

The Embedded I/O Company

TPMC680-S
LynxOS Device

64 Digital Inputs/O

Version 1.1.x

User Manu
Issue 1.1

November 20

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek / Germany
Phone: +49-(0)4101-4058-0 Fax: +49-(0)4101-4058-19
e-mail: info@tews.com www.tews.com

TEWS
1 E. Lib
Phone:
e-mail:
W-72
 Driver
utputs

al

03

TECHNOLOGIES LLC
erty Street, Sixth Floor Reno, Nevada 89504 / USA
 +1 (775) 686 6077 Fax: +1 (775) 686 6024
 usasales@tews.com www.tews.com

mailto:info@tews.com
mailto:usasales@tews.com

TPMC680-SW-72 - LynxOS Device Driver Page 2 of 30

TPMC680-SW-72
64 Digital Inputs/Outputs

LynxOS Device Driver

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2003 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0 First Issue November 18, 2003
1.1 Error messages change (compatibility to older LynxOS versions) November 25, 2003

TPMC680-SW-72 - LynxOS Device Driver Page 3 of 30

Table of Content
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Device Driver Installation ...5
2.1.1 Static Installation ..5

2.1.1.1 Build the driver object ...5
2.1.1.2 Create Device Information Declaration ..6
2.1.1.3 Modify the Device and Driver Configuration File..6
2.1.1.4 Rebuild the Kernel ..6

2.1.2 Dynamic Installation ...7
2.1.3 Device Information Definition File ..8
2.1.4 Configuration File: CONFIG.TBL ...9

3 TPMC680 DEVICE DRIVER PROGRAMMING .. 10
3.1 open() ...10
3.2 close()...12
3.3 read() ..13
3.4 write() ...17
3.5 ioctl() ..21

3.5.1 TP680_SETMODE...23
3.5.2 TP680_EVENTWAIT..27

4 DEBUGGING.. 29

TPMC680-SW-72 - LynxOS Device Driver Page 4 of 30

1 Introduction
The TPMC680-SW-72 LynxOS device driver allows the operation of a TPMC680 64 Digital
Inputs/Outputs PMC on a PowerPC platform with DRM based PCI interface.

The standard file (I/O) functions (open, close, read, write and ioctl) provide the basic interface for
opening and closing a file descriptor and for performing device I/O and control operations.

The TPMC680 device driver includes the following functions:

! read digital input value (8 bit / 64 bit ports)
! write digital output value(8 bit / 64 bit ports)
! receive and transmit parallel data (16 bit / 32 bit handshake ports)
! configure port size, direction and handshake mode
! wait for a specified input event (8 bit / 64 bit ports)

TPMC680-SW-72 - LynxOS Device Driver Page 5 of 30

2 Installation
The software is delivered on a PC formatted 3½" HD diskette.

Following files are located on the diskette:

tpmc680.c Driver source code
tpmc680.h Definitions and data structures for driver and application
tpmc680_info.c Device information definition
tpmc680_info.h Device information definition header
tpmc680.cfg Driver configuration file include
tpmc680.import Linker import file
Makefile Device driver make file
Makefile.ppc.dldd Make file for dynamic driver installation (for Power PC)
Makefile.x86.dldd Make file for dynamic driver installation (for Intel x86)
tpmc680-sw-72.pdf This Manual in PDF format

2.1 Device Driver Installation
The two methods of driver installation are as follows:

o Static Installation
o Dynamic Installation (only native LynxOS systems)

2.1.1 Static Installation
With this method, the driver object code is linked with the kernel routines and is installed during
system start-up.

In order to perform a static installation, copy the following files to the target directories:

1. Create a new directory in the system drivers directory path /sys/drivers.xxx, where xxx
represents the BSP that supports the target hardware.

For example: /sys/drivers.pp_drm/ tpmc680

2. Copy the following files to this directory: tpmc680.c, Makefile

3. Copy tpmc680.h to /usr/include/

4. Copy tpmc680_info.c to /sys/devices.xxx/ or /sys/devices if /sys/devices.xxx does not exist
(xxx represents the BSP).

5. Copy tpmc680_info.h to /sys/dheaders/

6. Copy tpmc680.cfg to /sys/cfg.ppc/

2.1.1.1 Build the driver object
1. Change to the directory /sys/drivers.xxx/ tpmc680, where xxx represents the BSP that

supports the target hardware.

