
The Embedded I/O Company

TPMC680-S
Windows 2000/XP D

64 Digital Inputs/O

Version 1.0.x

User Manu
Issue 1.0.5

June 2008

TEWS TECHNOLOGIES GmbH TEWS TEC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49 (0) 4101 4058 0
Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com

9190 Doub
Suite 127,
www.tews.
W-65
evice Driver
utputs

al

HNOLOGIES LLC
le Diamond Parkway,
Reno, NV 89521, USA
com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 2 of 34

TPMC680-SW-65

Windows 2000/XP Device Driver

64 Digital Inputs/Outputs

Supported Modules:
TPMC680-10

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2003-2008 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue January 16, 2003

1.0.1 File list changed, Installation chapter reviewed April 18, 2005

1.0.2 Title corrected June 3, 2005

1.0.3 New Address of TEWS LLC, File list changed January 11, 2007

1.0.4 General Revision, Return value of close() corrected May 15, 2007

1.0.5 Files moved to subdirectory June 23, 2008

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 3 of 34

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Software Installation ...5
2.1.1 Windows 2000 / XP..5
2.1.2 Confirming Windows 2000 / XP Installation ...6

2.2 FIFO Configuration ...6

3 TPMC680 DEVICE DRIVER PROGRAMMING .. 7
3.1 TPMC680 Files and I/O Functions ...7

3.1.1 Opening a TPMC680 Device ...7
3.1.2 Closing a TPMC680 Device...9
3.1.3 TPMC680 Device I/O Control Functions..10

3.1.3.1 IOCTL_TP680_READ8 ..12
3.1.3.2 IOCTL_TP680_READ16 ..14
3.1.3.3 IOCTL_TP680_READ32 ..16
3.1.3.4 IOCTL_TP680_READ64 ..18
3.1.3.5 IOCTL_TP680_WRITE8...20
3.1.3.6 IOCTL_TP680_WRITE16...22
3.1.3.7 IOCTL_TP680_WRITE32...25
3.1.3.8 IOCTL_TP680_WRITE64...27
3.1.3.9 IOCTL_TP680_SETMODE ..29
3.1.3.10 IOCTL_TP680_EVENTWAIT ...32

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 4 of 34

1 Introduction
The TPMC680-SW-65 Windows WDM device driver allows the operation of the TPMC680-10 PMC
conforming to the Windows WDM I/O system specification for Windows 2000, Windows XP and
Windows XP embedded.

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceIoControl) provide
the basic interface for opening and closing a resource handle and for performing device I/O control
operations.

The TPMC680-SW-65 device driver supports the following features:

 direct reading and writing for output ports (8 bit / synchronous mode)
 direct reading for input ports (8 bit / synchronous mode)
 buffered read for input ports (16/32 bit handshake mode)
 buffered write for output ports (16/32 bit handshake mode)
 configuring ports
 waiting for an input event (8 bit / synchronous mode)

The TPMC680-SW-65 device driver supports the modules listed below:

TPMC680-10 64 Digital Inputs/Outputs (PMC)

To get more information about the features and use of TPMC680 devices it is recommended to read
the manuals listed below.

TPMC680 User manual

TPMC680 Engineering Manual

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 5 of 34

2 Installation
Following files are located in directory TPMC680-SW-65 on the distribution media:

tpmc680.sys Windows driver binary
tpmc680.h Header file with IOCTL code definitions
tpmc680.inf Windows 2000/XP (embedded) installation script
example\tdrv680exa.c Example application
TPMC680-SW-00-1.0.5.pdf PDF copy of this manual
ChangeLog.txt Release history
Release.txt Release information

For installation the files have to be copied to the desired target directory.

2.1 Software Installation

2.1.1 Windows 2000 / XP

This section describes how to install the TPMC680 Device Driver on a Windows 2000 / XP operating
system.

After installing the TPMC680 card(s) and boot-up your system, Windows 2000 / XP setup will show a
"New hardware found" dialog box.

