

The Embedded I/O Company

TPMC680-S
QNX6 - Neutrino De

64 Digital Inputs/O

Version 1.0.0

User Manu
Issue 1.0.0
June 2005

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek / Germany
Phone: +49-(0)4101-4058-0 Fax: +49-(0)4101-4058-19
e-mail: info@tews.com www.tews.com

TEWS
1 E. Lib
Phone:
e-mail:
W-95
vice Driver
utputs

al

TECHNOLOGIES LLC
erty Street, Sixth Floor Reno, Nevada 89504 / USA
 +1 (775) 686 6077 Fax: +1 (775) 686 6024
 usasales@tews.com www.tews.com

mailto:info@tews.com
http://www.tews.com/
mailto:usasales@tews.com

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 2 of 32

TPMC680-SW-95
64 Digital Inputs/Outputs

QNX6 - Neutrino Device Driver

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2005 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0.0 First Issue June 1, 2005

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 3 of 32

Table of Content
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Build the device driver ...5
2.2 Start the driver process..6
2.3 Receive and Transmit FIFO Configuration...6
2.4 Application interface configuration ..7

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 8
3.1 open() ...8
3.2 close()...9
3.3 devctl() ...10

3.3.1 DCMD_TP680_SET_MODE...12
3.3.2 DCMD_TP680_GET_8BIT_PORT..15
3.3.3 DCMD_TP680_SET_8BIT_PORT ..17
3.3.4 DCMD_TP680_READ_16BIT_DATA ...19
3.3.5 DCMD_TP680_WRITE_16BIT_DATA..21
3.3.6 DCMD_TP680_READ_32BIT_DATA ...23
3.3.7 DCMD_TP680_WRITE_32BIT_DATA..25
3.3.8 DCMD_TP680_GET_64BIT_PORT..27
3.3.9 DCMD_TP680_SET_64BIT_PORT ..29
3.3.10 DCMD_TP680_EVENT_WAIT..31

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 4 of 32

1 Introduction
The TPMC680-SW-95 QNX-Neutrino device driver allows the operation of a TPMC680
64 Input/Outputs PMC on QNX-Neutrino operating systems.

The TPMC680 device driver is basically implemented as a user installable Resource Manager. The
standard file (I/O) functions (open, close and devctl) provide the basic interface for opening and
closing a file descriptor and for performing device I/O and control operations.

The TPMC680 device driver includes the following functions:

! Configuring ports to work as 8-, 16-, 32- and 64 bit ports.
! Configuring port direction
! Setting I/O line output in 8- and 64-bit configuration
! Getting I/O line input in 8- and 64-bit configuration
! Receiving data via 16- or 32-bit handshake ports
! Transmitting data via 16- or 32-bit handshake ports
! Wait for input events on I/O lines of 8- and 64-bit ports

To understand all features of this device driver, it is very important to read TPMC680 User Manual.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 5 of 32

2 Installation
The distribution media contains the following files:

TPMC680-SW-95-SRC.tar tar-archieve containing driver and example files
TPMC680-SW-95.pdf this manual
Release.txt Information about the Device Driver Release

Following files are stored in the tar-archive:

/driver/tpmc680.c Driver source code
/driver/tpmc680.h Definitions and data structures for driver and application
/driver/tpmc680def.h Device driver include
/driver/node.c Queue management source code
/driver/node.h Queue management definitions
/driver/nto/* Build path
/example/example.c Example application
/example/nto/* Build path

For installation copy the tar-archive into the /usr/src directory and unpack it (e.g. tar –xvf TPMC680-
SW-95-SRC.tar). After that the necessary directory structure for the automatic build and the source
files are available underneath the new directory called tpmc680.

It is absolutely important to extract the TPMC680 tar archive in the /usr/src directory. Otherwise
the automatic build with make will fail.

2.1 Build the device driver
Change to the /usr/src/tpmc680/driver directory

Execute the Makefile:

make install

After successful completion the driver binary (tpmc680) will be installed in the /bin directory.

Build the example application

Change to the /usr/src/tpmc680/example directory

Execute the Makefile:

make install

After successful completion the example binary (tp680exam) will be installed in the /bin directory.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 6 of 32

2.2 Start the driver process
To start the TPMC310 device driver respective you have to enter the process name with optional
parameter from the command shell or in the startup script.

tpmc680 [-v] &

The TPMC680 Resource Manager registers created devices in the Neutrinos pathname space under
following names.