2. To update the library /sys/lib/libdrivers.a enter:

make install

TPMC680-SW-72 - LynxOS Device Driver Page 6 of 30

2.1.1.2 Create Device Information Declaration
1. Change to the directory /sys/devices.xxx or /sys/devices if /sys/devices.xxx does not exist

(xxx represents the BSP).

2. Add the following dependencies to the Makefile

DEVICE_FILES_prep = ...tpmc680_info.x
And at the end of the Makefile

...
tpmc680_info.o:$(DHEADERS)/tpmc680_info.h

3. To update the library /sys/lib/libdevices.a enter:

make install

2.1.1.3 Modify the Device and Driver Configuration File
In order to insert the driver object code into the kernel image, an appropriate entry in file CONFIG.TBL
must be created.

1. Change to the directory /sys/lynx.os/ respective /sys/bsp.xxx, where xxx represents the BSP
that supports the target hardware.

2. Create an entry in the file CONFIG.TBL

Insert the entry after the console driver section

End of console devices
I:tpmc680.cfg

2.1.1.4 Rebuild the Kernel
1. Change to the directory /sys/lynx.os/ (/sys/bsp.xxx)

2. To rebuild the kernel enter the following command:

make install

3. Reboot the newly-created operating system by the following command:

reboot –aN
The N flag instructs init to run mknod and create all the nodes mentioned in the new nodetab.

4. After reboot you should find the following new devices (depends on the device configuration):
/dev/tp680a, [/dev/tp680b, …]

TPMC680-SW-72 - LynxOS Device Driver Page 7 of 30

2.1.2 Dynamic Installation
This method allows you to install the driver after the operating system is booted. The driver object
code is attached to the end of the kernel image and the operating system dynamically adds this driver
to its internal structures. The driver can also be removed dynamically.

Unlike the description of the dynamic installation in the manual “Writing Device Drivers for LynxOS”,
the driver source must be placed in a directory under /sys/drivers.pp_drm/

The following steps describe how to do a dynamic installation:

1. Create a new directory in the system driver directory path /sys/drivers.xxx, where xxx
represents the BSP that supports the target hardware.

For example: /sys/drivers.pp_drm/tpmc680

2. Copy the following files to this directory:

" - tpmc680.c
" - tpmc680_info.c
" - tpmc680_info.h
" - tpmc680.import
" - Makefile.ppc.dldd
" - Makefile.x86.dldd

3. Copy tpmc680.h to /usr/include

4. Change to the directory /sys/drivers.xxx /tpmc680

5. To make the dynamic link-able driver enter :

make –f Makefile.ppc.dldd (Makefile.x86.dldd on x86 sytems!)

6. Create a device definition file for one major device

gcc –DDLDD –o tpmc680_info tpmc680_info.c
./tpmc680_info > tp680a

7. To install the driver enter:

drinstall –c tpmc680.obj
If successful drinstall returns a unique <driver-ID>

8. To install the major device enter:

devinstall –c –d <driver-ID> tp680a
The <driver-ID> is returned by the drinstall command

If successful devinstall returns the <major_no>

9. To create nodes for the devices enter:

mknod /dev/tp680a c <major_no> 0
...

If all steps are successful completed the TPMC680 is ready to use.

To uninstall the TPMC680 device enter the following commands:

devinstall –u –c <device-ID>
drinstall –u <driver-ID>

TPMC680-SW-72 - LynxOS Device Driver Page 8 of 30

2.1.3 Device Information Definition File
The device information definition contains information necessary to install the TPMC680 major device.

The implementation of the device information definition is done through a C structure which is defined
in the header file tpmc680_info.h.

This structure contains following parameter:

PCIBusNumber
Contains the PCI bus number at which the TPMC680 is connected. Valid bus numbers are in
range from 0 to 255.

PCIDeviceNumber
Contains the device number (slot) at which the TPMC680 is connected. Valid device numbers
are in range from 0 to 31.

If both PCIBusNumber and PCIDeviceNumber are –1 then the driver will auto scan for the
TPMC680 device. The first device found in the scan order will be allocated by the driver for this
major device.

Already allocated devices can’t be allocated twice. This is important to know if you have more
than one TMPC680 major device.