1. The "Upgrade Device Driver Wizard" dialog box will appear on your screen.
Click "Next" button to continue.

2. In the following dialog box, choose "Search for a suitable driver for my device".
Click "Next" button to continue.

3. Insert the TPMC680 driver media; select "Disk Drive" in the dialog box.
Click "Next" button to continue.

4. Now the driver wizard should find a suitable device driver on the media.
Click "Next" button to continue.

5. Complete the upgrade device driver and click "Finish" to take all the changes effect.

6. Now copy all needed files (tpmc680.h, TPMC680-SW-65.pdf) to the desired target directories.

After successful installation the TPMC680 device driver will start immediately and creates devices
(TPMC680_1, TPMC680_2 ...) for all recognized TPMC680 modules.

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 6 of 34

2.1.2 Confirming Windows 2000 / XP Installation

To confirm that the driver has been properly loaded in Windows 2000 / XP, perform the following
steps:

1. From Windows 2000 / XP, open the "Control Panel" from "My Computer".

2. Click the "System" icon and choose the "Hardware" tab, and then click the "Device
Manager" button.

3. Click the "+" in front of "Other Devices".
The driver " TEWS TECHNOLOGIES TPMC680 (64 digital I/O)" should appear.

2.2 FIFO Configuration
After Installation of the TPMC680 Device Driver the FIFO size is set to its default value.

The default value is 100.

If the default value is not suitable the configuration can be changed by modifying the registry, for
instance with regedt32.

To change the size of the FIFO the following value must be modified.

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\TPMC680\FifoSize

The size value must be greater than 2

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 7 of 34

3 TPMC680 Device Driver Programming
The TPMC680-SW-65 Windows WDM device driver is a kernel mode device driver.

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceIoControl) provide
the basic interface for opening and closing a resource handle and for performing device I/O control
operations.

All of these standard Win32 functions are described in detail in the Windows Platform SDK
Documentation (Windows base services / Hardware / Device Input and Output).

For details refer to the Win32 Programmers Reference of your used programming tools (C++, Visual
Basic etc.)

3.1 TPMC680 Files and I/O Functions
The following section does not contain a full description of the Win32 functions for interaction with the
TPMC680 device driver. Only the required parameters are described in detail.

3.1.1 Opening a TPMC680 Device

Before you can perform any I/O the TPM680 device must be opened by invoking the CreateFile
function. CreateFile returns a handle that can be used to access the TPMC680 device.

HANDLE CreateFile(
LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile

);

Parameters

LPCTSTR lpFileName

This parameter points to a null-terminated string, which specifies the name of the TPMC680 to
open. The lpFileName string should be of the form \\.\TPMC680_x to open the device x. The
ending x is a one-based number. The first device found by the driver is \\.\TPMC680_1, the
second \\.\TPMC680_2 and so on.

DWORD dwDesiredAccess

This parameter specifies the type of access to the TPMC680.
For the TPMC680 this parameter must be set to read-write access (GENERIC_READ |
GENERIC_WRITE)

DWORD dwShareMode

Set of bit flags that specify how the object can be shared. Set to 0.

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 8 of 34

LPSECURITY_ATTRIBUTES lpSecurityAttributes

This argument is a pointer to a security structure. Set to NULL for TPMC680 devices.

DWORD dwCreationDistribution

Specifies the action to take on existing files, and which action to take when files do not exist.
TPMC680 devices must be always opened OPEN_EXISTING.

DWORD dwFlagsAndAttributes

Specifies the file attributes and flags for the file. This value must be set to 0 (no overlapped I/O).

HANDLE hTemplateFile

This value must be NULL for TPMC680 devices.

Return Value

If the function succeeds, the return value is an open handle to the specified TPMC680 device. If the
function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call
GetLastError.

