
The Embedded I/O Company

TPMC680-S
VxWorks Device

8 x 8 Bit Digital

Version 3.0.x

User Manu
Issue 3.0.1

March 2010

TEWS TECHNOLOGIES G
Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49
e-mail: info@tews.com www.tews
W-42
Driver

I/O

al

mbH
lstenbek, Germany
(0) 4101 4058 19
.com



TPMC680-SW-42 – VxWorks Device Driver Page 2 of 67

TPMC680-SW-42

VxWorks Device Driver

8 x 8 Bit Digital I/O

Supported Modules:
TPMC680-10

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2002-2010 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue November 16, 2002

1.1 Read() parameter description changed December 11, 2002

1.2 Flags “empty / not full” corrected December 13, 2002

2.0.0 New driver start and device creation functions, new file list May 24, 2006

3.0.0 Support for VxBus and API description added, general revision
read() and write() functions replaced by ioctl() functions

February 3, 2010

3.0.1 Legacy vs. VxBus Driver modified March 26, 2010



TPMC680-SW-42 – VxWorks Device Driver Page 3 of 67

Table of Contents
1 INTRODUCTION......................................................................................................... 4
2 INSTALLATION.......................................................................................................... 5

2.1 Legacy vs. VxBus Driver ................................................................................................................6
2.2 VxBus Driver Installation ...............................................................................................................6

2.2.1 Direct BSP Builds.................................................................................................................7
2.3 Legacy Driver Installation ..............................................................................................................8

2.3.1 Include device driver in VxWorks projects ...........................................................................8
2.3.2 Special installation for Intel x86 based targets ....................................................................8
2.3.3 BSP dependent adjustments ...............................................................................................9

2.4 Configuration of FIFO depth ..........................................................................................................9
2.5 System resource requirement .....................................................................................................10

3 API DOCUMENTATION ........................................................................................... 11
3.1 General Functions.........................................................................................................................11

3.1.1 tpmc680Open() ..................................................................................................................11
3.1.2 tpmc680Close()..................................................................................................................13

3.2 Device Access Functions.............................................................................................................15
3.2.1 tpmc680Read.....................................................................................................................15
3.2.2 tpmc680Write .....................................................................................................................21
3.2.3 tpmc680SetPortDirection ...................................................................................................27
3.2.4 tpmc680SetPortMode ........................................................................................................30
3.2.5 tpmc680SetInterruptRoutine ..............................................................................................34

4 LEGACY I/O SYSTEM FUNCTIONS........................................................................ 37
4.1 tp680Drv() ......................................................................................................................................37
4.2 tp680DevCreate()...........................................................................................................................39
4.3 tp680PciInit()..................................................................................................................................41

5 BASIC I/O FUNCTIONS ........................................................................................... 42
5.1 open() .............................................................................................................................................42
5.2 close().............................................................................................................................................44
5.3 ioctl() ..............................................................................................................................................46

5.3.1 FIO_TP680_READ.............................................................................................................48
5.3.2 FIO_TP680_WRITE...........................................................................................................53
5.3.3 FIO_TP680_SET_DIR .......................................................................................................58
5.3.4 FIO_TP680_SET_IRQ .......................................................................................................60
5.3.5 FIO_TP680_SET_MODE...................................................................................................63
5.3.6 FIO_TP680_GET_DEBUG ................................................................................................66

6 APPENDIX................................................................................................................ 67
6.1 Additional Error Codes.................................................................................................................67



TPMC680-SW-42 – VxWorks Device Driver Page 4 of 67

1 Introduction
The TPMC680-SW-42 release contains independent driver sources for the old legacy (pre-VxBus) and
the new VxBus-enabled driver model. The VxBus-enabled driver is recommended for new
developments with later VxWorks 6.x releases and mandatory for VxWorks SMP systems.

Both drivers, legacy and VxBus, share the same application programming interface (API) and device-
independent basic I/O interface with open(), close() and ioctl() functions. The basic I/O interface is only
for backward compatibility with existing applications and should not be used for new developments.

Both drivers invoke a mutual exclusion and binary semaphore mechanism to prevent simultaneous
requests by multiple tasks from interfering with each other.

The TPMC680-SW-42 device driver supports the following features:

 direct reading for input ports (8 bit / synchronous mode)
 direct writing for output ports (8 bit / synchronous mode)
 buffered read for input ports (16/32 bit handshake mode)
 buffered write for output ports (16/32 bit handshake mode)
 configuring ports
 connecting a function with parameter to an input event for input ports (8 bit / synchronous mode)

The TPMC680-SW-42 supports the modules listed below:

TPMC680-10 8 x 8 Bit Digital I/O PMC

To get more information about the features and use of TPMC680 devices it is recommended to read
the manuals listed below.

TPMC680 User manual

TPMC680 Engineering Manual



TPMC680-SW-42 – VxWorks Device Driver Page 5 of 67

2 Installation
Following files are located on the distribution media:

Directory path ‘TPMC680-SW-42’:

TPMC680-SW-42-3.0.1.pdf PDF copy of this manual
TPMC680-SW-42-VXBUS.zip Zip compressed archive with VxBus driver sources
TPMC680-SW-42-LEGACY.zip Zip compressed archive with legacy driver sources
ChangeLog.txt Release history
Release.txt Release information

The archive TPMC680-SW-42-VXBUS.zip contains the following files and directories:

Directory path ‘./tews/tpmc680’:

tpmc680drv.c TPMC680 device driver source
tpmc680def.h TPMC680 driver include file
tpmc680.h TPMC680 include file for driver and application
tpmc680api.c TPMC680 API file
Makefile Driver Makefile
40tpmc680.cdf Component description file for VxWorks development tools
tpmc680.dc Configuration stub file for direct BSP builds
tpmc680.dr Configuration stub file for direct BSP builds
include/tvxbHal.h Hardware dependent interface functions and definitions
apps/tpmc680exa.c Example application

The archive TPMC680-SW-42-LEGACY.zip contains the following files and directories:

Directory path ‘./tpmc680’:

tpmc680drv.c TPMC680 device driver source
tpmc680def.h TPMC680 driver include file
tpmc680.h TPMC680 include file for driver and application
tpmc680api.c TPMC680 API file
tpmc680pci.c TPMC680 PCI MMU mapping for Intel x86 based targets
tpmc680exa.c Example application
tpmc680init.c Legacy driver initialization
include/tdhal.h Hardware dependent interface functions and definitions



TPMC680-SW-42 – VxWorks Device Driver Page 6 of 67

2.1 Legacy vs. VxBus Driver
In later VxWorks 6.x releases, the old VxWorks 5.x legacy device driver model was replaced by
VxBus-enabled device drivers. Legacy device drivers are tightly coupled with the BSP and the board
hardware. The VxBus infrastructure hides all BSP and hardware differences under a well defined
interface, which improves the portability and reduces the configuration effort. A further advantage is
the improved performance of API calls by using the method interface and bypassing the VxWorks
basic I/O interface.

VxBus-enabled device drivers are the preferred driver interface for new developments.

The checklist below will help you to make a decision which driver model is suitable and possible for
your application:

Legacy Driver VxBus Driver

 VxWorks 5.x releases

 VxWorks 6.5 and earlier
releases

 VxWorks 6.x releases without
VxBus PCI bus support

 VxWorks 6.6 and later releases
with VxBus PCI bus

 SMP systems (only the VxBus
driver is SMP safe!)

TEWS TECHNOLOGIES recommends not using the VxBus Driver before VxWorks release 6.6.
In previous releases required header files are missing and the support for 3rd-party drivers may
not be available.

2.2 VxBus Driver Installation
Because Wind River doesn’t provide a standard installation method for 3rd party VxBus device drivers
the installation procedure needs to be done manually.

In order to perform a manual installation extract all files from the archive TPMC680-SW-42-VXBUS.zip
to the typical 3rd party directory installDir/vxworks-6.x/target/3rdparty (whereas installDir must be
substituted by the VxWorks installation directory).

After successful installation the TPMC680 device driver is located in the vendor and driver-specific
directory installDir/vxworks-6.x/target/3rdparty/tews/tpmc680.

