driver Page 2 of 27

TPMC551-SW-72

LynxOS Device Driver

8/4 Channels of Isolated 16 Bit D/A

Supported Modules:
TPMC551

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2009 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue November 4, 2009

TPMC551-SW-72 – LynxOS Device Driver Page 3 of 27

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Device Driver Installation ...6
2.1.1 Static Installation ..6

2.1.1.1 Build the driver object ...6
2.1.1.2 Create Device Information Declaration ..6
2.1.1.3 Modify the Device and Driver Configuration File ..6
2.1.1.4 Rebuild the Kernel ..7

2.1.2 Dynamic Installation ...7
2.1.2.1 Build the driver object ...7
2.1.2.2 Create Device Information Declaration ..7
2.1.2.3 Uninstall dynamic loaded driver ...8

2.1.3 Device Information Definition File ..8
2.1.4 Configuration File: CONFIG.TBL ...9

3 TPMC551 DEVICE DRIVER PROGRAMMING .. 10
3.1 open() ...10
3.2 close()...12
3.3 ioctl() ..13

3.3.1 TPMC551_WRITE ...14
3.3.2 TPMC551_SEQSETUP ...16
3.3.3 TPMC551_SEQSTOP..20
3.3.4 TPMC551_SEQWRITE..21
3.3.5 TPMC551_INFO ..24

4 DEBUGGING AND DIAGNOSTIC.. 26

TPMC551-SW-72 – LynxOS Device Driver Page 4 of 27

1 Introduction
The TPMC551-SW-72 LynxOS device driver allows the operation of the TPMC551 digital analog
converter PMC on LynxOS platforms with DRM based PCI interface.

The standard file (I/O) functions (open, close, ioctl) provide the basic interface for opening and closing
a file descriptor and for performing device I/O and configuration operations.

The TPMC551-SW-72 device driver supports the following features:

 setting output voltage
 latched conversion and simultaneous output
 output data correction with factory calibration data
 configuration, start and stop of the sequencer
 write sequencer data sets
 reading board information

The TPMC551-SW-72 device driver supports the modules listed below:

TPMC551-10 8 Channel 16-bit ADC (Front I/O) (PMC)

TPMC551-11 4 Channel 16-bit ADC (Front I/O) (PMC)

TPMC551-20 8 Channel 16-bit ADC (Back I/O) (PMC)

TPMC551-21 4 Channel 16-bit ADC (Back I/O) (PMC)

To get more information about the features and use of TPMC551 devices it is recommended to read
the manuals listed below.

TPMC551 User Manual

TPMC551 Engineering Manual

TPMC551-SW-72 – LynxOS Device Driver Page 5 of 27

2 Installation
Following files are located on the distribution media:

Directory path ‘TPMC551-SW-72’:

TPMC551-SW-72-SRC.tar.gz GZIP compressed archive with driver source code
TPMC551-SW-72-1.0.0.pdf PDF copy of this manual
ChangeLog.txt Release history
Release.txt Release information

For installation the files have to be copied to the desired target directory.

The GZIP compressed archive TPMC551-SW-72-SRC.tar.gz contains the following files and
directories:

Directory path ‘tpmc551’:

tpmc551.c TPMC551 device driver source
tpmc551def.h TPMC551 driver include file
tpmc551.h TPMC551 include file for driver and application
tpmc551_info.c TPMC551 Device information definition
tpmc551_info.h TPMC551 Device information definition header
tpmc551.cfg TPMC551 Driver configuration file include
tpmc551.import Linker import file
Makefile Device driver make file
example/tpmc551exa.c Example application
example/Makefile Example application makefile

In order to perform a driver installation, first extract the TAR file to a temporary directory, than follow
the steps below:

1. Create a new directory in the system drivers directory path /sys/drivers.xxx, where xxx represents
the BSP that supports the target hardware.