Example

HANDLE hDevice;

hDevice = CreateFile(
“\\\\.\\TPMC680_1”,
GENERIC_READ | GENERIC_WRITE,
0,
NULL, // no security attrs
OPEN_EXISTING, // TPMC680 device always open existing
0, // no overlapped I/O
NULL

);

if (hDevice == INVALID_HANDLE_VALUE) {
ErrorHandler("Could not open device"); // process error

}

See Also

CloseHandle(), Win32 documentation CreateFile()

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 9 of 34

3.1.2 Closing a TPMC680 Device

The CloseHandle function closes an open TPMC680 handle.

BOOL CloseHandle(
HANDLE hDevice;

);

Parameters

BOOLEAN hDevice

Identifies an open TPMC680 handle.

Return Value

If the function succeeds, the return value is nonzero (TRUE).

If the function fails, the return value is zero (FALSE). To get extended error information, call
GetLastError.

Example

HANDLE hDevice;

if(!CloseHandle(hDevice)) {
ErrorHandler("Could not close device"); // process error

}

See Also

CreateFile (), Win32 documentation CloseHandle ()

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 10 of 34

3.1.3 TPMC680 Device I/O Control Functions

The DeviceIoControl function sends a control code directly to a specified device driver, causing the
corresponding device to perform the specified operation.

BOOL DeviceIoControl(
HANDLE hDevice,
DWORD dwIoControlCode,
LPVOID lpInBuffer,
DWORD nInBufferSize,
LPVOID lpOutBuffer,
DWORD nOutBufferSize,
LPDWORD lpBytesReturned,
LPOVERLAPPED lpOverlapped

);

Parameters

HANDLE hDevice

Handle to the TPMC680 that is to perform the operation.

DWORD dwIoControlCode

This parameter specifies the control code for the operation. This value identifies the specific
operation to be performed. The following values are defined in tpmc680.h:

Value Meaning

IOCTL_TP680_READ8 Read a port value from an 8 bit port

IOCTL_TP680_READ16 Read a buffered value from a 16 bit input port

IOCTL_TP680_READ32 Read a buffered value from a 32 bit input port

IOCTL_TP680_READ64 Read a port value from a 64 bit port

IOCTL_TP680_WRITE8 Write a port value to an 8 bit output port

IOCTL_TP680_WRITE16 Write buffered to a 16 bit buffered output port

IOCTL_TP680_WRITE32 Write buffered to a 32 bit buffered output port

IOCTL_TP680_WRITE64 Write a port value to a 64 bit output port

IOCTL_TP680_SETMODE Change port mode and direction

IOCTL_TP680_EVENTWAIT Wait for a specified input event
See behind for more detailed information on each control code.

LPVOID lpInBuffer

Pointer to a buffer that contains the data required to perform the operation.

DWORD nInBufferSize

This argument specifies the size, in bytes, of the buffer pointed to by lpInBuffer.

LPVOID lpOutBuffer

Pointer to a buffer that receives the operation’s output data.

DWORD nOutBufferSize

This argument specifies the size, in bytes, of the buffer pointed to by lpOutBuffer.

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 11 of 34

LPDWORD lpBytesReturned

Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed to
by lpOutBuffer. A valid pointer is required.

LPOVERLAPPED lpOverlapped

This argument is a pointer to an Overlapped structure. This value must be set to NULL (no
overlapped I/O).

To use these TPMC680 specific control codes the header file tpmc680.h must be included.

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Note. The TPMC680 device driver returns always standard Win32 error codes on failure, please refer
to the Windows Platform SDK Documentation for a detailed description of returned error codes.

See Also

Win32 documentation DeviceIoControl ()

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 12 of 34

3.1.3.1 IOCTL_TP680_READ8

This TPMC680 control function reads an 8 bit value directly from the specified port. A pointer to the
port number (ULONG) is passed by the parameter lpInBuffer. The pointer to the return buffer is
passed by the parameter lpOutBuffer to the driver.

After successful execution the port value (UCHAR) is returned in the specified return buffer
(lpOutBuffer).