A device information definition is unique for every TPMC680 major device. The file tpmc680_info.c on
the distribution disk contains two device information declarations, tp680a_info for the first major
device and tp680b_info for the second major device.

If the driver should support more than two major devices it is necessary to copy and paste an existing
declaration and rename it with unique name for example tp680c_info, tp680d_info and so on.

It is also necessary to modify the device and driver configuration file respectively the
configuration include file tpmc680.cfg.

The following device declaration information uses the auto find method to detect the TPMC680
module on PCI bus.

TP680_INFO tp680a_info = {
 -1, /* auto find the TPMC680 on any PCI bus */
 -1,
};

TPMC680-SW-72 - LynxOS Device Driver Page 9 of 30

2.1.4 Configuration File: CONFIG.TBL
The device and driver configuration file CONFIG.TBL contains entries for device drivers and its major
and minor device declarations. Each time the system is rebuild, the config utility read this file and
produces a new set of driver and device configuration tables and a corresponding nodetab.

To install the TPMC680 driver and devices into the LynxOS system, the configuration include file
tpmc680.cfg must be included in the CONFIG.TBL.

The file tpmc680.cfg on the distribution disk contains the driver entry (C:tpmc680:\....) and one
enabled major device entry (D:TPMC680 1:tp680a_info::) with one minor device entry (N: tp680a:0).

If the driver should support more than one major device the following entries for major and minor
devices must be enabled by removing the comment character (#). By copy and paste an existing
major and minor entry and renaming the new entries, it is possible to add any number of additional
TPMC680 device.

The name of the device information declaration (info-block-name) must match to an existing C
structure in the file tpmc680_info.c.

This example shows a driver entry with one major device and one minor device:

Format:
C:driver-name:open:close:read:write:select:control:install:uninstall
D:device-name:info-block-name:raw-partner-name
N:node-name:minor-dev
C:tpmc680:\
 :tp680open:tp680close:tp680read:tp680write:\
 ::tp680ioctl:tp680install:tp680uninstall
D:TPMC680 1:tp680a_info::
N:tp680a:0

The configuration above creates the following node in the /dev directory.

/dev/tp680a

TPMC680-SW-72 - LynxOS Device Driver Page 10 of 30

3 TPMC680 Device Driver Programming
LynxOS system calls are all available directly to any C program. They are implemented as ordinary
function calls to "glue" routines in the system library, which trap to the OS code.

Note that many system calls use data structures, which should be obtained in a program from
appropriate header files. Necessary header files are listed with the system call synopsis.

3.1 open()

NAME

open() - open a file

SYNOPSIS

#include <sys/file.h>
#include <sys/types.h>
#include <fcntl.h>

int open (char *path, int oflags[, mode_t mode])

DESCRIPTION

Opens a file (TPMC680 device) named in path for reading and writing. The value of oflags indicates
the intended use of the file. In case of a TPMC680 devices oflags must be set to O_RDWR to open
the file for both reading and writing.

The mode argument is required only when a file is created. Because a TPMC680 device already
exists this argument is ignored.

EXAMPLE

int fd

...

/*
** open the device named "/dev/tp680a" for I/O
*/

fd = open ("/dev/tp680a", O_RDWR);

...

TPMC680-SW-72 - LynxOS Device Driver Page 11 of 30

RETURNS

open returns a file descriptor number if successful, or –1 on error.

SEE ALSO

LynxOS System Call - open()

TPMC680-SW-72 - LynxOS Device Driver Page 12 of 30

3.2 close()

NAME

close() – close a file

SYNOPSIS

int close(int fd)

DESCRIPTION

This function closes an opened device.

EXAMPLE

int result;

...

/*
** close the device
*/

result = close(fd);

...

RETURNS

close returns 0 (OK) if successful, or –1 on error

SEE ALSO

LynxOS System Call - close()

TPMC680-SW-72 - LynxOS Device Driver Page 13 of 30

3.3 read()

NAME

read() – read from a device

SYNOPSIS

int read(int fd, char *buff, int count)

DESCRIPTION

The read function reads data from the TPMC680 device. How the data is read, differs dependent on
the selected port size.

A pointer to the callers read buffer (TP680_IOBUF) and the size of the buffer are passed by the
parameters buff and count to the device.