For example: /sys/drivers.pp_drm/tpmc551 or /sys/drivers.cpci_x86/tpmc551

2. Copy the following files to this directory:
- tpmc551.c
- tpmc551def.h
- tpmc551.import
- Makefile

3. Copy tpmc551.h to /usr/include/

4. Copy tpmc551_info.c to /sys/devices.xxx/ or /sys/devices if /sys/devices.xxx does not exist (xxx
represents the BSP).

5. Copy tpmc551_info.h to /sys/dheaders/

Copy tpmc551.cfg to /sys/cfg.xxx/, where xxx represents the BSP for the target platform. For example:
/sys/cfg.ppc or /sys/cfg.x86

TPMC551-SW-72 – LynxOS Device Driver Page 6 of 27

2.1 Device Driver Installation
The two methods of driver installation are as follows:

(1) Static Installation
(2) Dynamic Installation (only native LynxOS 4 systems)

2.1.1 Static Installation

With this method, the driver object code is linked with the kernel routines and is installed during
system start-up.

2.1.1.1 Build the driver object

1. Change to the directory /sys/drivers.xxx/tpmc551, where xxx represents the BSP that supports the
target hardware.

2. To update the library /sys/lib/libdrivers.a enter:

make install

2.1.1.2 Create Device Information Declaration

1. Change to the directory /sys/devices.xxx/ or /sys/devices if /sys/devices.xxx does not exist (xxx
represents the BSP).

2. Add the following dependencies to the Makefile

DEVICE_FILES_all = … tpmc551_info.x

And at the end of the Makefile

tpmc551_info.o:$(DHEADERS)/tpmc551_info.h

3. To update the library /sys/lib/libdevices.a enter:

make install

2.1.1.3 Modify the Device and Driver Configuration File

In order to insert the driver object code into the kernel image, an appropriate entry in file CONFIG.TBL
must be created.

1. Change to the directory /sys/lynx.os/ respective /sys/bsp.xxx, where xxx represents the BSP that
supports the target hardware.

2. Create an entry at the end of the file CONFIG.TBL

Insert the following entry at the end of this file.

I:tpmc551.cfg

TPMC551-SW-72 – LynxOS Device Driver Page 7 of 27

2.1.1.4 Rebuild the Kernel

1. Change to the directory /sys/lynx.os/ (/sys/bsp.xxx)

2. Enter the following command to rebuild the kernel:

make install

3. Reboot the newly created operating system by the following command (not necessary for KDIs):

reboot –aN

The N flag instructs init to run mknod and create all the nodes mentioned in the new nodetab.

4. After reboot you should find the following new devices (depends on the device configuration):
/dev/tpmc551a, /dev/tpmc551b, …

2.1.2 Dynamic Installation

This method allows you to install the driver after the operating system is booted. The driver object
code is attached to the end of the kernel image and the operating system dynamically adds this driver
to its internal structures. The driver can also be removed dynamically.

2.1.2.1 Build the driver object

1. Change to the directory /sys/drivers.xxx/tpmc551, where xxx represents the BSP that supports the
target hardware.

2. To make the dynamic link-able driver enter:

make dldd

2.1.2.2 Create Device Information Declaration

1. Change to the directory /sys/drivers.xxx/tpmc551, where xxx represents the BSP that supports the
target hardware.

2. To create a device definition file for the major device (this works only on native systems)

make t551info

3. To install the driver enter:

drinstall –c tpmc551.obj

If successful, drinstall returns a unique <driver-ID>

4. To install the major device enter:

devinstall –c –d <driver-ID> t551info

The <driver-ID> is returned by the drinstall command

5. To create the node for the devices enter:

mknod /dev/tpmc551a c <major_no> 0

The <major_no> is returned by the devinstall command.

If all steps are successfully completed, the TPMC551 is ready to use.