At this point the TPMC680 driver is not configurable and cannot be included with the kernel
configuration tool in a Wind River Workbench project. To make the driver configurable the driver library
for the desired processer (CPU) and build tool (TOOL) must be built in the following way:

(1) Open a VxWorks development shell (e.g. C:\WindRiver\wrenv.exe -p vxworks-6.7)

(2) Change into the driver installation directory
installDir/vxworks-6.x/target/3rdparty/tews/tpmc680

(3) Invoke the build command for the required processor and build tool
make CPU=cpuName TOOL=tool

For Windows hosts this may look like this:

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc680



TPMC680-SW-42 – VxWorks Device Driver Page 7 of 67

C:> make CPU=PENTIUM4 TOOL=diab

To compile SMP-enabled libraries, the argument VXBUILD=SMP must be added to the command line

C:> make CPU=PENTIUM4 TOOL=diab VXBUILD=SMP

To integrate the TPMC680 driver with the VxWorks development tools (Workbench), the component
configuration file 40tpmc680.cdf must be copied to the directory
installDir/vxworks-6.x/target/config/comps/VxWorks.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc680
C:> copy 40tpmc680.cdf \Windriver\vxworks-6.7\target\config\comps\vxWorks

In VxWorks 6.7 and newer releases the kernel configuration tool scans the CDF file automatically and
updates the CxrCat.txt cache file to provide component parameter information for the kernel
configuration tool as long as the timestamp of the copied CDF file is newer than the one of the
CxrCat.txt. If your copy command preserves the timestamp, force to update the timestamp by a utility,
such as touch.

In earlier VxWorks releases the CxrCat.txt file may not be updated automatically. In this case, remove
or rename the original CxrCat.txt file and invoke the make command to force recreation of this file.

C:> cd \Windriver\vxworks-6.7\target\config\comps\vxWorks
C:> del CxrCat.txt
C:> make

After successful completion of all steps above and restart of the Wind River Workbench, the TPMC680
driver can be included in VxWorks projects by selecting the “TEWS TPMC680 Driver“ component in
the “hardware (default) - Device Drivers” folder with the kernel configuration tool.

2.2.1 Direct BSP Builds

In development scenarios with the direct BSP build method without using the Workbench or the vxprj
command-line utility, the TPMC680 configuration stub files must be copied to the directory
installDir/vxworks-6.x/target/config/comps/src/hwif. Afterwards the vxbUsrCmdLine.c file must be
updated by invoking the appropriate make command.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc680
C:> copy tpmc680.dc \Windriver\vxworks-6.7\target\config\comps\src\hwif
C:> copy tpmc680.dr \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> cd \Windriver\vxworks-6.7\target\config\comps\src\hwif
C:> make vxbUsrCmdLine.c



TPMC680-SW-42 – VxWorks Device Driver Page 8 of 67

2.3 Legacy Driver Installation

2.3.1 Include device driver in VxWorks projects

For including the TPMC680-SW-42 device driver into a VxWorks project (e.g. Tornado IDE or
Workbench) follow the steps below:

(1) Extract all files from the archive TPMC680-SW-42-LEGACY.zip to your project directory.

(2) Add the device drivers C-files to your project.
Make a right click to your project in the ‘Workspace’ window and use the ‘Add Files ...’ topic.
A file select box appears, and the driver files in the tpmc680 directory can be selected.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your VxWorks User’s
Guide (e.g. Tornado, Workbench, etc.)

2.3.2 Special installation for Intel x86 based targets

The TPMC680 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU_FAMILY. If the content of this macro is equal to I80X86 special Intel x86 conforming code and
function calls will be included.

The second problem for Intel x86 based platforms can’t be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn’t map PCI memory spaces of devices
which are not used by the BSP, the required device memory spaces can’t be accessed.

To solve this problem a MMU mapping entry has to be added for the required TPMC680 PCI memory
spaces prior the MMU initialization (usrMmuInit()) is done.

The C source file tpmc680pci.c contains the function tp680PciInit(). This routine finds out all
TPMC680 devices and adds MMU mapping entries for all used PCI memory spaces. Please insert a
call to this function after the PCI initialization is done and prior to MMU initialization (usrMmuInit()).

The right place to call the function tp680PciInit() is at the end of the function sysHwInit() in sysLib.c (it
can be opened from the project Files window).

Be sure that the function is called prior to MMU initialization otherwise the TPMC680 PCI spaces
remains unmapped and an access fault occurs during driver initialization.

Please insert the following call at a suitable place in sysLib.c:

tp680PciInit();

Modifying the sysLib.c file will change the sysLib.c in the BSP path. Remember this for future
projects and recompilations.



TPMC680-SW-42 – VxWorks Device Driver Page 9 of 67

2.3.3 BSP dependent adjustments

The driver includes a file called include/tdhal.h which contains functions and definitions for BSP
adaptation. It may be necessary to modify them for BSP specific settings. Most settings can be made
automatically by conditional compilation set by the BSP header files, but some settings must be
configured manually. There are two way of modification, first you can change the include/tdhal.h and
define the corresponding definition and its value, or you can do it, using the command line option –D.

There are 3 offset definitions (USERDEFINED_MEM_OFFSET, USERDEFINED_IO_OFFSET, and
USERDEFINED_LEV2VEC) that must be configured if a corresponding warning message appears
during compilation. These definitions always need values. Definition values can be assigned by
command line option -D<definition>=<value>.

definition description

USERDEFINED_MEM_OFFSET The value of this definition must be set to the offset
between CPU-Bus and PCI-Bus Address for PCI
memory space access

USERDEFINED_IO_OFFSET The value of this definition must be set to the offset
between CPU-Bus and PCI-Bus Address for PCI I/O
space access

USERDEFINED_LEV2VEC The value of this definition must be set to the
difference of the interrupt vector (used to connect the
ISR) and the interrupt level (stored to the PCI header )

Another definition allows a simple adaptation for BSPs that utilize a pciIntConnect() function to
connect shared (PCI) interrupts. If this function is defined in the used BSP, the definition of
USERDEFINED_SEL_PCIINTCONNECT should be enabled. The definition by command line option is
made by -D<definition>.

Please refer to the BSP documentation and header files to get information about the interrupt
connection function and the required offset values.

2.4 Configuration of FIFO depth
The depth of the FIFOs can be configured with the define TP680_IOBUFSIZE in tpmc680.h. The value
defines the number of values that can be stored in each of the FIFOs. Changing this value will change
the size of the used system memory for each devices.

After changing the definition of TP680_IOBUFSIZE the driver must be rebuilt to take the
changes effect.



TPMC680-SW-42 – VxWorks Device Driver Page 10 of 67

2.5 System resource requirement
The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement

Memory < 1 KB depends on FIFO size

Stack < 1 KB ---

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.



TPMC680-SW-42 – VxWorks Device Driver Page 11 of 67

3 API Documentation

3.1 General Functions

3.1.1 tpmc680Open()

Name

tpmc680Open() – opens a device.

Synopsis

TPMC680_DEV tpmc680Open
(

char *DeviceName
)

Description

Before I/O can be performed to a device, a file descriptor must be opened by a call to this function.

Parameters

DeviceName

This parameter points to a null-terminated string that specifies the name of the device. The first
TPMC680 device is named “/tpmc680/0”, the second device is named “/tpmc680/1” and so on.

Example

#include “tpmc680.h”

TPMC680_DEV pDev;

/*
** open file descriptor to device
*/
pDev = tpmc680Open(“/tpmc680/0”);
if (pDev == NULL)
{

/* handle open error */
}



TPMC680-SW-42 – VxWorks Device Driver Page 12 of 67

RETURNS

A device descriptor pointer, or NULL if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.



TPMC680-SW-42 – VxWorks Device Driver Page 13 of 67

3.1.2 tpmc680Close()

Name

tpmc680Close() – closes a device.

Synopsis

int tpmc680Close
(

TPMC680_DEV pDev
)

Description

This function closes previously opened devices.

Parameters

pDev

This value specifies the file descriptor pointer to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tpmc680.h”

TPMC680_DEV pDev;
int result;

/*
** close file descriptor to device
*/
result = tpmc680Close(pDev);
if (result < 0)
{

/* handle close error */
}

RETURNS

Zero, or -1 if the function fails. An error code will be stored in errno.



TPMC680-SW-42 – VxWorks Device Driver Page 14 of 67

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.