The TP680_IOBUF structure has the following layout:

typedef struct
{
 int port; /* 0.. 7 */
 int dataWidth; /* size of data value */
 int dataSize; /* size of data buffer in bytes */
 char buf[1];
} TP680_IOBUF, *PTP680_IOBUF;

TPMC680-SW-72 - LynxOS Device Driver Page 14 of 30

port
Specifies the port number, allowed values are between 0 and 7. Dependent on the selected
configuration, some port numbers will not be allowed or some bits will not be available for data.
The table below gives an overview.

Port Mode Configuration 1) Connected to Port
Port 0 Port 2 7 6 5 4 3 2 1 0

8 bit 8 bit 7 6 5 4 3 2 1 0
16 bit 8 bit 7 6 5 2) 4 2) 3 2 0 0
8 bit 16 bit 7 6 5 2) 4 2) 2 2 1 0

16 bit 16 bit 7 6 5 2) 4 2) 2 2 0 0
32 bit --- 7 6 5 2) 4 2) 0 0 0 0
64 bit --- 0 0 0 0 0 0 0 0

1) The port mode configurations are assigned to the following driver configurations values:
Port Mode Configuration Driver Configuration Value (tp680def.h)

8 bit TP680_MODE_SIZE_8BIT
16 bit TP680_MODE_SIZE_16BIT
32 bit TP680_MODE_SIZE_32BIT
64 bit TP680_MODE_SIZE_64BIT

2) Bits 0/1 may be used for HS and are unreadable than.

portWidth
Specifies the size of the port, the allowed port size depends on the module configuration.

dataSize
Specifies the size of the data buffer and returns the number of bytes returned in it. The dataSize
must be specified in bytes and specifies the size of buf.

Port Mode
Configuration

Allowed Parameter Values

size port portWidth dataSize

8 bit 0, 1, 2, 3,
4, 5, 6, 7

sizeof(unsigned char) 1

16 bit 0, 2 sizeof(unsigned short) depends on allocated buffer
size

32 bit 0 sizeof(unsigned long) depends on allocated buffer
size

64 bit 0 2 * sizeof(unsigned
long)

2 * sizeof(unsigned long)

TPMC680-SW-72 - LynxOS Device Driver Page 15 of 30

buf
Is defined as the first byte of the data buffer where the read data will be returned. By allocating
a buffer and overlaying the structure it is possible to get a greater buffer space. The size of the
buffer is specified with the parameter dataSize.

The needed size of the buffer can be calculated with the predefined MACRO:
TP680_NEEDEDBUFFERSIZE(elemNum, elemSize) where elemNum specifies the maximum
number of elements that shall be returned and elemSize specifies the maximum size in bytes of
one element.

For example: for 20 Longwords use:

TP680_NEEDEDBUFFERSIZE(20, sizeof(unsigned long))

EXAMPLE

int hCurrent = 0;
TP680_IOBUF *rdBuf;
unsigned short *usBuf;
int NumBytes;
int bufSize;

bufSize = TP680_NEEDEDBUFFERSIZE(5,sizeof(unsigned short));
rdBuf = (TP680_IOBUF*)malloc(bufSize);
hCurrent = open(...);

...

/*
** Read a value from port 7 using the 8-bit mode
*/
rdBuf->port = 7;
rdBuf->dataWidth = sizeof(unsigned char);
rdBuf->dataSize = sizeof(unsigned char);

NumBytes = read(hCurrent, rdBuf, sizeof(TP680_IOBUF));
if (NumBytes > 0)
{
 /* Input data in rdBuf->buf[0] */
}
else
{
 /* read error */
}

...

TPMC680-SW-72 - LynxOS Device Driver Page 16 of 30

...

/*
** Read a maximum of 5 values from port 2 using the 16-bit mode
*/
rdBuf->port = 2;
rdBuf->dataWidth = sizeof(unsigned short);
rdBuf->dataSize = 5 * sizeof(unsigned short);

NumBytes = read(hCurrent, rdBuf, bufSize);
if (NumBytes > 0)
{
 /* pointer to result buffer */
 usBuf = (unsigned short*)rdBuf->buf;
 /* Input data in array usBuf[] */
}
else
{
 /* read error */
}

RETURNS

On success read returns the size of returned buffer. In the case of an error, a value of –1 is returned.
The global variable errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the size of the read or data
buffer is too small, or a specified parameter is out of range.