TPMC551-SW-72 – LynxOS Device Driver Page 8 of 27

2.1.2.3 Uninstall dynamic loaded driver

To uninstall the TPMC551 device enter the following commands:

devinstall –u –c <device-ID>
drinstall –u <driver-ID>

2.1.3 Device Information Definition File

The device information definition contains information necessary to install the TPMC551 major device.

The implementation of the device information definition is done through a C structure, which is defined
in the header file tpmc551_info.h.

This structure contains the following parameter:

PCIBusNumber Contains the PCI bus number at which the supported device is connected.
Valid bus numbers are in range from 0 to 255.

PCIDeviceNumber Contains the device number (slot) at which the supported device is
connected. Valid device numbers are in range from 0 to 31.

If both PCIBusNumber and PCIDeviceNumber are –1 then the driver will auto scan for
supported devices. The first device found in the scan order will be allocated by the driver for
this major device.

Already allocated devices can’t be allocated twice. This is important to know if there are more
than one TPMC551 major devices.

A device information definition is unique for every TPMC551 major device. The file tpmc551_info.c on
the distribution media contains two device information declarations, tpmc551A for the first major
device and tpmc551B for the second major device.

If the driver should support more than two major devices it is necessary to copy and paste an existing
declaration and rename it with a unique name, for example tpmc551C, tpmc551D and so on.

It is also necessary to modify the device and driver configuration file, respectively the
configuration include file tpmc551.cfg.

The following device declaration information uses the auto find method to detect a supported device
on the PCI bus.

TDRV551_INFO tpmc551A = {

-1, /* Auto find the device on any PCI bus */
-1

};

TPMC551-SW-72 – LynxOS Device Driver Page 9 of 27

2.1.4 Configuration File: CONFIG.TBL

The device and driver configuration file CONFIG.TBL (respective config.tbl on LynxOS 5.0 systems)
contains entries for device drivers and its major and minor device declarations. Each time the system
is rebuild, the config utility read this file and produces a new set of driver and device configuration
tables and a corresponding nodetab.

To install the TPMC551 driver and devices into the LynxOS system, the configuration include file
tpmc551.cfg must be included in the CONFIG.TBL (see also chapter 2.1.1.3).

The file tpmc551.cfg on the distribution disk contains the driver entry (C:tpmc551:\....) and two major
device entries (D:TPMC551 1:tpmc551A:: and D:TPMC551 2:tpmc551B::).

If the driver should support more than one major device, the following entries for major devices must
be enabled by removing the comment character (#). By copy and paste an existing major and minor
entries and renaming the new entries, it is possible to add any number of additional TPMC551
devices.

This example shows a driver entry with two major devices and one minor device:

Format:
C:driver-name:open:close:read:write:select:control:install:uninstall
D:device-name:info-block-name:raw-partner-name
N:node-name:minor-dev

C:tpmc551:tpmc551open:tpmc551close: \
::: \
::tpmc551ioctl: \
:tpmc551install:tpmc551uninstall
D:TPMC551 1:tpmc551A::
N:tpmc551a:0
D:TPMC551 2:tpmc551B::
N:tpmc551b:0

The configuration above creates the following nodes in the /dev directory.

/dev/tpmc551a /dev/tpmc551b

TPMC551-SW-72 – LynxOS Device Driver Page 10 of 27

3 TPMC551 Device Driver Programming
LynxOS system calls are all available directly to any C program. They are implemented as ordinary
function calls to "glue" routines in the system library, which trap to the OS code.

Note that many system calls use data structures, which should be obtained in a program from
appropriate header files. Necessary header files are listed with the system call synopsis.

3.1 open()

NAME

open() - open a file

SYNOPSIS

#include <sys/file.h>
#include <sys/types.h>
#include <fcntl.h>

int open (char *path, int oflags[, mode_t mode])

DESCRIPTION

Opens a file (TPMC551 device) named in path for reading and writing. The value of oflags indicates
the intended use of the file. In case of a TPMC551 device oflags must be set to O_RDWR to open the
file for both reading and writing.