TPMC680-SW-42 – VxWorks Device Driver Page 15 of 67

3.2 Device Access Functions

3.2.1 tpmc680Read

Name

tpmc680Read – Read data from input port

Synopsis

STATUS tpmc680Read
(

TPMC680_DEV pDev,
TP680_IO_STRUCT *pReadBuf

)

Description

This function reads data from the device. Depending on the configured port mode, the data will be
read directly or buffered.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pReadBuf

This argument points to a TP680_IO_STRUCT buffer where the value will be returned. The data
structure is defined as follows:



TPMC680-SW-42 – VxWorks Device Driver Page 16 of 67

typedef struct
{

int port; /* 0.. 7 */
union
{

unsigned char val8; /* 8 bit wide port */
struct
{

unsigned short *buf;
unsigned long size;

} val16; /* 16 bit wide port (mode 1) */
struct
{

unsigned long *buf;
unsigned long size;

} val32; /* 32 bit wide port (mode 2) */
struct
{

unsigned long val64_l;
unsigned long val64_h;

} val64; /* 64 bit wide port (synchon) */
} u;

} TP680_IO_STRUCT, *PTP680_IO_STRUCT;

port

This parameter specifies the port where data shall be read from. The port number is always
between 0 and 7. Dependent from the module configuration some ports are connected to others
and only the first port is accessible with this function. If the port is connected or configured for
output, read() will return ERROR. The data order is always ‘big endian’ (e.g. a 32 bit access on
port 0 will return the input from port 0 / line 0 at the LSB and the input from port 4 / line 7 at the
MSB.)

Port Mode Configuration 1) Connected to Port

Port 0 Port 2 7 6 5 4 3 2 1 0

BYTE BYTE 7 6 5 4 3 2 1 0

HS16BIT BYTE 7 6 52) 42) 3 2 0 0

BYTE HS16BIT 7 6 52) 42) 2 2 1 0

HS16BIT HS16BIT 7 6 52) 42) 2 2 0 0

HS32BIT --- 7 6 52) 42) 0 0 0 0

SYNCHRON --- 0 0 0 0 0 0 0 0

1) The port mode configurations are assigned to the following driver configurations values:



TPMC680-SW-42 – VxWorks Device Driver Page 17 of 67

Port Mode Configuration Driver Configuration Value (tpmc680def.h)

BYTE TP680_IO_MODE_BYTE

HS16BIT TP680_IO_MODE_HS16BIT

HS32BIT TP680_IO_MODE_HS32BIT

SYNCHRON TP680_IO_MODE_SYNCHRON
2) Bits 0/1 may be used for HS and are unreadable.

u

This union allows handling the different input sizes and modes. Description follows below.

val8

This selection will be used for direct byte input. The value of the specified port will be returned in
this parameter.

val16

This selection will be used for buffered 16bit input. The structure contains a pointer to a buffer
(buf) of unsigned short and the size (size) of this buffer. size will be specified in words. The
read function will fill the buffer until the buffer is filled or there are no more data in the FIFO of
the selected channel.

val32

This selection will be used for buffered 32bit input. The structure contains a pointer to a buffer
(buf) of unsigned long and the size (size) of this buffer. size will be specified in long words. The
read function will fill the buffer until the buffer is filled or there are no more data in the FIFO of
the selected channel.

val64

This selection will be used for direct 64bit synchronous input. The structure has two elements.
The value of port 3..0 will be returned in val64_l where the LSB is the value of port 0 and the
MSB is the value of port 3. The value of port 7..4 will be returned in val64_h where the LSB is
the value of port 4 and the MSB is the value of port 7.



TPMC680-SW-42 – VxWorks Device Driver Page 18 of 67

Example

#include “tpmc680.h”

TPMC680_DEV pDev;
int i;
int retval;
TP680_IO_STRUCT ioBuf;
unsigned short usBuf[10];
unsigned long ulBuf[10];

/*-----------------------------
Read a byte value from port 5
-----------------------------*/

ioBuf.port = 5;

retval = tpmc680Read( pDev, (int)&ioBuf );
if (retval != ERROR)
{

printf("Port %d: %02Xh\n", ioBuf.port, ioBuf.u.val8);
} else {

/* Handle Error */
}
…
/*-------------------------------------------

Fill buffer with values (16Bit) from port 2
-------------------------------------------*/

ioBuf.port = 2;
ioBuf.u.val16.size = 10;
ioBuf.u.val16.buf = usBuf;

retval = tpmc680Read( pDev, (int)&ioBuf );
if (retval != ERROR)
{

for (i = 0; i < 10; i++)
{

printf("Val[%d]: %04Xh\n", i, usBuf[i]);
}

} else {
/* Handle Error */

}

…



TPMC680-SW-42 – VxWorks Device Driver Page 19 of 67

/*-------------------------------------------
Fill buffer with values (32Bit) from port 0
-------------------------------------------*/

ioBuf.port = 0;
ioBuf.u.val32.size = 10;
ioBuf.u.val32.buf = ulBuf;

retval = tpmc680Read( pDev, (int)&ioBuf );
if (retval != ERROR)
{

for (i = 0; i < 10; i++)
{

printf("Val[%d]: %08lXh\n", i, ulBuf[i]);
}

} else {
/* Handle Error */

}

…

/*-----------------------------------
Read port value (64Bit) from port 0
-----------------------------------*/

ioBuf.port = 0;

retval = tpmc680Read( pDev, (int)&ioBuf );
if (retval != ERROR)
{

printf("Val[%d]: %08lX%08lXh \n",
ioBuf.u.val64.val64_h,
ioBuf.u.val64.val64_l);

} else {
/* Handle Error */

}

RETURNS

Number of bytes read or ERROR. If the function fails an error code will be stored in errno.



TPMC680-SW-42 – VxWorks Device Driver Page 20 of 67

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set error code described below.

Error code Description

EBADF The device handle is invalid

S_tp680Dev_IPORT Illegal port number specified

S_tp680Dev_PORTBUSY The port is connected to an other port and is not
addressable

S_tp680Dev_IDIRECTION Illegal direction specified



TPMC680-SW-42 – VxWorks Device Driver Page 21 of 67

3.2.2 tpmc680Write

Name

tpmc680Write – Write data to output port

Synopsis

STATUS tpmc680Write
(

TPMC680_DEV pDev,
TP680_IO_STRUCT *pReadBuf

)

Description

This function writes data to the device. Depending on the configured port mode, the data will be
written directly or buffered.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pReadBuf

This argument points to a TP680_IO_STRUCT buffer where the data is stored. The data
structure is defined as follows:



TPMC680-SW-42 – VxWorks Device Driver Page 22 of 67

typedef struct
{

int port; /* 0.. 7 */
union
{

unsigned char val8; /* 8 bit wide port */
struct
{

unsigned short *buf;
unsigned long size;

} val16; /* 16 bit wide port (mode 1) */
struct
{

unsigned long *buf;
unsigned long size;

} val32; /* 32 bit wide port (mode 2) */
struct
{

unsigned long val64_l;
unsigned long val64_h;

} val64; /* 64 bit wide port (synchon) */
} u;

} TP680_IO_STRUCT, *PTP680_IO_STRUCT;

port

This parameter specifies the port where data shall be written to. The port number is always
between 0 and 7. Dependent from the module configuration some ports are connected to others
and only the first port is accessible with this function. If the port is connected or configured as
input, write() will return ERROR. The data order is always ‘big endian’ (e.g. a 32 bit access on
port 0 will write the output of port 0 / line 0 with the LSB and the output of port 4 / line 7 with the
MSB.)

Port Mode Configuration 1) Connected to Port

Port 0 Port 2 7 6 5 4 3 2 1 0

BYTE BYTE 7 6 5 4 3 2 1 0

HS16BIT BYTE 7 6 52) 42) 3 2 0 0

BYTE HS16BIT 7 6 52) 42) 2 2 1 0

HS16BIT HS16BIT 7 6 52) 42) 2 2 0 0

HS32BIT --- 7 6 52) 42) 0 0 0 0

SYNCHRON --- 0 0 0 0 0 0 0 0

1) The port mode configurations are assigned to the following driver configurations values:



TPMC680-SW-42 – VxWorks Device Driver Page 23 of 67

Port Mode Configuration Driver Configuration Value (tpmc680def.h)

BYTE TP680_IO_MODE_BYTE

HS16BIT TP680_IO_MODE_HS16BIT

HS32BIT TP680_IO_MODE_HS32BIT

SYNCHRON TP680_IO_MODE_SYNCHRON
2) Bits 0/1 may be used for HS and are unwriteable.

u

This union allows handling the different output sizes and modes. Description follows below.

val8

This selection will be used for direct byte output. The specified value will be written to the
specified port.

val16

This selection will be used for buffered 16bit output. The structure contains a pointer to a buffer
(buf) of unsigned short and the size (size) of this buffer. size will be specified in words. The
write function will copy the buffer into a driver internal FIFO and output this value on the
specified port. The function will return immediately.

val32

This selection will be used for buffered 32bit output. The structure contains a pointer to a buffer
(buf) of unsigned long and the size (size) of this buffer. size will be specified in words. The write
function will copy the buffer into a driver internal FIFO and output this value on the specified
port. The function will return immediately.