EFAULT Invalid pointer to the read or data buffer.
EACCES Access is not allowed, port has a false configuration.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TPMC680-SW-72 - LynxOS Device Driver Page 17 of 30

3.4 write()

NAME

write() – write to a device

SYNOPSIS

int write(int fd, char *buff, int count)

DESCRIPTION

The write function writes data to the TPMC680 device. How the data is written, differs dependent on
the selected port size.

A pointer to the callers write buffer (TP680_IOBUF) and the size of the buffer are passed by the
parameters buff and count to the device.

The TP680_IOBUF structure has the following layout:

typedef struct
{
 int port; /* 0.. 7 */
 int dataWidth; /* size of data value */
 int dataSize; /* size of data buffer in bytes */
 char buf[1];
} TP680_IOBUF, *PTP680_IOBUF;

TPMC680-SW-72 - LynxOS Device Driver Page 18 of 30

port
Specifies the port number, allowed values are between 0 and 7. Dependent on the selected
configuration, some port numbers will not be allowed or some bits will not be available for data.
The table below gives an overview.

Port Mode Configuration 1) Connected to Port
Port 0 Port 2 7 6 5 4 3 2 1 0
8 bit 8 bit 7 6 5 4 3 2 1 0

16 bit 8 bit 7 6 5 2) 4 2) 3 2 0 0
8 bit 16 bit 7 6 5 2) 4 2) 2 2 1 0

16 bit 16 bit 7 6 5 2) 4 2) 2 2 0 0
32 bit --- 7 6 5 2) 4 2) 0 0 0 0
64 bit --- 0 0 0 0 0 0 0 0

1) The port mode configurations are assigned to the following driver configurations values:
Port Mode Configuration Driver Configuration Value (tp680def.h)

8 bit TP680_MODE_SIZE_8BIT
16 bit TP680_MODE_SIZE_16BIT
32 bit TP680_MODE_SIZE_32BIT
64 bit TP680_MODE_SIZE_64BIT

2) Bits 0/1 may be used for HS and are unreadable than.

portWidth
Specifies the size of the port, the allowed port size depends on the module configuration.

dataSize
Specifies the size of the data buffer. The dataSize must be specified in bytes and specifies the
size of buf.

Port Mode
Configuration

Allowed Parameter Values

size port portWidth dataSize

8 bit 0, 1, 2, 3,
4, 5, 6, 7

sizeof(unsigned char) 1

16 bit 0, 2 sizeof(unsigned short) depends on allocated buffer
size

32 bit 0 sizeof(unsigned long) depends on allocated buffer
size

64 bit 0 2 * sizeof(unsigned
long)

2 * sizeof(unsigned long)

TPMC680-SW-72 - LynxOS Device Driver Page 19 of 30

buf
Is defined as the first byte of the data buffer where the write data must be placed. By allocating
a buffer and overlaying the structure it is possible to get a greater buffer space. The size of the
buffer is specified with the parameter dataSize.

The needed size of the buffer can be calculated with the predefined MACRO:
TP680_NEEDEDBUFFERSIZE(elemNum, elemSize) where elemNum specifies the maximum
number of elements that shall be returned and elemSize specifies the maximum size in bytes of
one element.

For example: for 20 Longwords use:

TP680_NEEDEDBUFFERSIZE(20, sizeof(unsigned long))

EXAMPLE

int hCurrent = 0;
TP680_IOBUF *wrBuf;
int NumBytes;
int bufSize;
unsigned short *usVal;

bufSize = TP680_NEEDEDBUFFERSIZE(5,sizeof(unsigned short));;
wrBuf = (TP680_IOBUF*)malloc(bufSize);

hCurrent = open(...);

...

/*
** Write a value (0x55) to port 7 using the 8-bit mode
*/
wrBuf->port = 7;
wrBuf->dataWidth = sizeof(unsigned char);
wrBuf->dataSize = sizeof(unsigned char);

wrBuf->buf[0] = 0x55;

NumBytes = read(hCurrent, wrBuf, sizeof(TP680_IOBUF));
if (NumBytes > 0)
{
 /* 8-bit value written */
}
else
{
 /* write error */
}

...

TPMC680-SW-72 - LynxOS Device Driver Page 20 of 30

...