The mode argument is required only when a file is created. Because a TPMC551 device already
exists this argument is ignored.

EXAMPLE

int fd;

fd = open ("/dev/tpmc551a", O_RDWR);
if (fd == -1)
{

/* Handle error */
}

TPMC551-SW-72 – LynxOS Device Driver Page 11 of 27

RETURNS

open returns a file descriptor number if successful, or –1 on error.

SEE ALSO

LynxOS System Call - open()

TPMC551-SW-72 – LynxOS Device Driver Page 12 of 27

3.2 close()

NAME

close() – close a file

SYNOPSIS

int close(int fd)

DESCRIPTION

This function closes an opened device.

EXAMPLE

int result;

result = close(fd);
if (result == -1)
{

/* Handle error */
}

RETURNS

close returns 0 (OK) if successful, or –1 on error

SEE ALSO

LynxOS System Call - close()

TPMC551-SW-72 – LynxOS Device Driver Page 13 of 27

3.3 ioctl()

NAME

ioctl() – I/O device control

SYNOPSIS

#include <ioctl.h>
#include <tpmc551.h>

int ioctl (int fd, int request, char *arg)

DESCRIPTION

ioctl provides a way of sending special commands to a device driver. The call sends the value of
request and the pointer arg to the device associated with the descriptor fd.

The following ioctl codes are supported by the driver and are defined in tpmc551.h:

Symbol Meaning

TPMC551_WRITE Set output data

TPMC551_SEQSETUP Setup sequencer configuration and start sequencer mode

TPMC551_SEQSTOP Stop sequencer mode

TPMC551_SEQWRITE Write sequencer new output data

TPMC551_GETINFO Get board specific information
See behind for more detailed information on each control code.

RETURNS

ioctl returns 0 if successful, or –1 on error.

On error, errno will contain a standard error code (see also LynxOS System Call – ioctl).

SEE ALSO

LynxOS System Call - ioctl().

TPMC551-SW-72 – LynxOS Device Driver Page 14 of 27

3.3.1 TPMC551_WRITE

NAME

TPMC551_WRITE – Writes a new output value to the DAC

DESCRIPTION

This function writes a new DAC output value for a specified channel. The function allows writes that
immediately output the new voltage, or which just fetch the value and output the voltage with a later
write access. A pointer to the callers write buffer (TPMC551_WRITE_BUFFER) must be passed by the
parameter arg to the device.

typedef struct
{

int channel;
int convMode;
int corrMode;
int value;

} TPMC551_WRITE_BUFFER, *PTPMC551_WRITE_BUFFER;

Members

channel

This argument specifies the DAC channel to use. Allowed values are 1 up to 8 for TPMC551-x0
and 1 up to 4 for TPMC551-x1.

convMode

This argument specifies the conversion mode. Symbols for the conversion mode are defined in
tpmc551.h:

Define Description

TPMC551_NORMAL The value will be written to the specified channel and the output
voltage will be updated for the channel

TPMC551_LATCH The value will be written to the specified channel, but output
voltage is not updated

TPMC551_SIMCONV The value will be written to the specified channel and the output
voltage will be updated for all channels

TPMC551-SW-72 – LynxOS Device Driver Page 15 of 27

corrMode

This argument specifies if output value correction will be used. Symbols for ‘TPMC551_ON’ and
‘TPMC551_OFF’ are defined in tpmc551.h:

Define Description

TPMC551_OFF This value specifies that the value will be written to the DAC
without correction.

TPMC551_ON This value specifies that the DAC raw value shall be corrected with
the factory correction data before it is written to the DAC.

value

This parameter specifies the new DAC output value. Values are allowed between 0 and 65535
for unipolar (0V…10V) channels and between -32768 and 32767 for bipolar (-/+10V) channels.