TPMC680-SW-42 – VxWorks Device Driver Page 24 of 67

Example

#include “tpmc680.h”

TPMC680_DEV pDev;
int i;
int retval;
TP680_IO_STRUCT ioBuf;
unsigned short usBuf[10];
unsigned long ulBuf[10];

/*-------------------------
Write 0x12 to byte port 5
-------------------------*/

ioBuf.port = 5;
ioBuf.u.val8 = 0x12;

retval = tpmc680Write( pDev, (int)&ioBuf );
if (retval != ERROR)
{

/* Output OK */;
}
else
{

/* Handle Error */
}

…



TPMC680-SW-42 – VxWorks Device Driver Page 25 of 67

…

/*-----------------------------------------
Write the buffered values to 16bit port 2
-----------------------------------------*/

usBuf[0] = 0x1111;
usBuf[1] = 0x2222;
usBuf[2] = 0x3333;
ioBuf.port = 2;
ioBuf.u.val16.size = 3;
ioBuf.u.val16.buf = usBuf;

retval = tpmc680Write( pDev, (int)&ioBuf );
if (retval != ERROR)
{

/* Output OK */;
}
else
{

/* Handle Error */
}

…

/*-----------------------------------------
Write the buffered values to 32bit port 0
-----------------------------------------*/

ulBuf[0] = 0x11111111;
ulBuf[1] = 0x22222222;
ulBuf[2] = 0x33333333;
ioBuf.port = 0;
ioBuf.u.val16.size = 3;
ioBuf.u.val32.buf = ulBuf;

retval = tpmc680Write( pDev, (int)&ioBuf );
if (retval != ERROR)
{

/* Output OK */;
}
else
{

/* Handle Error */
}

…



TPMC680-SW-42 – VxWorks Device Driver Page 26 of 67

…

/*-----------------------------------
Write port value (64Bit) to port 0
-----------------------------------*/

ioBuf.port = 0;
ioBuf.u.val64.val64_h = 0x12345678;
ioBuf.u.val64.val64_l = 0x87654321;

retval = tpmc680Write( pDev, (int)&ioBuf );
if (retval != ERROR)
{

/* Output OK */;
}
else
{

/* Handle Error */
}

RETURNS

Number of bytes read or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set error code described below.

Error code Description

EBADF The device handle is invalid

S_tp680Dev_IPORT Illegal port number specified

S_tp680Dev_PORTBUSY The port is connected to an other port and is not
addressable

S_tp680Dev_IDIRECTION Illegal direction specified



TPMC680-SW-42 – VxWorks Device Driver Page 27 of 67

3.2.3 tpmc680SetPortDirection

Name

tpmc680SetPortDirection – Setup port direction

Synopsis

STATUS tpmc680SetPortDirection
(

TPMC680_DEV pDev,
int port,
unsigned long direction

)

Description

This function sets the port direction of the specified port. The mode of the port will be left untouched. If
the port is configured in handshake mode, the FIFO will be flushed.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

port

This parameter specifies the port which shall be configured. The port number is always between
0 and 7. Dependent from the module configuration some ports are connected to others and only
the first port is accessible with this function. If the port is connected, the function will return
ERROR.

Port Mode Configuration 1) Connected to Port

Port 0 Port 2 7 6 5 4 3 2 1 0

BYTE BYTE 7 6 5 4 3 2 1 0

HS16BIT BYTE 7 6 52) 42) 3 2 0 0

BYTE HS16BIT 7 6 52) 42) 2 2 1 0

HS16BIT HS16BIT 7 6 52) 42) 2 2 0 0

HS32BIT --- 7 6 52) 42) 0 0 0 0

SYNCHRON --- 0 0 0 0 0 0 0 0

1) The port mode configurations are assigned to the following driver configurations values:



TPMC680-SW-42 – VxWorks Device Driver Page 28 of 67

Port Mode Configuration Driver Configuration Value (tpmc680def.h)

BYTE TP680_IO_MODE_BYTE

HS16BIT TP680_IO_MODE_HS16BIT

HS32BIT TP680_IO_MODE_HS32BIT

SYNCHRON TP680_IO_MODE_SYNCHRON
2) Bits 0/1 may be used for HS and are unconfigurable.

direction

This parameter specifies the new port direction. The following values are valid.

Value Description

TP680_IO_DIR_IN Configure specified port for input

TP680_IO_DIR_OUT Configure specified port for output

Example

#include “tpmc680.h”

TPMC680_DEV pDev;
int retval;

/*---------------------------
configure port 3 for output
---------------------------*/

retval = tpmc680SetPortDirection( pDev, 3, TP680_IO_DIR_OUT );
if (retval != ERROR)
{

/* function succeeded */
}
else
{

/* handle the error */
}

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.



TPMC680-SW-42 – VxWorks Device Driver Page 29 of 67

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set error code described below.

Error code Description

EBADF The device handle is invalid

S_tp680Dev_PORTBUSY The port is connected to an other port and is not
addressable

S_tp680Dev_IPORTMODE Illegal port mode specified

S_tp680Dev_IPORT Illegal port number specified



TPMC680-SW-42 – VxWorks Device Driver Page 30 of 67

3.2.4 tpmc680SetPortMode

Name

tpmc680SetPortMode– Setup port mode

Synopsis

STATUS tpmc680SetPortMode
(

TPMC680_DEV pDev,
int port,
unsigned long mode,
unsigned long hsFlags

)

Description

This function sets up the mode of a specified port. Calling this function will flush the FIFO if the
previous mode has been a handshake (buffered) mode.

For a detailed description of the modes refer to the TPMC680 User Manual

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.



TPMC680-SW-42 – VxWorks Device Driver Page 31 of 67

port

This parameter specifies the port which shall be configured. The port number is always between
0 and 7. Dependent from the actual module configuration some ports are connected to others
and only the first port is accessible with this function. If the new mode connects less ports then
the mode before, the unconfigured ports will be set to BYTE mode. The previous directions of
the ports will be kept.

Port Mode Configuration 1) Connected to Port

Port 0 Port 2 7 6 5 4 3 2 1 0

BYTE BYTE 7 6 5 4 3 2 1 0

HS16BIT BYTE 7 6 52) 42) 3 2 0 0

BYTE HS16BIT 7 6 52) 42) 2 2 1 0

HS16BIT HS16BIT 7 6 52) 42) 2 2 0 0

HS32BIT --- 7 6 52) 42) 0 0 0 0

SYNCHRON --- 0 0 0 0 0 0 0 0

1) The port mode configurations are assigned to the following driver configurations values:
Port Mode Configuration Driver Configuration Value (tpmc680def.h)

BYTE TP680_IO_MODE_BYTE

HS16BIT TP680_IO_MODE_HS16BIT

HS32BIT TP680_IO_MODE_HS32BIT

SYNCHRON TP680_IO_MODE_SYNCHRON
2) Bits 0/1 may be used for HS and are unconfigurable.

mode

This parameter specifies the new port mode.

Value Description

TP680_IO_MODE_BYTE Configures a port as byte I/O, no other ports will be
connected. Valid for port 0..7. (The driver will
support direct I/O)

TP680_IO_MODE_HS16BIT Configures a port as 16 bit handshake port. This
mode is valid for port 0 (port 1 will be connected)
and port 2 (port 3 will be connected). Port 4 will be
set to input (Handshake). (The driver will support
buffered I/O)

TP680_IO_MODE_HS32BIT Configures a port as 32 bit handshake port. This
mode is valid for port 0 (port 1, 2 and 3 will be
connected). Port 4 will be set to input (Handshake).
(The driver will support buffered I/O)

TP680_IO_MODE_SYNCHRON Configures the module for synchronous byte I/O.
All ports will be connected. The only valid port is
port 0. This mode will be used for 64 bit parallel
I/O. (The driver will support direct I/O)



TPMC680-SW-42 – VxWorks Device Driver Page 32 of 67

hsFlags

This flags will specify the output handshake mode.

Value Description

TP680_IO_HSFLAG_NO The handshake output will not be used. (Port 5
will be left in the previous mode)

TP680_IO_HSFLAG_INTERLOCKED The handshake output will be used in interlocked
mode. Port 5 will be used for output.

TP680_IO_HSFLAG_PULSED The handshake output will be used in pulsed
mode. Port 5 will be used for output.

TP680_IO_HSFIFOEV_NOTFULL The FIFO event will be set to “Not Full”. This value
must be ORed with
TP680_IO_HSFLAG_INTERLOCKED or
TP680_IO_HSFLAG_PULSED.