/*
** Write 5 values to port 2 using the 16-bit mode
*/
wrBuf->port = 2;
wrBuf->dataWidth = sizeof(unsigned short);
wrBuf->dataSize = 5 * sizeof(unsigned short);

usVal = (unsigned short*) wrBuf->buf;

usVal [0] = 0x1111;
usVal [1] = 0x1112;
usVal [2] = 0x1122;
usVal [3] = 0x1222;
usVal [4] = 0x2222;

NumBytes = write(hCurrent, wrBuf, bufSize);
if (NumBytes > 0)
{
 /* data written to 16-bit port */
}
else
{
 /* write error */
}

RETURNS

On success write returns the size of written data. In the case of an error, a value of –1 is returned. The
global variable errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the size of the read or data
buffer is too small, or a specified parameter is out of range.

EFAULT Invalid pointer to the write or data buffer.
EACCES Access is not allowed, port has a false configuration.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TPMC680-SW-72 - LynxOS Device Driver Page 21 of 30

3.5 ioctl()

NAME

ioctl() – device control functions

SYNOPSIS

#include <ioctl.h>
#include <tpmc680.h>

int ioctl (int fd, int request, char *arg)

DESCRIPTION

ioctl() provides a way of sending special commands to a device driver. The call sends the value of
request and the pointer arg to the device associated with the descriptor fd.

The argument request specifies the control code for the operation. The optional argument arg
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in tpmc680.h :

Value Meaning
TP680_SETMODE Configure ports

TP680_EVENTWAIT Wait for a specified event

See behind for more detailed information on each control code.

To use these TPMC680 specific control codes the header file TPMC680.h must be included in
the application

RETURNS

On success, zero is returned. In the case of an error, a value of –1 is returned. The global variable
errno contains the detailed error code.

TPMC680-SW-72 - LynxOS Device Driver Page 22 of 30

ERRORS

EINVAL Invalid argument. This error code is returned if the requested ioctl function is
unknown. Please check the argument request.

Other function dependant error codes will be described for each ioctl code separately. Note, the
TPMC680 driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TPMC680-SW-72 - LynxOS Device Driver Page 23 of 30

3.5.1 TP680_SETMODE

NAME

TP680_SETMODE – Configure a port

DESCRIPTION

This ioctl() function configures the specified port of the TPMC680.

A pointer to the callers configuration buffer (TP680_SETMODEBUF) is passed by the parameter arg to
the driver.

The TP680_SETMODEBUF structure has the following layout:

typedef struct
{
 unsigned long port; /* Port number to handle */
 unsigned long Size; /* Port size */
 unsigned long Direction; /* Port direction */
 unsigned long HSMode; /* Handshake Output Mode */
 unsigned long HSFifo; /* Handshake Output Fifo Mode */
} TP680_SETMODEBUF, *PTP680_SETMODEBUF;

port
This member specifies the port that shall be configured. Valid values are between 0 and 7.

TPMC680-SW-72 - LynxOS Device Driver Page 24 of 30

Size
This argument specifies the port size. The following table describes the allowed port sizes and
for which ports they are allowed.

Value Ports Description
TP680_MODE_SIZE_8BIT 0, 1, 2, 3,

4, 5, 6, 7
The port has a width of 8 bit. Each port can be
accessed separately.

TP680_MODE_SIZE_16BIT 0,2 The port has a width of 16 bit and the output is
controlled by the handshake signals. Two ports
are used together. If port 0 is selected port 1 is
used also. If port 2 is selected also port 3 will
be used. The configuration of the connected
ports is always adapted. If this mode is
selected for any port the handshake port 4
will be configured as an 8-bit input port.

TP680_MODE_SIZE_32BIT 0 The port has a width of 32 bit and the output is
controlled by the handshake signals. The ports
0, 1, 2 and 3 will be used together. The
configuration of the connected ports is always
set together. If this mode is selected the
handshake port 4 will be configured as an
8-bit input port.

TP680_MODE_SIZE_64BIT 0 All ports are connected and can be used as
simple 64 bit input or output port. All ports get
the same configuration.

Direction
This member specifies direction of the port all connected ports will get the same direction.
Allowed values are:

Value Description
TP680_MODE_DIR_INPUT The port will be used as an input port.
TP680_MODE_DIR_OUTPUT The port will be used as an output port.