EXAMPLE

#include <tpmc551.h>

int fd;
int result;
TPMC551_WRITE_BUFFER wrBuf;

/* --- write new output value --- */
wrBuf.channel = 4; /* DAC channel 4 */
wrBuf.convMode = TPMC551_NORMAL; /* immidiate conversion */
wrBuf.corrMode = TPMC551_ON; /* output value corrrection on */
wrBuf.value = 0x4000; /* 5V for bipolar channel */

result = ioctl(fd, TPMC551_WRITE, (char*)&wrBuf);
if (result >= 0)
{

/* Write has been successful */
}
else
{

/* Write failed */
}

ERRORS

EINVAL An unsupported input parameter value has been specified. Check
input parameters

EBUSY The sequencer mode is active for the device and single channel
conversions are not allowed.

Other returned error codes are system error conditions.

TPMC551-SW-72 – LynxOS Device Driver Page 16 of 27

3.3.2 TPMC551_SEQSETUP

NAME

TPMC551_SEQSETUP – Configure sequencer mode and start execution

DESCRIPTION

This function configures channels and timing for sequencer mode and starts the execution. A pointer
to the callers configuration buffer (TPMC551_SEQSETUP_BUFFER) must be passed by the
parameter arg to the device.

typedef struct
{

int cycleTime;
int synchMode;
int timerMode;
int waitMode;
struct
{

int enable;
int corrMode;
int value;

} chanCfg[MAX_NUM_CHANS];
} TPMC551_SEQSETUP_BUFFER, *PTPMC551_SEQSETUP_BUFFER;

Members

cycleTime

This argument specifies the cycle time for sequencer mode. The time is specified in steps of
100µs. Allowed values are 0 up to 65535. A value of 0 specifies that the sequencer will work in
continuous mode. If the timerMode specifies continuous mode, this value will be ignored.

synchMode

This argument specifies if the channels shall update their output synchronously or as fast as
possible. Symbols for synchMode are defined in tpmc551.h:

Define Description

TPMC551_TRANSPARENT If this value is specified, the outputs will be updated as fast as
possible for every channel

TPMC551_SYNCHRON If this value is specified, all channels used in sequencer mode
will update outputs synchronously all channels were written.

TPMC551-SW-72 – LynxOS Device Driver Page 17 of 27

timerMode

This argument specifies if the sequencer shall use the cycle timer or run in continuous mode.
Symbols for timerMode are defined in tpmc551.h:

Define Description

TPMC551_TIMER The sequencer will run in timer mode. The output voltages will
be updated in a fixed grid which is defined by cycleTime.

TPMC551_CONTINUOUS The sequencer will start the next conversion cycle immediately
after the previous has been completed. The speed depends on
the number of used channels.

waitMode

This argument specifies if the driver shall wait until the current cycle was completed and the
new cycle was started.
Symbols for timerMode are defined in tpmc551.h:

Define Description

TPMC551_OFF The output data will be written and the driver will return.

TPMC551_ON The output data will be written and the driver will wait until the
previous cycle (maybe from other configuration) is completed and
the current configuration is used.

chanCfg[]

This argument is an array containing the channel configurations. The array element with index 0
specifies the configuration of channel 1, index 1 specifies the configuration of channel 2, and so
on.

chanCfg[].enable

This array element specifies if the assigned channel shall be enabled for sequencer mode.
Symbols for ‘TPMC551_ON’ and ‘TPMC551_OFF’ are defined in tpmc551.h:

Define Description

TPMC551_OFF If this value is specified, the channel will not be used.

TPMC551_ON If this value is specified, the channel will be enabled in sequencer
mode and the output data will be updated with every sequencer
cycle.

chanCfg[].corrMode

This array element specifies if output value correction shall be used for the assigned channel.
Symbols for ‘TPMC551_ON’ and ‘TPMC551_OFF’ are defined in tpmc551.h:

Define Description

TPMC551_OFF This value specifies that values for the channel will be used as a
raw value.