TP680_IO_HSFIFOEV_EMPTY The FIFO event will be set to “Empty”. This value
must be ORed with
TP680_IO_HSFLAG_INTERLOCKED or
TP680_IO_HSFLAG_PULSED.

Example

#include “tpmc680.h”

TPMC680_DEV pDev;
int retval;

/*----------------------------------------------------------
configure port 2 for 16bit handshake mode
the output handshake shall interlocked and the event shall
occur on “not full”
----------------------------------------------------------*/

retval = tpmc680SetPortDirection( pDev, 2, TP680_IO_MODE_HS16BIT,
TP680_IO_HSFLAG_INTERLOCKED | TP680_IO_HSFIFOEV_NOTFULL );
if (retval != ERROR)
{

/* function succeeded */
}
else
{

/* handle the error */
}

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.



TPMC680-SW-42 – VxWorks Device Driver Page 33 of 67

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set error code described below.

Error code Description

EBADF The device handle is invalid

S_tp680Dev_PORTBUSY The port is connected to an other port and is not
addressable

S_tp680Dev_IPORTMODE Illegal port mode specified

S_tp680Dev_IPORT Illegal port number specified



TPMC680-SW-42 – VxWorks Device Driver Page 34 of 67

3.2.5 tpmc680SetInterruptRoutine

Name

tpmc680SetInterruptRoutine – Connect application interrupt function to input event

Synopsis

STATUS tpmc680SetInterruptRoutine
(

TPMC680_DEV pDev,
int port,
int line,
unsigned long edge,
void *function,
unsigned long parameter

)

Description

This function connects a user specified function to a specified interrupt. The selected I/O line must be
part of a port configured for byte wise (8/64bit) input. The function will be disconnected if it is specified
with the below argument or if the port mode is no longer input and byte wise.

The function will be called while the interrupt is handled. Keep this function short and do not
use any operations that will block the task.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

port

This parameter specifies the port where the interrupt function shall be installed to.

line

This parameter specifies the I/O line where the interrupt function shall be installed to.



TPMC680-SW-42 – VxWorks Device Driver Page 35 of 67

edge

This parameter specifies the event on which the interrupt shall be generated.
Value Description

TP680_IO_EDGE_NO Disconnect installed function from interrupt.

TP680_IO_EDGE_HI Call specified function on a low to high event of the
specified input line.

TP680_IO_EDGE_LO Call specified function on a high to low event of the
specified input line.

TP680_IO_EDGE_ANY Call specified function on any event of the specified
input line.

function

This parameter specifies the entry point of the interrupt callback function.

parameter

The function will be called with this parameter.

Example

#include “tpmc680.h”

void intfunction (unsigned long param)
{

/* Handle interrupt */
}

…

TPMC680_DEV pDev;
int retval;

/*----------------------------------------------------------
connect interrupt function to port 5 line 6
the function shall be called on the high to low transition
the parameter shall be 0x1234
----------------------------------------------------------*/

retval = tpmc680SetInterruptRoutine( pDev,
5,
6,
TP680_IO_EDGE_LO,
intfunction,
0x1234);

…



TPMC680-SW-42 – VxWorks Device Driver Page 36 of 67

…

if (retval != ERROR)
{

/* function succeeded */
}
else
{

/* handle the error */
}

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set error code described below.

Error code Description

EBADF The device handle is invalid

S_tp680Dev_IPORT Illegal port number specified

S_tp680Dev_PORTBUSY The port is connected to an other port and is not
addressable

S_tp680Dev_ILINE Illegal line number specified

S_tp680Dev_IEDGE Illegal interrupt event specified

S_tp680Dev_IRQBUSY The specified input line is already connected with a
callback function



TPMC680-SW-42 – VxWorks Device Driver Page 37 of 67

4 Legacy I/O system functions
This chapter describes the legacy driver-level interface to the I/O system. The purpose of these
functions is to install the driver in the I/O system, add and initialize devices.

The legacy I/O system functions are only relevant for the legacy TPMC680 driver. For the
VxBus-enabled TPMC680 driver, the driver will be installed automatically in the I/O system and
devices will be created as needed for detected modules.

4.1 tp680Drv()

NAME

tp680Drv() - installs the TPMC680 driver in the I/O system

SYNOPSIS

#include “tpmc680.h”

STATUS tp680Drv(void)

DESCRIPTION

This function searches for devices on the PCI bus, allocates driver and device resources, initializes
them and installs the TPMC680 driver in the I/O system.

A call to this function is the first thing the user has to do before adding any device to the
system or performing any I/O request.

EXAMPLE

#include “tpmc680.h”

STATUS result;

/*-------------------
Initialize Driver
-------------------*/

result = tp680Drv();
if (result == ERROR)
{

/* Error handling */
}



TPMC680-SW-42 – VxWorks Device Driver Page 38 of 67

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

ENXIO No TPMC680-10 found

SEE ALSO

VxWorks Programmer’s Guide: I/O System



TPMC680-SW-42 – VxWorks Device Driver Page 39 of 67

4.2 tp680DevCreate()

NAME

tp680DevCreate() – Add a TPMC680 device to the VxWorks system

SYNOPSIS

#include “tpmc680.h”

STATUS tp680DevCreate
(

char *name,
int devIdx,
int funcType,
void *pParam

)

DESCRIPTION

This routine adds the selected device to the VxWorks system. The device hardware will be setup and
prepared for use.

This function must be called before performing any I/O request to this device.

PARAMETER

name

This string specifies the name of the device that will be used to identify the device, for example
for open() calls.

devIdx

This index number specifies the device to add to the system. Channel numbers will be assigned
in the order the VxWorks pciFindDevice() function will find the devices.

Example: (A system with 2 TPMC680-10) will assign the following device indices:
Module Device Index

TPMC680-10 (1st) 0

TPMC680-10 (2nd) 1

funcType

This parameter is unused and should be set to 0.

pParam

This parameter is unused and should be set to NULL.



TPMC680-SW-42 – VxWorks Device Driver Page 40 of 67

EXAMPLE

#include "tpmc680.h”

STATUS result;

/*---------------------------------------------------
Create the device "/tpmc680/0" for the first device
---------------------------------------------------*/

result = tp680DevCreate( "/tpmc680/0",
0,
0,
NULL);

if (result == OK)
{

/* Device successfully created */
}
else
{

/* Error occurred when creating the device */
}

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

S_ioLib_NO_DRIVER The TPMC680 driver has not been started

ENXIO Specified device not found

EBUSY The device has already been initialized

SEE ALSO

VxWorks Programmer’s Guide: I/O System



TPMC680-SW-42 – VxWorks Device Driver Page 41 of 67

4.3 tp680PciInit()

NAME

tp680PciInit() – Generic PCI device initialization

SYNOPSIS

void tp680PciInit()

DESCRIPTION

This function is required only for Intel x86 VxWorks platforms. The purpose is to setup the MMU
mapping for all required TPMC680 PCI spaces (base address register) and to enable the TPMC680
device for access.

The global variable tp680Status obtains the result of the device initialization and can be polled later by
the application before the driver will be installed.

Value Meaning

> 0 Initialization successful completed. The value of tp680Status is equal to the
number of mapped PCI spaces

0 No TPMC680 device found

< 0 Initialization failed. The value of (tp680Status & 0xFF) is equal to the number of
mapped spaces until the error occurs.
Possible cause: Too few entries for dynamic mappings in sysPhysMemDesc[].
Remedy: Add dummy entries as necessary (syslib.c).

EXAMPLE

extern void tp680PciInit();

…

tp680PciInit();

…



TPMC680-SW-42 – VxWorks Device Driver Page 42 of 67

5 Basic I/O Functions
The VxWorks basic I/O interface functions are useable with the TPMC680 legacy and VxBus-enabled
driver in a uniform manner.

5.1 open()

NAME

open() - open a device or file.

SYNOPSIS

int open
(

const char *name,
int flags,
int mode

)

DESCRIPTION

Before I/O can be performed to the TPMC680 device, a file descriptor must be opened by invoking the
basic I/O function open().

PARAMETER

name

Specifies the device which shall be opened, the name specified in tp680DevCreate() must be
used

flags

Not used

mode

Not used



TPMC680-SW-42 – VxWorks Device Driver Page 43 of 67

EXAMPLE

int fd;

/*------------------------------------------
Open the device named "/tpmc680/0" for I/O
------------------------------------------*/

fd = open("/tpmc680/0", 0, 0);
if (fd == ERROR)
{

/* Handle error */
}

RETURNS

A device descriptor number or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - open()



TPMC680-SW-42 – VxWorks Device Driver Page 44 of 67

5.2 close()

NAME

close() – close a device or file

SYNOPSIS

STATUS close
(

int fd
)

DESCRIPTION

This function closes opened devices.