Example

#include “tpmc680.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
ULONG portNo;
UCHAR val8;

portNo = 5; // read from port 5

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TP680_READ8, // control code
&portNo, // buffer with control information
sizeof(portNo),
&val8, // buffer which receives the port value
sizeof(UCHAR),
&NumBytes, // number of bytes transferred
NULL

);

if(success) {
// Process data
printf(“INPUT: %02Xh\n”, val8);

}
else {

// Process DeviceIoControl() error
}

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 13 of 34

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.

ERROR_INVALID_PARAMETER Invalid port number specified.

ERROR_NOACCESS This function is not allowed for this port in the
configured mode

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl()

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 14 of 34

3.1.3.2 IOCTL_TP680_READ16

This TPMC680 control function reads 16 bit values from the specified buffered input port. A pointer to
the port number (ULONG) is passed by the parameter lpInBuffer. The pointer to the return buffer is
passed by the parameter lpOutBuffer to the driver.

After successful execution a filled array of 16 bit values (USHORT) is returned in the specified return
buffer (lpOutBuffer).

The number of 16 bit data read with this function by maximum is limited with the buffer size. If there
are less data values stored in the FIFO, only the already received data values will be returned and the
NumBytes specifies the size of valid data.

Example

#include “tpmc680.h”

#define BUFMAX 10

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
ULONG portNo;
USHORT val16[BUFMAX];
int i;

portNo = 2; // read 10 words from port 2

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TP680_READ16, // control code
&portNo, // buffer with control information
sizeof(portNo),
&val16[0], // buffer which receives the port value
sizeof(USHORT) * BUFMAX,
&NumBytes, // number of bytes transferred
NULL

);

…

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 15 of 34

…

if(success) {
// Process data
for (i = 0; i < BUFMAX; i++) {

printf(“(%d): %04Xh\n”, i, val16[i]);
}

}
else {

// Process DeviceIoControl() error
}

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.

ERROR_INVALID_PARAMETER Invalid port number specified.

ERROR_NOACCESS This function is not allowed for this port in the
configured mode

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl()

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 16 of 34

3.1.3.3 IOCTL_TP680_READ32

This TPMC680 control function reads 32 bit values from the specified buffered input port. A pointer to
the port number (ULONG) is passed by the parameter lpInBuffer. The pointer to the return buffer is
passed by the parameter lpOutBuffer to the driver.

After successful execution a filled array of 32 bit values (ULONG) is returned in the specified return
buffer (lpOutBuffer).

The number of 32 bit data read with this function by maximum is limited with the buffer size. If there
are less data values stored in the FIFO, only the already received data values will be returned and the
NumBytes specifies the size of valid data.

Example

#include “tpmc680.h”

#define BUFMAX 10

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
ULONG portNo;
ULONG val32[BUFMAX];

portNo = 0; // read 10 words from port 0

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TP680_READ32, // control code
&portNo, // buffer with control information
sizeof(portNo),
&val32[0], // buffer which receives the port value
sizeof(ULONG) * BUFMAX,
&NumBytes, // number of bytes transferred
NULL

);

if(success) {
// Process data
for (i = 0; i < BUFMAX; i++) {

printf(“(%d): %08lXh\n”, i, val32[i]);
}

}
else {

// Process DeviceIoControl() error
}

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 17 of 34

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.

ERROR_INVALID_PARAMETER Invalid port number specified.

ERROR_NOACCESS This function is not allowed for this port in the
configured mode

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl()

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 18 of 34

3.1.3.4 IOCTL_TP680_READ64

This TPMC680 control function reads the actual 64 bit value from the specified port. A pointer to the
port number (ULONG) is passed by the parameter lpInBuffer. The pointer to the return buffer is
passed by the parameter lpOutBuffer to the driver.

After successful execution a filled structure with 64 bit value (2*ULONG) is returned in the specified
return buffer (lpOutBuffer).

Example

#include “tpmc680.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
ULONG portNo;
ULONG val64[2];

portNo = 0; // read 10 words from port 0

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TP680_READ64, // control code
&portNo, // buffer with control information
sizeof(portNo),
&val64[0], // buffer which receives the port value
sizeof(ULONG) * 2,
&NumBytes, // number of bytes transferred
NULL

);

if(success) {
// Process data
printf(“INPUT: %08lX %08lX h\n”, val64[0], val64[1]);

}
else {

// Process DeviceIoControl() error
}

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 19 of 34

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.