TPMC551_ON This value specifies that values for the channel will be used as a
corrected value. For correction factory stored values will be used.

chanCfg[].value

This parameter specifies the initial output value of the channel. Values are allowed between
0 and 65535 for unipolar (0V…10V) channels and between -32768 and 32767 for bipolar
(-/+10V) channels.

TPMC551-SW-72 – LynxOS Device Driver Page 18 of 27

EXAMPLE

#include <tpmc551.h>

int fd;
int chanIdx;
int result;
TPMC551_SEQSETUP_BUFFER seqBuf;

/* --- initialize structure --- */
for (chanIdx = 0; chanIdx < MAX_NUM_CHANS; chanIdx++)
{

seqBuf.chanCfg[].enable = TPMC551_OFF; /* disable channel */
}

/* --- configure and start sequencer --- */
seqBuf.cycleTime = 5000; /* cycle time: 0.5 sec */
seqBuf.synchMode = TPMC551_SYNCHRON; /* synchronous output */
seqBuf.timerMode = TPMC551_TIMER; /* user cycle timer */
seqBuf.waitTime = TPMC551_OFF; /* return immidiately */
/* Channel 1 */
seqBuf.chanCfg[0].enable = TPMC551_ON; /* enable channel */
seqBuf.chanCfg[0].corrMode = TPMC551_ON; /* corrrection on */
seqBuf.chanCfg[0].value = 0; /* initial out: 0V */
/* Channel 4 */
seqBuf.chanCfg[3].enable = TPMC551_ON; /* enable channel */
seqBuf.chanCfg[3].corrMode = TPMC551_ON; /* corrrection on */
seqBuf.chanCfg[3].value = 0x4000; /* initial out: 5V/2.5V */
/* Channel 8 */
seqBuf.chanCfg[7].enable = TPMC551_ON; /* enable channel */
seqBuf.chanCfg[7].corrMode = TPMC551_ON; /* corrrection on */
seqBuf.chanCfg[7].value = 0; /* initial out: 0V */

result = ioctl(fd, TPMC551_SEQSETUP, (char*)&seqBuf);
if (result >= 0)
{

/* Sequencer mode successfully started */
}
else
{

/* Sequencer mode start failed */
}

TPMC551-SW-72 – LynxOS Device Driver Page 19 of 27

ERRORS

EINVAL An unsupported input parameter has been specified. Check input
parameters

EBUSY The sequencer mode is already active for the device. The sequencer
must be stopped.

EINTR The function was cancelled.

ETIMEDOUT The wait time has exceeded the maximum time of a sequencer cycle.
(no interrupts or HW-problem)

Other returned error codes are system error conditions.

TPMC551-SW-72 – LynxOS Device Driver Page 20 of 27

3.3.3 TPMC551_SEQSTOP

NAME

TPMC551_SEQSTOP – Stop sequencer mode

DESCRIPTION

This function stops the sequencer mode. The function dependent parameter arg can be set to NULL.

EXAMPLE

#include <tpmc551.h>

int fd;
int result;

/* --- stop sequencer --- */
result = ioctl(fd, TPMC551_SEQSTOP, NULL);
if (result >= 0)
{

/* Sequencer successfully stopped */
}
else
{

/* Sequencer stop failed */
}

TPMC551-SW-72 – LynxOS Device Driver Page 21 of 27

3.3.4 TPMC551_SEQWRITE

NAME

TPMC551_SEQWRITE – Write sequencer data

DESCRIPTION

This function writes a set of sequencer data if the sequencer is started. A pointer to the callers write
buffer (TPMC551_SEQWRITE_BUFFER) must be passed by the parameter arg to the device.

typedef struct
{

int waitMode;
int value[MAX_NUM_CHANS];
unsigned int status;

} TPMC551_SEQWRITE_BUFFER, *PTPMC551_SEQWRITE_BUFFER;

Members

waitMode

This argument specifies how data shall be handled and if data can be overwritten or data output
of the application is synchronized with the sequencer cycle. Symbols for ‘TPMC551_ON’ and
‘TPMC551_OFF’ are defined in tpmc551.h:

Define Description

TPMC551_OFF The function stores the data for the next cycle immediately.
Previous written data which has not been transferred to the DAC
will be overwritten.