PARAMETER

fd

This file descriptor specifies the device to be closed. The file descriptor has been returned by
the open() function.

EXAMPLE

int fd;
STATUS retval;

/*----------------
close the device
----------------*/

retval = close(fd);
if (retval == ERROR)
{

/* Handle error */
}

RETURNS

OK or ERROR. If the function fails, an error code will be stored in errno.



TPMC680-SW-42 – VxWorks Device Driver Page 45 of 67

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - close()



TPMC680-SW-42 – VxWorks Device Driver Page 46 of 67

5.3 ioctl()

NAME

ioctl() - performs an I/O control function.

SYNOPSIS

#include “tpmc680.h”

int ioctl
(

int fd,
int request,
int arg

)

DESCRIPTION

Special I/O operation that do not fit to the standard basic I/O calls (read, write) will be performed by
calling the ioctl() function.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

request

This argument specifies the function that shall be executed. Following functions are defined:
Function Description

FIO_TP680_READ Read data from input port

FIO_TP680_WRITE Write data to output port

FIO_TP680_SET_DIR Setup port direction

FIO_TP680_SET_IRQ Connect application interrupt function to input event

FIO_TP680_SET_MODE Setup port mode

FIO_TP680_GET_DEBUG Undocumented debug function

arg

This parameter depends on the selected function (request). How to use this parameter is
described below with the function.



TPMC680-SW-42 – VxWorks Device Driver Page 47 of 67

RETURNS

OK or ERROR, otherwise the return value is described below with the function. If the function fails an
error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).
Function specific error codes will be described with the function.

Error code Description

S_tp680Dev_ICMD Illegal Ioctl() command

SEE ALSO

ioLib, basic I/O routine - ioctl()



TPMC680-SW-42 – VxWorks Device Driver Page 48 of 67

5.3.1 FIO_TP680_READ

This I/O control function reads data from the specified device. Depending on the configured port
mode, the data will be read directly or buffered. The data size depends on the selected mode. The
function specific control parameter arg is a pointer on a TP680_IO_STRUCT structure.

typedef struct
{

int port; /* 0.. 7 */
union
{

unsigned char val8; /* 8 bit wide port */
struct
{

unsigned short *buf;
unsigned long size;

} val16; /* 16 bit wide port (mode 1) */
struct
{

unsigned long *buf;
unsigned long size;

} val32; /* 32 bit wide port (mode 2) */
struct
{

unsigned long val64_l;
unsigned long val64_h;

} val64; /* 64 bit wide port (synchon) */
} u;

} TP680_IO_STRUCT, *PTP680_IO_STRUCT;



TPMC680-SW-42 – VxWorks Device Driver Page 49 of 67

port

This parameter specifies the port where data shall be read from. The port number is always
between 0 and 7. Dependent from the module configuration some ports are connected to others
and only the first port is accessible with this function. If the port is connected or configured for
output, read() will return ERROR. The data order is always ‘big endian’ (e.g. a 32 bit access on
port 0 will return the input from port 0 / line 0 at the LSB and the input from port 4 / line 7 at the
MSB.)

Port Mode Configuration 1) Connected to Port

Port 0 Port 2 7 6 5 4 3 2 1 0

BYTE BYTE 7 6 5 4 3 2 1 0

HS16BIT BYTE 7 6 52) 42) 3 2 0 0

BYTE HS16BIT 7 6 52) 42) 2 2 1 0

HS16BIT HS16BIT 7 6 52) 42) 2 2 0 0

HS32BIT --- 7 6 52) 42) 0 0 0 0

SYNCHRON --- 0 0 0 0 0 0 0 0

1) The port mode configurations are assigned to the following driver configurations values:
Port Mode Configuration Driver Configuration Value (tpmc680def.h)

BYTE TP680_IO_MODE_BYTE

HS16BIT TP680_IO_MODE_HS16BIT

HS32BIT TP680_IO_MODE_HS32BIT

SYNCHRON TP680_IO_MODE_SYNCHRON
2) Bits 0/1 may be used for HS and are unreadable.

u

This union allows handling the different input sizes and modes. Description follows below.

val8

This selection will be used for direct byte input. The value of the specified port will be returned in
this parameter.

val16

This selection will be used for buffered 16bit input. The structure contains a pointer to a buffer
(buf) of unsigned short and the size (size) of this buffer. size will be specified in words. The
read function will fill the buffer until the buffer is filled or there are no more data in the FIFO of
the selected channel.

val32

This selection will be used for buffered 32bit input. The structure contains a pointer to a buffer
(buf) of unsigned long and the size (size) of this buffer. size will be specified in long words. The
read function will fill the buffer until the buffer is filled or there are no more data in the FIFO of
the selected channel.

val64

This selection will be used for direct 64bit synchronous input. The structure has two elements.
The value of port 3..0 will be returned in val64_l where the LSB is the value of port 0 and the
MSB is the value of port 3. The value of port 7..4 will be returned in val64_h where the LSB is
the value of port 4 and the MSB is the value of port 7.



TPMC680-SW-42 – VxWorks Device Driver Page 50 of 67

EXAMPLE

#include “tpmc680.h”

int fd;
int i;
int retval;
TP680_IO_STRUCT ioBuf;
unsigned short usBuf[10];
unsigned long ulBuf[10];

/*-----------------------------
Read a byte value from port 5
-----------------------------*/

ioBuf.port = 5;

retval = ioctl(fd, FIO_TP680_READ, (int)&ioBuf);
if (retval != ERROR)
{

printf("Port %d: %02Xh\n", ioBuf.port, ioBuf.u.val8);
}
else
{

/* Handle Error */
}
…
/*-------------------------------------------

Fill buffer with values (16Bit) from port 2
-------------------------------------------*/

ioBuf.port = 2;
ioBuf.u.val16.size = 10;
ioBuf.u.val16.buf = usBuf;

retval = ioctl(fd, FIO_TP680_READ, (int)&ioBuf);
if (retval != ERROR)
{

for (i = 0; i < 10; i++)
{

printf("Val[%d]: %04Xh\n", i, usBuf[i]);
}

}
else
{

/* Handle Error */
}



TPMC680-SW-42 – VxWorks Device Driver Page 51 of 67

…

/*-------------------------------------------
Fill buffer with values (32Bit) from port 0
-------------------------------------------*/

ioBuf.port = 0;
ioBuf.u.val32.size = 10;
ioBuf.u.val32.buf = ulBuf;

retval = ioctl(fd, FIO_TP680_READ, (int)&ioBuf);
if (retval != ERROR)
{

for (i = 0; i < 10; i++)
{

printf("Val[%d]: %08lXh\n", i, ulBuf[i]);
}

}
else
{

/* Handle Error */
}

…

/*-----------------------------------
Read port value (64Bit) from port 0
-----------------------------------*/

ioBuf.port = 0;

retval = ioctl(fd, FIO_TP680_READ, (int)&ioBuf);
if (retval != ERROR)
{

printf("Val[%d]: %08lX%08lXh \n",
ioBuf.u.val64.val64_h,
ioBuf.u.val64.val64_l);

}
else
{

/* Handle Error */
}



TPMC680-SW-42 – VxWorks Device Driver Page 52 of 67

RETURNS

Number of bytes read or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set error code described below.

Error code Description

S_tp680Dev_IPORT Illegal port number specified

S_tp680Dev_PORTBUSY The port is connected to an other port and is not
addressable

S_tp680Dev_IDIRECTION Illegal direction specified



TPMC680-SW-42 – VxWorks Device Driver Page 53 of 67

5.3.2 FIO_TP680_WRITE

This I/O control function writes data to the specified device. Depending on the configured port mode,
the data will be written direct or buffered. The data size depends on the selected mode. The function
specific control parameter arg is a pointer on a TP680_IO_STRUCT structure.

typedef struct
{

int port; /* 0.. 7 */
union
{

unsigned char val8; /* 8 bit wide port */
struct
{

unsigned short *buf;
unsigned long size;

} val16; /* 16 bit wide port (mode 1) */
struct
{

unsigned long *buf;
unsigned long size;

} val32; /* 32 bit wide port (mode 2) */
struct
{

unsigned long val64_l;
unsigned long val64_h;

} val64; /* 64 bit wide port (synchon) */
} u;

} TP680_IO_STRUCT, *PTP680_IO_STRUCT;



TPMC680-SW-42 – VxWorks Device Driver Page 54 of 67

port

This parameter specifies the port where data shall be written to. The port number is always
between 0 and 7. Dependent from the module configuration some ports are connected to others
and only the first port is accessible with this function. If the port is connected or configured as
input, write() will return ERROR. The data order is always ‘big endian’ (e.g. a 32 bit access on
port 0 will write the output of port 0 / line 0 with the LSB and the output of port 4 / line 7 with the
MSB.)