/dev/tpmc680_0
/dev/tpmc680_1
…
/dev/tpmc680_x

This pathname must be used in the application program to open a path to the desired TPMC680
device.

fd = open(“/dev/tpmc680_0”, O_RDWR);

For debugging, you can start the TPMC680 Resource Manager with the –v option. Now the Resource
Manager will print versatile information about TPMC680 configuration and command execution on the
terminal window.

tpmc680 –v &

2.3 Receive and Transmit FIFO Configuration
The size of receive and transmit FIFO can be configured in tpmc680def.h. The values of the following
definition can be adapted.

TP680_IOBUFSIZE16
Defines the depth of the FIFOs for port 0 and port 2 used for 16-bit handshake mode. The value
specifies the number 16-bit words.

TP680_IOBUFSIZE32
Defines the depth of the FIFO for port 0 used for 32-bit handshake mode. The value specifies
the number 32-bit words.

After changing any of the values, the driver has to be rebuilt.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 7 of 32

2.4 Application interface configuration
The size of read and write buffers can be configured in tpmc680.h. The values of the following
definition can be adapted.

TP680_MAX_16BIT_ELEM
Defines the maximum number of 16-bit words, that can be read or written at once.

TP680_MAX_32BIT_ELEM
Defines the maximum number of 32-bit words, that can be read or written at once.

After changing any of the values, the driver and application has to be rebuilt.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 8 of 32

3 Device Input/Output functions
This chapter describes the interface to the device driver I/O system.

3.1 open()

NAME

open() - open a file descriptor

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open (const char *pathname, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the TPMC680 named by pathname.
The flags argument controls how the file is to be opened. TPMC680 devices must be opened
O_RDWR.

EXAMPLE

int fd;

fd = open(“/dev/tpmc680_0”, O_RDWR);

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

ERRORS

Returns only Neutrino specific error codes, see Neutrino Library Reference.

SEE ALSO

Library Reference - open()

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 9 of 32

3.2 close()

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

...

if (close(fd) != 0)
{
 /* handle close error conditions */
}

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

Returns only Neutrino specific error code, see Neutrino Library Reference.

SEE ALSO

Library Reference - close()

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 10 of 32

3.3 devctl()

NAME

devctl() – device control functions

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>
#include <devctl.h>

int devctl
(
 int filedes,
 int dcmd,
 void *data_ptr,
 size_t n_bytes,
 int *dev_info_ptr
)

DESCRIPTION

The devctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument dcmd specifies the control code for the operation.

The arguments data_ptr and n_bytes depends on the command and will be described for each
command in detail later in this chapter. Usually data_ptr points to a buffer that passes data between
the user task and the driver and n_bytes defines the size of this buffer.

The argument dev_info_ptr is unused for the TPMC680 driver and should be set to NULL.

The following devctl command codes are defined in tpmc680.h:

Value Description
DCMD_TP680_SET_MODE Configure direction size and parameters of a specified

port.
DCMD_TP680_GET_8BIT_PORT Get input value of a specified 8-bit port.
DCMD_TP680_SET_8BIT_PORT Set value of a specified 8-bit output port.
DCMD_TP680_READ_16BIT_DATA Read data received on a specified 16-bit input port.
DCMD_TP680_WRITE_16BIT_DATA Send data via a specified 16-bit output port.
DCMD_TP680_READ_32BIT_DATA Read data received on the 32-bit input port.
DCMD_TP680_WRITE_32BIT_DATA Send data via the 32-bit output port.
DCMD_TP680_GET_64BIT_PORT Get input value of all 64 I/O lines.
DCMD_TP680_SET_64BIT_PORT Set value to all 64 output lines.
DCMD_TP680_EVENT_WAIT Wait for a specified event on a specified input line.

See behind for more detailed information on each control code.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 11 of 32

To use these TPMC680 specific control codes the header file tpmc680.h must be included in
the application.

RETURNS

On success, EOK is returned. In the case of an error, the appropriate error code is returned by the
function (not in errno!).

ERRORS

Returns only Neutrino specific error codes, see Neutrino Library Reference.

Other function dependent error codes will be described for each devctl code separately.

The TPMC680 driver always returns standard QNX error codes.

SEE ALSO

Library Reference - devctl()

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 12 of 32

3.3.1 DCMD_TP680_SET_MODE

NAME

DCMD_TP680_SET_MODE – Configure port direction, size, and mode

DESCRIPTION

This function configures direction, size and mode of a specified port of the associated device. A
pointer to the callers configuration buffer (TP680_SET_MODE_BUF) and the size of this structure are
passed by the parameters data_ptr and n_bytes to the device.