TPMC551_ON The function waits until there is space to store data for a new
cycle. The function will always wait until data for a new cycle has
been transferred to the DACs. Data will not be overwritten.
This function allows synchronizing with the cycle timer.

value[]

This argument specifies the new output values. Values are allowed between
0 and 65535 for unipolar (0V…10V) channels and between -32768 and 32767 for bipolar
(-/+10V) channels. Only array elements of enabled channels are used. The array element with
index 0 specifies the configuration of channel 1, index 1 specifies the configuration of channel 2,
and so on.

TPMC551-SW-72 – LynxOS Device Driver Page 22 of 27

status

This parameter returns the status of the sequencer. Symbols for the returned flags are defined
in tpmc551.h. The status is a value of OR’ed flags:

Flag Description

TPMC551_FL_UNDERRUN This status is detected by hardware and signals a data
under run. Data has not been updated in a complete
sequencer cycle and old data will be used again. This
status will announce in common that data has not been
provided in time.
There are two cases let this status occur:
(1) the application has not provided data in time
(2) the interrupt has not been handled within the cycle
time, data is available, but has not been updated in
hardware

TPMC551_FL_OVERRUN This flag indicates that data has been overwritten and only
the new data will be used.

EXAMPLE

#include <tpmc551.h>

int fd;
int chanIdx;
int result;
TPMC551_SEQWRITE_BUFFER seqWrBuf;

/* --- write new set of data --- */
seqWrBuf.waitMode = TPMC551_ON; /* synchronize with cycle timer */
seqWrBuf.value[0] = 0x1000; /* channel 1: new data */
seqWrBuf.value[3] = 0x1000; /* channel 4: new data */
seqWrBuf.value[7] = 0x1000; /* channel 8: new data */

result = ioctl(fd, TPMC551_SEQREAD, (char*)&seqWrBuf);
if (result >= 0)
{

printf(“Write successful, status = %x\n”, seqWrBuf.status);
}
else
{

/* Sequencer write failed */
}

TPMC551-SW-72 – LynxOS Device Driver Page 23 of 27

ERRORS

EINTR The function was cancelled.

ETIMEDOUT The wait time has exceeded the maximum time of a sequencer cycle.
(no interrupts or HW-problem)

EINVAL An unsupported input parameter has been specified. Check input
parameters.

EBUSY The sequencer mode has not been started for the device. The
sequencer must be started first.

Other returned error codes are system error conditions.

TPMC551-SW-72 – LynxOS Device Driver Page 24 of 27

3.3.5 TPMC551_INFO

NAME

TPMC551_INFO – Returns board data and information about the configuration

DESCRIPTION

This function returns board specific data like number of channels, correction data and configuration of
the channels voltage range. A pointer to the callers write buffer (TPMC551_INFO_BUFFER) must be
passed by the parameter arg to the device.

typedef struct
{

int availChans;
int polMode[MAX_NUM_CHANS];
int corrDataOffset[MAX_NUM_CHANS];
int corrDataGain[MAX_NUM_CHANS];

} TPMC551_INFO_BUFFER, *PTPMC551_INFO_BUFFER;

Members

availChans

The returned value specifies the number channels available on the board. This will be 4 for
TPMC551-x1 and 8 for TPMC551-x0.

polMode[]

This array returns the voltage configuration of the channel. The array index specifies the
channel, 0 for channel 1, 1 for channel 2, and so on. Symbols for the polarity mode are defined
in tpmc551.h:

Define Description

TPMC551_UNDEF This value specifies, that the channel is not available

TPMC551_UNIPOL This value specifies that the channel is configured for a voltage
range from 0V up to +10V (unipolar)

TPMC551_BIPOL This value specifies that the channel is configured for a voltage
range from -10V up to +10V (bipolar)

corrDataOffset[]

This array returns the factory calibration offset values for the channels. The array index
specifies the channel, 0 for channel 1, 1 for channel 2, and so on.

corrDataGain []

This array returns the factory calibration gain values for the channels. The array index specifies
the channel, 0 for channel 1, 1 for channel 2, and so on.