Port Mode Configuration 1) Connected to Port

Port 0 Port 2 7 6 5 4 3 2 1 0

BYTE BYTE 7 6 5 4 3 2 1 0

HS16BIT BYTE 7 6 52) 42) 3 2 0 0

BYTE HS16BIT 7 6 52) 42) 2 2 1 0

HS16BIT HS16BIT 7 6 52) 42) 2 2 0 0

HS32BIT --- 7 6 52) 42) 0 0 0 0

SYNCHRON --- 0 0 0 0 0 0 0 0

1) The port mode configurations are assigned to the following driver configurations values:
Port Mode Configuration Driver Configuration Value (tpmc680def.h)

BYTE TP680_IO_MODE_BYTE

HS16BIT TP680_IO_MODE_HS16BIT

HS32BIT TP680_IO_MODE_HS32BIT

SYNCHRON TP680_IO_MODE_SYNCHRON
2) Bits 0/1 may be used for HS and are unwriteable.

u

This union allows handling the different output sizes and modes. Description follows below.

val8

This selection will be used for direct byte output. The specified value will be written to the
specified port.

val16

This selection will be used for buffered 16bit output. The structure contains a pointer to a buffer
(buf) of unsigned short and the size (size) of this buffer. size will be specified in words. The
write function will copy the buffer into a driver internal FIFO and output this value on the
specified port. The function will return immediately.

val32

This selection will be used for buffered 32bit output. The structure contains a pointer to a buffer
(buf) of unsigned long and the size (size) of this buffer. size will be specified in words. The write
function will copy the buffer into a driver internal FIFO and output this value on the specified
port. The function will return immediately.



TPMC680-SW-42 – VxWorks Device Driver Page 55 of 67

val64

This selection will be used for direct 64bit synchronous input. The structure has two elements.
The value of port 3..0 will be specified in val64_l where the LSB is the value of port 0 and the
MSB is the value of port 3. The value of port 7..4 will be specified in val64_h where the LSB is
the value of port 4 and the MSB is the value of port 7.

EXAMPLE

#include “tpmc680.h”

int fd;
int i;
int retval;
TP680_IO_STRUCT ioBuf;
unsigned short usBuf[10];
unsigned long ulBuf[10];

/*-------------------------
Write 0x12 to byte port 5
-------------------------*/

ioBuf.port = 5;
ioBuf.u.val8 = 0x12;

retval = ioctl(fd, FIO_TP680_WRITE, (int)&ioBuf);
if (retval != ERROR)
{

/* Output OK */;
}
else
{

/* Handle Error */
}

…



TPMC680-SW-42 – VxWorks Device Driver Page 56 of 67

…

/*-----------------------------------------
Write the buffered values to 16bit port 2
-----------------------------------------*/

usBuf[0] = 0x1111;
usBuf[1] = 0x2222;
usBuf[2] = 0x3333;
ioBuf.port = 2;
ioBuf.u.val16.size = 3;
ioBuf.u.val16.buf = usBuf;

retval = ioctl(fd, FIO_TP680_WRITE, (int)&ioBuf);
if (retval != ERROR)
{

/* Output OK */;
}
else
{

/* Handle Error */
}

…

/*-----------------------------------------
Write the buffered values to 32bit port 0
-----------------------------------------*/

ulBuf[0] = 0x11111111;
ulBuf[1] = 0x22222222;
ulBuf[2] = 0x33333333;
ioBuf.port = 0;
ioBuf.u.val16.size = 3;
ioBuf.u.val32.buf = ulBuf;

retval = ioctl(fd, FIO_TP680_WRITE, (int)&ioBuf);
if (retval != ERROR)
{

/* Output OK */;
}
else
{

/* Handle Error */
}

…



TPMC680-SW-42 – VxWorks Device Driver Page 57 of 67

…

/*-----------------------------------
Write port value (64Bit) to port 0
-----------------------------------*/

ioBuf.port = 0;
ioBuf.u.val64.val64_h = 0x12345678;
ioBuf.u.val64.val64_l = 0x87654321;

retval = ioctl(fd, FIO_TP680_WRITE, (int)&ioBuf);
if (retval != ERROR)
{

/* Output OK */;
}
else
{

/* Handle Error */
}

RETURNS

Number of bytes written or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set error code described below.

Error code Description

S_tp680Dev_IPORT Illegal port number specified

S_tp680Dev_PORTBUSY The port is connected to an other port and is not
addressable

S_tp680Dev_IDIRECTION Illegal direction specified



TPMC680-SW-42 – VxWorks Device Driver Page 58 of 67

5.3.3 FIO_TP680_SET_DIR

This I/O control function sets the port direction of the specified port. The mode of the port will be left
untouched. If the port is configured in handshake mode, the FIFO will be flushed. The function specific
control parameter arg is a pointer on a TP680_IOCTL_DIR_STRUCT structure.

typedef struct
{

int port;
unsigned long direction;

} TP680_IOCTL_DIR_STRUCT, *PTP680_IOCTL_DIR_STRUCT;

port

This parameter specifies the port which shall be configured. The port number is always between
0 and 7. Dependent from the module configuration some ports are connected to others and only
the first port is accessible with this function. If the port is connected, the function will return
ERROR.

Port Mode Configuration 1) Connected to Port

Port 0 Port 2 7 6 5 4 3 2 1 0

BYTE BYTE 7 6 5 4 3 2 1 0

HS16BIT BYTE 7 6 52) 42) 3 2 0 0

BYTE HS16BIT 7 6 52) 42) 2 2 1 0

HS16BIT HS16BIT 7 6 52) 42) 2 2 0 0

HS32BIT --- 7 6 52) 42) 0 0 0 0

SYNCHRON --- 0 0 0 0 0 0 0 0

1) The port mode configurations are assigned to the following driver configurations values:
Port Mode Configuration Driver Configuration Value (tpmc680def.h)

BYTE TP680_IO_MODE_BYTE

HS16BIT TP680_IO_MODE_HS16BIT

HS32BIT TP680_IO_MODE_HS32BIT

SYNCHRON TP680_IO_MODE_SYNCHRON
2) Bits 0/1 may be used for HS and are unconfigurable.

direction

This parameter specifies the new port direction. The following values are valid.

Value Description

TP680_IO_DIR_IN Configure specified port for input

TP680_IO_DIR_OUT Configure specified port for output



TPMC680-SW-42 – VxWorks Device Driver Page 59 of 67

EXAMPLE

#include “tpmc680.h”

int fd;
TP680_IOCTL_DIR_STRUCT dirBuf;
int retval;

/*---------------------------
configure port 3 for output
---------------------------*/

dirBuf.port = 3;
dirBuf.direction = TP680_IO_DIR_OUT;

retval = ioctl(fd, FIO_TP680_SET_DIR, (int)&dirBuf);
if (retval != ERROR)
{

/* function succeeded */
}
else
{

/* handle the error */
}

ERROR CODES

Error code Description

S_tp680Dev_PORTBUSY The port is connected to an other port and is not
addressable

S_tp680Dev_IPORTMODE Illegal port mode specified

S_tp680Dev_IPORT Illegal port number specified



TPMC680-SW-42 – VxWorks Device Driver Page 60 of 67

5.3.4 FIO_TP680_SET_IRQ

This I/O control function connects a user specified function to a specified interrupt. The selected I/O
line must be part of a port configured for byte wise (8/64bit) input. The function will be disconnected if
it is specified with this function or the port mode is no longer input and byte wise. The function specific
control parameter arg is a pointer on a TP680_IOCTL_IRQ_STRUCT structure.

typedef struct
{

int port;
int line;
unsigned long edge;
void *function;
unsigned long parameter;

} TP680_IOCTL_IRQ_STRUCT, *PTP680_IOCTL_IRQ_STRUCT;

port

This parameter specifies the port where the interrupt function shall be installed to.

line

This parameter specifies the I/O line where the interrupt function shall be installed to.

edge

This parameter specifies the event on which the interrupt shall be generated.
Value Description

TP680_IO_EDGE_NO Disconnect installed function from interrupt.

TP680_IO_EDGE_HI Call specified function on a low to high event of the
specified input line.

TP680_IO_EDGE_LO Call specified function on a high to low event of the
specified input line.