HSMode
This value specifies the handshake mode and is only valid if the port shall be configured in 16 or
32 bit handshake mode (TP680_MODE_SIZE_16BIT, TP680_MODE_SIZE_32BIT). Using an
output handshake, will change the direction of port 5 to output. The allowed values are:

Value Description
TP680_MODE_HSFLAG_NO No output handshake will be used.
TP680_MODE_HSFLAG_INTERLOCKED The interlocked output handshake mode will

be used.
TP680_MODE_HSFLAG_PULSED The pulsed output handshake mode will be

used.

TPMC680-SW-72 - LynxOS Device Driver Page 25 of 30

HSFifo
This value specifies the handshake event depending on the handshake FIFO fill level. This
value is only used if an output handshake is configured. The values are:

Value Description
TP680_MODE_HSFIFOEV_NOTFULL The event announces FIFO is not full.
TP680_MODE_HSFIFOEV_EMPTY The event announces FIFO is empty.

When setting up ports other that depends on the selected, may change direction or mode.
(Please refer to the TPMC680 User Manual.

Changing a port size from big to small will also change the mode of the previously connected
ports. The ports will be set into 8 bit mode and they will keep their direction.

EXAMPLE

int hCurrent = 0;
int result;
TP680_SETMODEBUF modeBuf;

hCurrent = open(...);

...

/* Configure port (2) for 16-bit output handshake mode */

modeBuf.port = 2;
modeBuf.Size = TP680_MODE_SIZE_16BIT;
modeBuf.Direction = TP680_MODE_DIR_OUTPUT;
modeBuf.HSMode = TP680_MODE_HSFLAG_INTERLOCKED;
 /* interlocked output HS mode */
modeBuf.HSFifo = TP680_MODE_HSFIFOEV_EMPTY;
 /* ouput event on FIFO empty */

result = ioctl(hCurrent, TP680_SETMODE, &modeBuf);
if(result >= 0)
{
 /* Setting port mode successful */
}
else
{
 /* Setting portmode failed */
}

TPMC680-SW-72 - LynxOS Device Driver Page 26 of 30

ERRORS

EINVAL Invalid argument. This error code is returned if the size of the read or data
buffer is too small, or a specified parameter is out of range, or if a specified

parameter value is out of range.
EFAULT Invalid pointer to the configuration buffer.
EACCES Access is not allowed, port has a false configuration

SEE ALSO

ioctl man pages

TPMC680-SW-72 - LynxOS Device Driver Page 27 of 30

3.5.2 TP680_EVENTWAIT

NAME

TP680_EVENTWAIT – Wait for a specified input event

DESCRIPTION

This ioctl() function waits for a specified event on a specified input line of the TPMC680.

A pointer to the callers event buffer (TP680_EVENTWAITBUF) is passed by the parameter arg to the
driver.

The TP680_EVENTWAITBUF structure has the following layout:

typedef struct
{
 unsigned long port; /* Port number to handle */
 unsigned long lineNo; /* Input Line, event shall occur on */
 unsigned long transition; /* Specify transition */
 unsigned long timeout; /* Timeout in seconds */
} TP680_EVENTWAITBUF, *PTP680_EVENTWAITBUF;

port
This member specifies the port to wait for. Valid values are between 0 and 7.

lineNo
This member specified the line to wait for. Valid values are between 0 and 7.

transition
This member specifies the event to wait for. The following events are supported:

Value Description
TP680_IO_EDGE_LO The event will occur if the specified input line changes from

High to Low.
TP680_IO_EDGE_ANY The event will occur if the specified input line changes its

value.

timeout
This argument specifies the timeout in ticks. If the specified event does not occur in the
specified time, the function will return with an error code.

This function is only supported for 8 bit and 64 bit ports. Other configurations will return an
error code.

TPMC680-SW-72 - LynxOS Device Driver Page 28 of 30

EXAMPLE

int hCurrent = 0;
int result;
TP680_EVENTWAITBUF evantBuf;

hCurrent = open(...);

...