ERROR_INVALID_PARAMETER Invalid port number specified.

ERROR_NOACCESS This function is not allowed for this port in the
configured mode

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl()

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 20 of 34

3.1.3.5 IOCTL_TP680_WRITE8

This TPMC680 control function writes an 8 bit value directly to the specified output port. A pointer to
the write buffer (TP680_WRITE_8BIT_BUF) is passed by the parameter lpInBuffer to the driver.

The lpOutBuffer is not used and should be a NULL pointer.

The TP680_WRITE_8BIT_BUF structure has the following layout:

typedef struct {
ULONG portNo; // Port number to handle
UCHAR data; // 8 bit data

} TP680_WRITE_8BIT_BUF, *PTP680_WRITE_8BIT_BUF;

Members

portNo

This member specifies the port that shall be changed. Valid values are 0 up to 7.

data

This argument specifies the new output value.

Example

#include “tpmc680.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP680_WRITE_8BIT_BUF wr8Buf;

wr8Buf.portNo = 3; // write to port 3
wr8Buf.data = 0x55; // new output value

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TP680_WRITE8, // control code
&wr8Buf, // buffer with control information
sizeof(wr8Buf),
NULL, // buffer which receives the port value
0,
&NumBytes, // number of bytes transferred
NULL

);

…

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 21 of 34

…

if(success) {
// Write OK

}
else {

// Process DeviceIoControl() error
}

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.

ERROR_INVALID_PARAMETER Invalid port number specified.

ERROR_NOACCESS This function is not allowed for this port in the
configured mode

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl()

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 22 of 34

3.1.3.6 IOCTL_TP680_WRITE16

This TPMC680 control function writes 16 bit values buffered to the output. A pointer to the write buffer
(with head TP680_WRITE_16BIT_BUF) is passed by the parameter lpInBuffer to the driver. The buffer
size depends on the number of data that shall be transferred. For calculating the memory amount
needed for the specified number of data can be calculated with the TP680_BUFSIZE16(<number of
data values>) macro.

The lpOutBuffer is not used and should be a NULL pointer.

The number of send bytes will be returned in NumBytes.

The TP680_WRITE_16BIT_BUF structure has the following layout:

typedef struct {
ULONG portNo; // Port number to handle
ULONG numData; // Number of Data values
USHORT data[1]; // 16 bit data buffer

} TP680_WRITE_16BIT_BUF, *PTP680_WRITE_16BIT_BUF;

Members

portNo

This member specifies the port that shall be changed. Valid values are 0 and 2.

numData

This argument specifies the number of data values (16 bit) following.

data[1]

This array prototype specifies the beginning of the output values.

Example

#include “tpmc680.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
PTP680_WRITE_16BIT_BUF pwr16Buf;
int bufSize;

…

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 23 of 34

…

// Get buffer
bufSize = TP680_BUFSIZE16(8); // 8 data value shall be written
pwr16Buf = (PTP680_WRITE_16BIT_BUF)malloc(bufSize);

pwr16Buf->portNo = 2; // write to port 2
pwr16Buf->numData = 8; // 8 data value shall be written
pwr16Buf->data[0] = 0x1111;
pwr16Buf->data[1] = 0x2222;
pwr16Buf->data[2] = 0x3333;
pwr16Buf->data[3] = 0x4444;
pwr16Buf->data[4] = 0x5555;
pwr16Buf->data[5] = 0x6666;
pwr16Buf->data[6] = 0x7777;
pwr16Buf->data[7] = 0x8888;

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TP680_WRITE16, // control code
pwr16Buf, // buffer with control information
sizeof(bufSize),
NULL, // buffer which receives the port value
0,
&NumBytes, // number of bytes transferred
NULL

);

if(success) {
// Write OK

}
else {

// Process DeviceIoControl() error
}

free (pwr16Buf);

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 24 of 34

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.