TPMC551-SW-72 – LynxOS Device Driver Page 25 of 27

EXAMPLE

#include <tpmc551.h>

int fd;
int result;
TPMC551_INFO_BUFFER infoBuf;

/* --- read current input value --- */
result = ioctl(fd, TPMC551_INFO, (char*)&infoBuf);
if (result >= 0)
{

/* Info read has been successful */
printf(“%d channels available\n”, infoBuf. availChans);
…

}
else
{

/* Info read failed */
}

TPMC551-SW-72 – LynxOS Device Driver Page 26 of 27

4 Debugging and Diagnostic
If the driver will not work properly, please enable debug outputs by defining the symbols DEBUG,
DEBUG_TPMC, and DEBUG_PCI in file tpmc551.c.

The debug output should appear on the console. If not, please check the symbol KKPF_PORT in
uparam.h. This symbol should be configured to a valid COM port (e.g. SKDB_COM1).

The debug output displays the device information data for the current major device like this.

TPMC551: Device Driver Install
Bus = 0 Dev = 16 Func = 0
[00] = 905010B5
[04] = 02800000
[08] = 11800001
[0C] = 00000000
[10] = 80003000
[14] = 00802001
[18] = 00803001
[1C] = 80004000
[20] = 00000000
[24] = 00000000
[28] = 00000000
[2C] = 02271498
[30] = 00000000
[34] = 00000000
[38] = 00000000
[3C] = 00000109

PCI Base Address 0 (PCI_RESID_BAR0)

70603000 : E1 FF FF 0F C0 FF FF 0F 00 00 00 00 00 00 00 00
70603010 : 00 00 00 00 01 00 00 00 01 01 00 00 00 00 00 00
70603020 : 00 00 00 00 00 00 00 00 80 20 41 51 80 62 05 55
70603030 : 00 00 00 00 00 00 00 00 00 00 00 00 09 00 00 00

PCI Base Address 1 (PCI_RESID_BAR1)

PCI Base Address 2 (PCI_RESID_BAR2)

70203000 : 0000 0000 000A 0000 0000 0000 0000 0000
70203010 : 0000 0000 0000 0000 0000 0000 0000 0000
70203020 : FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
70203030 : FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

TPMC551-SW-72 – LynxOS Device Driver Page 27 of 27

PCI Base Address 3 (PCI_RESID_BAR3)

70604000 : 00 14 FF FC FF F6 00 0C 00 0B 00 12 FF ED 00 01
70604010 : 00 07 00 07 00 06 00 07 FF B4 FF BB FF B0 FF B2
TPMC551: Found TPMC551-xx on Bus 0, Device 16

Correction data: Offset/Gain
7/20
7/-4
6/-10
7/12

-76/11
-69/18
-80/-19
-78/1

The debug output above is only an example. Debug output on other systems may be different
for addresses and data in some locations.

	Introduction
	Installation
	Device Driver Installation
	Static Installation
	Build the driver object
	Create Device Information Declaration
	Modify the Device and Driver Configuration File
	Rebuild the Kernel

	Dynamic Installation
	Build the driver object
	Create Device Information Declaration
	Uninstall dynamic loaded driver

	Device Information Definition File
	Configuration File: CONFIG.TBL

	TPMC551 Device Driver Programming
	open()
	close()
	ioctl()
	TPMC551_WRITE
	TPMC551_SEQSETUP
	TPMC551_SEQSTOP
	TPMC551_SEQWRITE
	TPMC551_INFO

	Debugging and Diagnostic