/*
** Wait for a high to low transition on line 3 of port 3, timeout after
** 10000 ticks.
*/
eventBuf.port = 3;
eventBuf.lineNo = 3;
eventBuf.transition = TP680_IO_EDGE_LO;
eventBuf.timeout = 10000;

result = ioctl(hCurrent, TP680_EVENTWAIT, &eventBuf);
if(result >= 0)
{
 /* Event occurred */
}
else
{
 /* Event did not occur or access failed */
}

ERRORS

EFAULT Invalid pointer to the configuration buffer.
EINVAL Invalid argument. This error code is returned if the size of the read or data

buffer is too small, or a specified parameter is out of range, or if a specified
parameter value is out of range.

EACCES Access is not allowed, port has a false configuration
EBUSY The input line is already connected to a waiting event

SEE ALSO

ioctl man pages

TPMC680-SW-72 - LynxOS Device Driver Page 29 of 30

4 Debugging
This driver was successful tested on a MVME2305 board (Power PC) with a Windows Cross
development and on a PC (Intel x86) system in a native LynxOS environment.

If the driver will not work properly, usually a PCI bus or interrupt problem, you can enable debug
outputs by removing the comments around the symbols DEBUG, DEBUG_PCI and DEBUG_TPMC.
The debug output will appear on the console.

The debug output should appear on the console. If not please check the symbol KKPF_PORT in
uparam.h. This symbol should be configured to a valid COM port (e.g. SKDB_COM1).

The debug output displays the PCI Header, the address of each base address register and a memory
dump of all mapped memory and I/O spaces of the TPMC680 like this (see also TPMC680 User
Manual – PCI Configuration).

TPMC680 Device Driver Install
Bus = 0 Dev = 16 Func = 0
[00] = 02A81498
[04] = 02800000
[08] = 11800000
[0C] = 00000008
[10] = 02042000
[14] = 0000C001
[18] = 02043000
[1C] = 00000000
[20] = 00000000
[24] = 00000000
[28] = 00000000
[2C] = 000A1498
[30] = 00000000
[34] = 00000040
[38] = 00000000
[3C] = 00000109
PCI Base Address 0 (PCI_RESID_BAR0)

B8142000 : 00 FF FF 0F 00 00 00 00 00 00 00 00 00 00 00 00
B8142010 : 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00
B8142020 : 00 00 00 00 00 00 00 00 A0 20 81 15 00 00 00 00
B8142030 : 00 00 00 00 00 00 00 00 00 00 00 00 81 00 00 00
B8142040 : 00 00 00 00 00 00 00 00 00 00 00 00 41 00 30 00
B8142050 : 00 00 78 18 C0 B6 24 00 00 00 00 00 00 00 00 00
B8142060 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
B8142070 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

TPMC680-SW-72 - LynxOS Device Driver Page 30 of 30

PCI Base Address 1 (PCI_RESID_BAR1)

B0108000 : 00 FF FF 0F 00 00 00 00 00 00 00 00 00 00 00 00
B0108010 : 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00
B0108020 : 00 00 00 00 00 00 00 00 A0 20 81 15 00 00 00 00
B0108030 : 00 00 00 00 00 00 00 00 00 00 00 00 81 00 00 00
B0108040 : 00 00 00 00 00 00 00 00 00 00 00 00 41 00 30 00
B0108050 : 00 00 78 18 C0 B6 24 00 00 00 00 00 00 00 00 00
B0108060 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
B0108070 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
PCI Base Address 2 (PCI_RESID_BAR2)

B8143000 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 12
B8143010 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
B8143020 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 32
B8143030 : 00 00 00 00 00 00 00 00 00 00 00 3E 00 00 00 42
B8143040 : 00 00 FF DF 00 00 00 00 00 00 00 4E 00 00 00 52
B8143050 : 00 00 00 56 00 00 00 5A 00 00 00 5E 00 00 00 62
B8143060 : 00 00 00 66 00 00 00 6A 00 00 00 6E 00 00 00 72
B8143070 : 00 00 00 76 00 00 00 7A 00 00 00 7E 00 00 00 82

	Introduction
	Installation
	Device Driver Installation
	Static Installation
	Build the driver object
	Create Device Information Declaration
	Modify the Device and Driver Configuration File
	Rebuild the Kernel

	Dynamic Installation
	Device Information Definition File
	Configuration File: CONFIG.TBL

	TPMC680 Device Driver Programming
	open()
	close()
	read()
	write()
	ioctl()
	TP680_SETMODE
	TP680_EVENTWAIT

	Debugging