ERROR_INVALID_PARAMETER Invalid port number specified.

ERROR_NOACCESS This function is not allowed for this port in the
configured mode

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl()

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 25 of 34

3.1.3.7 IOCTL_TP680_WRITE32

This TPMC680 control function writes 32 bit values buffered to the output. A pointer to the write buffer
(with head TP680_WRITE_32BIT_BUF) is passed by the parameter lpInBuffer to the driver. The buffer
size depends on the number of data that shall be transferred. For calculating the memory amount
needed for the specified number of data can be calculated with the TP680_BUFSIZE32(<number of
data values>) macro.The lpOutBuffer is not used and should be a NULL pointer.

The number of send bytes will be returned in NumBytes.

The TP680_WRITE_32BIT_BUF structure has the following layout:

typedef struct {
ULONG portNo; // Port number to handle
ULONG numData; // Number of Data values
ULONG data[1]; // 32 bit data buffer

} TP680_WRITE_32BIT_BUF, *PTP680_WRITE_32BIT_BUF;

Members

portNo

This member specifies the port that shall be changed. The only valid value is 0.

numData

This argument specifies the number of data values (32 bit) following.

data[1]

This array prototype specifies the beginning of the output values.

Example

#include “tpmc680.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
PTP680_WRITE_32BIT_BUF pwr32Buf;
int bufSize;

// Get buffer
bufSize = TP680_BUFSIZE32(6); // 6 data value shall be written
pwr32Buf = (PTP680_WRITE_32BIT_BUF)malloc(bufSize);

…

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 26 of 34

…

pwr32Buf->portNo = 2; // write to port 2
pwr32Buf->numData = 6; // 6 data value shall be written
pwr32Buf->data[0] = 0x11223344;
pwr32Buf->data[1] = 0x22334455;
pwr32Buf->data[2] = 0x33445566;
pwr32Buf->data[3] = 0x44556677;
pwr32Buf->data[4] = 0x55667788;
pwr32Buf->data[5] = 0x66778899;

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TP680_WRITE32, // control code
pwr32Buf, // buffer with control information
sizeof(bufSize),
NULL, // buffer which receives the port value
0,
&NumBytes, // number of bytes transferred
NULL

);

if(success) {
// Write OK

}
else {

// Process DeviceIoControl() error
}

free (pwr32Buf);

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.

ERROR_INVALID_PARAMETER Invalid port number specified.

ERROR_NOACCESS This function is not allowed for this port in the
configured mode

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl()

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 27 of 34

3.1.3.8 IOCTL_TP680_WRITE64

This TPMC680 control function writes a 64 bit value directly to the specified output port. A pointer to
the write buffer (TP680_WRITE_64BIT_BUF) is passed by the parameter lpInBuffer to the driver.

The lpOutBuffer is not used and should be a NULL pointer.

The TP680_WRITE_64BIT_BUF structure has the following layout:

typedef struct {
ULONG portNo; // Port number to handle
ULONG data[2]; // 64 bit data

} TP680_WRITE_64BIT_BUF, *PTP680_WRITE_64BIT_BUF;

Members

portNo

This member specifies the port that shall be changed. The only valid value is 0.

data

This array specifies the new output value. Index 0 specifies the output for ports 7..4 and index 1
specifies the value for ports 3..0.

Example

#include “tpmc680.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP680_WRITE_64BIT_BUF wr64Buf;

wr64Buf.portNo = 0; // write to port 0
wr64Buf.data[0] = 0x77665544; // new output value port 7/6/5/4
wr64Buf.data[1] = 0x33221100; // new output value port 3/2/1/0

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TP680_WRITE64, // control code
&wr64Buf, // buffer with control information
sizeof(wr64Buf),
NULL, // buffer which receives the port value
0,
&NumBytes, // number of bytes transferred
NULL

);
…

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 28 of 34

…

if(success) {
// Write OK

}
else {

// Process DeviceIoControl() error
}

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.