TP680_IO_EDGE_ANY Call specified function on any event of the specified
input line.

function

This parameter specifies the entry point of the interrupt callback function.

parameter

The function will be called with this parameter.

The function will be called while the interrupt is handled. Keep this function short and do not
use any operations that will block the task.



TPMC680-SW-42 – VxWorks Device Driver Page 61 of 67

EXAMPLE

#include “tpmc680.h”

void intfunction (unsigned long param)
{

/* Handle interrupt */
}

…

int fd;
TP680_IOCTL_IRQ_STRUCT irqBuf;
int retval;

/*----------------------------------------------------------
connect interrupt function to port 5 line 6
the function shall be called on the high to low transition
the parameter shall be 0x1234
----------------------------------------------------------*/

irqBuf.port = 5;
irqBuf.line = 6;
irqBuf.edge = TP680_IO_EDGE_LO;
irqBuf.function = (void*)intfunction;
irqBuf.parameter = 0x1234;

retval = ioctl(fd, FIO_TP680_SET_IRQ, (int)&irqBuf);
if (retval != ERROR)
{

/* function succeeded */
}
else
{

/* handle the error */
}



TPMC680-SW-42 – VxWorks Device Driver Page 62 of 67

ERROR CODES

Error code Description

S_tp680Dev_IPORT Illegal port number specified

S_tp680Dev_PORTBUSY The port is connected to an other port and is not
addressable

S_tp680Dev_ILINE Illegal line number specified

S_tp680Dev_IEDGE Illegal interrupt event specified

S_tp680Dev_IRQBUSY The specified input line is already connected with a
callback function



TPMC680-SW-42 – VxWorks Device Driver Page 63 of 67

5.3.5 FIO_TP680_SET_MODE

This I/O control function sets up the mode of a specified port. Calling this function will flush the FIFO if
the previous mode has been a handshake (buffered) mode. The function specific control parameter
arg is a pointer on a TP680_IOCTL_MODE_STRUCT structure.

typedef struct
{

int port;
unsigned long mode;
unsigned long hsFlags; /* only valid for HS modes */

} TP680_IOCTL_MODE_STRUCT, *PTP680_IOCTL_MODE_STRUCT;

port

This parameter specifies the port which shall be configured. The port number is always between
0 and 7. Dependent from the actual module configuration some ports are connected to others
and only the first port is accessible with this function. If the new mode connects less ports then
the mode before, the unconfigured ports will be set to BYTE mode. The previous directions of
the ports will be kept.

Port Mode Configuration 1) Connected to Port

Port 0 Port 2 7 6 5 4 3 2 1 0

BYTE BYTE 7 6 5 4 3 2 1 0

HS16BIT BYTE 7 6 52) 42) 3 2 0 0

BYTE HS16BIT 7 6 52) 42) 2 2 1 0

HS16BIT HS16BIT 7 6 52) 42) 2 2 0 0

HS32BIT --- 7 6 52) 42) 0 0 0 0

SYNCHRON --- 0 0 0 0 0 0 0 0

1) The port mode configurations are assigned to the following driver configurations values:
Port Mode Configuration Driver Configuration Value (tpmc680def.h)

BYTE TP680_IO_MODE_BYTE

HS16BIT TP680_IO_MODE_HS16BIT

HS32BIT TP680_IO_MODE_HS32BIT

SYNCHRON TP680_IO_MODE_SYNCHRON
2) Bits 0/1 may be used for HS and are unconfigurable.



TPMC680-SW-42 – VxWorks Device Driver Page 64 of 67

mode

This parameter specifies the new port mode.

Value Description

TP680_IO_MODE_BYTE Configures a port as byte I/O, no other ports will be
connected. Valid for port 0..7. (The driver will
support direct I/O)

TP680_IO_MODE_HS16BIT Configures a port as 16 bit handshake port. This
mode is valid for port 0 (port 1 will be connected)
and port 2 (port 3 will be connected). Port 4 will be
set to input (Handshake). (The driver will support
buffered I/O)

TP680_IO_MODE_HS32BIT Configures a port as 32 bit handshake port. This
mode is valid for port 0 (port 1, 2 and 3 will be
connected). Port 4 will be set to input (Handshake).
(The driver will support buffered I/O)

TP680_IO_MODE_SYNCHRON Configures the module for synchronous byte I/O.
All ports will be connected. The only valid port is
port 0. This mode will be used for 64 bit parallel
I/O. (The driver will support direct I/O)

hsFlags

This flags will specify the output handshake mode.

Value Description

TP680_IO_HSFLAG_NO The handshake output will not be used. (Port 5
will be left in the previous mode)

TP680_IO_HSFLAG_INTERLOCKED The handshake output will be used in interlocked
mode. Port 5 will be used for output.

TP680_IO_HSFLAG_PULSED The handshake output will be used in pulsed
mode. Port 5 will be used for output.

TP680_IO_HSFIFOEV_NOTFULL The FIFO event will be set to “Not Full”. This value
must be ORed with
TP680_IO_HSFLAG_INTERLOCKED or
TP680_IO_HSFLAG_PULSED.

TP680_IO_HSFIFOEV_EMPTY The FIFO event will be set to “Empty”. This value
must be ORed with
TP680_IO_HSFLAG_INTERLOCKED or
TP680_IO_HSFLAG_PULSED.

For a detailed description of the modes refer to the TPMC680 User Manual



TPMC680-SW-42 – VxWorks Device Driver Page 65 of 67

EXAMPLE

#include “tpmc680.h”

int fd;
TP680_IOCTL_MODE_STRUCT modeBuf;
int retval;

/*----------------------------------------------------------
configure port 2 for 16bit handshake mode
the output handshake shall interlocked and the event shall
occur on “not full”
----------------------------------------------------------*/

modeBuf.port = 2;
modeBuf.mode = TP680_IO_MODE_HS16BIT;
modeBuf.hsflags = TP680_IO_HSFLAG_INTERLOCKED |

TP680_IO_HSFIFOEV_NOTFULL;

retval = ioctl(fd, FIO_TP680_SET_MODE, (int)&modeBuf);
if (retval != ERROR)
{

/* function succeeded */
}
else
{

/* handle the error */
}

ERROR CODES

Error code Description

S_tp680Dev_PORTBUSY The port is connected to an other port and is not
addressable

S_tp680Dev_IPORTMODE Illegal port mode specified

S_tp680Dev_IPORT Illegal port number specified



TPMC680-SW-42 – VxWorks Device Driver Page 66 of 67

5.3.6 FIO_TP680_GET_DEBUG

The function code FIO_TP680_GET_DEBUG is a debug function and may be useful for error fixing.
The function is undocumented. The switch _TP680_DEBUG_MODE_ENABLE_ shall be undefined in
“tpmc680.h”.



TPMC680-SW-42 – VxWorks Device Driver Page 67 of 67

6 Appendix

6.1 Additional Error Codes
Error code Error value Description

S_tp680Dev_ICMD 0x06800000 Illegal Ioctl() command

S_tp680Dev_IPORT 0x06800001 Illegal port number specified

S_tp680Dev_ILINE 0x06800002 Illegal line number specified

S_tp680Dev_IDIRECTION 0x06800003 Illegal direction specified

S_tp680Dev_PORTBUSY 0x06800004 The port is connected to an other port and
is not addressable

S_tp680Dev_IRQBUSY 0x06800005 The specified input line is already
connected with a callback function

S_tp680Dev_IEDGE 0x06800006 Illegal interrupt event specified

S_tp680Dev_IPORTMODE 0x06800007 Illegal port mode specified


	Introduction
	Installation
	Legacy vs. VxBus Driver
	VxBus Driver Installation
	Direct BSP Builds

	Legacy Driver Installation
	Include device driver in VxWorks projects
	Special installation for Intel x86 based targets
	BSP dependent adjustments

	Configuration of FIFO depth
	System resource requirement

	API Documentation
	General Functions
	tpmc680Open()
	tpmc680Close()

	Device Access Functions
	tpmc680Read
	tpmc680Write
	tpmc680SetPortDirection
	tpmc680SetPortMode
	tpmc680SetInterruptRoutine


	Legacy I/O system functions
	tp680Drv()
	tp680DevCreate()
	tp680PciInit()

	Basic I/O Functions
	open()
	close()
	ioctl()
	FIO_TP680_READ
	FIO_TP680_WRITE
	FIO_TP680_SET_DIR
	FIO_TP680_SET_IRQ
	FIO_TP680_SET_MODE
	FIO_TP680_GET_DEBUG


	Appendix
	Additional Error Codes