ERROR_INVALID_PARAMETER Invalid port number specified.

ERROR_NOACCESS This function is not allowed for this port in the
configured mode

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl()

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 29 of 34

3.1.3.9 IOCTL_TP680_SETMODE

This TPMC680 control function configures the port size and direction. A pointer to the configuration
buffer (TP680_MODE_BUF) is passed by the parameter lpInBuffer to the driver.

The lpOutBuffer is not used and should be a NULL pointer.

The TP680_MODE_BUF structure has the following layout:

typedef struct {
ULONG portNo; // Port number to handle
ULONG Size; // Port size
ULONG Direction; // Port direction
ULONG HSMode; // Handshake Output Mode
ULONG HSFifo; // Handshake Output Fifo Mode

} TP680_MODE_BUF, *PTP680_MODE_BUF;

Members

portNo

This member specifies the port that shall be configured. Valid values are between 0 and 7.

Size

This argument specifies the port size. The following table describes the allowed port sizes and
for which ports they are allowed.

Value Ports Description

TP680_MODE_SIZE_8BIT 0,1,2,3,4,5,6,7 The port has a width of 8 bit. Each port can
be accessed separately.

TP680_MODE_SIZE_16BIT 0,2 The port has a width of 16 bit and the
output is controlled by the handshake
signals. Two ports are used together. If
port 0 is selected port 1 is used also. If
port 2 is selected also port 3 will be used.
The configuration of the connected ports is
always adapted. If this mode is selected for
any port the handshake port 4 will be
configured as an 8-bit input port.

TP680_MODE_SIZE_32BIT 0 The port has a width of 32 bit and the
output is controlled by the handshake
signals. The ports 0, 1, 2 and 3 will be
used together. The configuration of the
connected ports is always set together. If
this mode is selected the handshake
port 4 will be configured as an 8-bit input
port.

TP680_MODE_SIZE_64BIT 0 All ports are connected and can be used
as simple 64 bit input or output port. All
ports get the same configuration.

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 30 of 34

Direction

This member specifies direction of the port all connected ports will get the same direction.
Allowed values are:

TP680_MODE_DIR_INPUT The port will be used as an input port.

TP680_MODE_DIR_OUTPUT The port will be used as an output port.

HSMode

This value specifies the handshake mode and is only valid if the port shall be configured in 16 or
32 bit handshake mode (TP680_MODE_SIZE_16BIT, TP680_MODE_SIZE_32BIT). Using an
output handshake, will change the direction of port 5 to output. The allowed values are:

TP680_MODE_HSFLAG_NO No output handshake will be used.

TP680_MODE_HSFLAG_INTERLOCKED The interlocked output handshake mode will be
used.

TP680_MODE_HSFLAG_PULSED The pulsed output handshake mode will be
used.

HSFifo

This value specifies the handshake event depending on the handshake FIFO fill level. This
value is only used if an output handshake is configured. The values are:

TP680_MODE_HSFIFOEV_NOTFULL The event announces FIFO is not full.

TP680_MODE_HSFIFOEV_EMPTY The event announces FIFO is empty.

When setting up ports other that depends on the selected, may change direction or mode.
(Please refer to the TPMC680 User Manual.

Changing a port size from big to small will also change the mode of the previously connected
ports. The ports will be set into 8 bit mode and they will keep their direction.

Example

#include “tpmc680.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP680_MODE_64BIT_BUF modeBuf;

modeBuf.portNo = 2; // setup port 2
modeBuf.Size = TP680_MODE_SIZE_16BIT; // setup for 16 bit HS mode
modeBuf.Direction = TP680_MODE_DIR_OUTPUT; // port direction is output
modeBuf.HSMode = TP680_MODE_HSFLAG_PULSED; // HS output shall be pulsed mode
modeBuf.HSFifo = TP680_MODE_HSFIFOEV_EMPTY; // HS event on FIFO empty

…

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 31 of 34

…

// This setting will effect port 2, 3 and the HS ports 4 and 5

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TP680_SETMODE, // control code
&modeBuf, // buffer with control information
sizeof(modeBuf),
NULL, // buffer which receives the port value
0,
&NumBytes, // number of bytes transferred
NULL

);

if(success) {
// Setup OK

}
else {

// Process DeviceIoControl() error
}

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.

ERROR_INVALID_PARAMETER Invalid port number, Size, Handshake or FIFO mode is
specified.

ERROR_NOACCESS This function is not allowed for this port in the
configured mode. Another port is controls this port.

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl()

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 32 of 34

3.1.3.10 IOCTL_TP680_EVENTWAIT

This TPMC680 control function waits until a specified input event occurs. A pointer to the event buffer
(TP680_EVENT_BUF) is passed by the parameter lpInBuffer to the driver.

The lpOutBuffer is not used and should be a NULL pointer.

The TP680_EVENT_BUF structure has the following layout:

typedef struct {
ULONG portNo; // Port number to handle
ULONG lineNo; // Input Line, event shall occur on
ULONG transition; // Specify transition
ULONG timeout; // timeout in seconds

} TP680_EVENT_BUF, *PTP680_EVENT_BUF;

Members

portNo

This member specifies the port to wait for. Valid values are between 0 and 7.

lineNo

This member specified the line to wait for. Valid values are between 0 and 7.

transition

This member specifies the event to wait for. The following events are supported:
TP680_IO_EDGE_HI The event will occur if the specified input line changes from

Low to High.

TP680_IO_EDGE_LO The event will occur if the specified input line changes from
High to Low.

TP680_IO_EDGE_ANY The event will occur if the specified input line changes its
value.

timeout

This argument specifies the timeout in seconds. If the specified event does not occur in the
specified time, the function will return with an error code.

This function is only supported for 8 bit and 64 bit ports. Other configurations will return an
error code.

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 33 of 34

Example

#include “tpmc680.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP680_EVENT_64BIT_BUF evBuf;
evBuf.portNo = 4; // event on port 4
evBuf.lineNo = 6; // event on line 6
evBuf.transition = TP680_IO_EDGE_LO; // event on high to low transition
evBuf.timeout = 15; // timeout after 15 seconds

success = DeviceIoControl (
hDevice, // TPMC680 handle
IOCTL_TP680_EVENTWAIT, // control code
&evBuf, // buffer with control information
sizeof(evBuf),
NULL, // buffer which receives the port value
0,
&NumBytes, // number of bytes transferred
NULL

);

if(success) {
// Event occurred

}
else {

// Process DeviceIoControl() error
}

TPMC680-SW-65 – Windows 2000/XP Device Driver Page 34 of 34

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the message buffer is too small.

ERROR_INVALID_PARAMETER Invalid port, line number or event is specified.

ERROR_NOACCESS This function is not allowed for this port in the
configured mode.

ERROR_IRQ_BUSY Another process is already waiting for this event.

ERROR_SEM_TIMEOUT The specified time has expired without the event
occurred.

ERROR_OPERATION_ABORTED The event wait operation has been cancelled.

All other returned error codes are system error conditions.

See Also

Win32 documentation DeviceIoControl()

	Introduction
	Installation
	Software Installation
	Windows 2000 / XP
	Confirming Windows 2000 / XP Installation

	FIFO Configuration

	TPMC680 Device Driver Programming
	TPMC680 Files and I/O Functions
	Opening a TPMC680 Device
	Closing a TPMC680 Device
	TPMC680 Device I/O Control Functions
	IOCTL_TP680_READ8
	IOCTL_TP680_READ16
	IOCTL_TP680_READ32
	IOCTL_TP680_READ64
	IOCTL_TP680_WRITE8
	IOCTL_TP680_WRITE16
	IOCTL_TP680_WRITE32
	IOCTL_TP680_WRITE64
	IOCTL_TP680_SETMODE
	IOCTL_TP680_EVENTWAIT