The TP680_SET_MODE_BUF structure has the following layout:

typedef struct
{
 int port;
 unsigned long direction;
 unsigned long mode;
 unsigned long hsFlags;
} TP680_SET_MODE_BUF, *PTP680_SET_MODE_BUF;

port
This value specifies the port that should be configured. Valid port numbers are 0 up to 7. Some
ports can not be configured to all modes.

direction
This value specifies the port direction. Dependent on the module some configurations are not
allowed. The following values are defined:

define description
TP680_IO_DIR_IN configures the port as input port
TP680_IO_DIR_OUT configures the port for output

mode
This value specifies the mode (width) of the port. Some mode changes will disconnect ports
from the specified one, all disconnected ports will be set to 8-bit byte input mode. The following
modes are predefined:

define description
TP680_IO_MODE_BYTE configures the port as an 8-bit byte I/O port
TP680_IO_MODE_HS16BIT configures the port to work in 16-bit handshake mode
TP680_IO_MODE_HS32BIT configures the port to work in 32-bit handshake mode
TP680_IO_MODE_SYNCHRON configures the port to work in 64-bit synchronous byte

I/O mode

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 13 of 32

hsFlags
This argument specifies the handshake mode and FIFO event. A handshake mode and a
handshake event can be ORed.
The following values are defined for valid interrupt modes:

define description
TP680_IO_HSFLAG_NO No handshake output signal
TP680_IO_HSFLAG_INTERLOCKED Output handshake is generated in interlocked

mode
TP680_IO_HSFLAG_PULSED Output handshake is generated in pulsed mode

The following values are defined for FIFO events:

define description
TP680_IO_HSFIFOEV_NOTFULL The FIFO event is generated if the FIFO is not

filled.
TP680_IO_HSFIFOEV_EMPTY The FIFO event is generated if the FIFO is empty.

Please refer to the User Manual of TPMC680 to understand all modes and dependencies.

EXAMPLE

int fd;
int result;
TP680_SET_MODE_BUF modeBuf;

/* Configure Port 2 for 16-bit HS output */
/* - interlocked mode */
/* - FIFO event on buffer empty */
modeBuf.port = 2;
modeBuf.direction = TP680_IO_DIR_OUT;
modeBuf.mode = TP680_IO_MODE_HS16BIT;
modeBuf.hsFlags = TP680_IO_HSFLAG_INTERLOCKED | TP680_IO_HSFIFOEV_EMPTY;

result = devctl(fd,
 DCMD_TP680_SET_MODE,
 &modeBuf,
 sizeof(modeBuf),
 NULL);
if (result != EOK)
{
 /* process devctl() error */
}

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 14 of 32

ERRORS

EINVAL An argument specified value is invalid.
ECHRNG The port number is out of range or the port number is not valid for

the specified configuration.
EACCES The port can not be accessed. It is connected to another port.

SEE ALSO

Library Reference - devctl()

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 15 of 32

3.3.2 DCMD_TP680_GET_8BIT_PORT

NAME

DCMD_TP680_GET_8BIT_PORT – Get value of an 8-bit port

DESCRIPTION

This function reads the actual value of a specified 8-bit port of the associated device. A pointer to a
callers 8-bit buffer (TP680_8BIT_PORT_BUF) and the size of this structure are passed by the
parameters data_ptr and n_bytes to the device.

The TP680_8BIT_PORT_BUF structure has the following layout:

typedef struct
{
 int port;
 unsigned char value;
} TP680_8BIT_PORT_BUF, *PTP680_8BIT_PORT_BUF;

port
This value specifies the port that should be read. Valid port numbers are 0 up to 7. The port
must be in byte mode.

value
This is the parameter where the input value will be stored to.

The lower two bits of port 4 and port 5 are set to zero, if the associated pins are used for
handshake.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 16 of 32

EXAMPLE

int fd;
int result;
TP680_8BIT_PORT_BUF byteBuf;

/* Read actual state of port 2 input */
byteBuf.port = 2;

result = devctl(fd,
 DCMD_TP680_GET_8BIT_PORT,
 &byteBuf,
 sizeof(byteBuf),
 NULL);
if (result != EOK)
{
 /* process devctl() error */
}
printf(“INPUT: %02Xh\n”, byteBuf.value);

ERRORS

ECHRNG The port number is out of range.
EACCES The port can not be accessed. It is not configured for 8-bit byte

access.

SEE ALSO

Library Reference - devctl()

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 17 of 32

3.3.3 DCMD_TP680_SET_8BIT_PORT

NAME

DCMD_TP680_SET_8BIT_PORT – Set value to an 8-bit output port

DESCRIPTION

This function sets the actual value of a specified 8-bit output port of the associated device. A pointer to
a callers 8-bit buffer (TP680_8BIT_PORT_BUF) and the size of this structure are passed by the
parameters data_ptr and n_bytes to the device.

The TP680_8BIT_PORT_BUF structure has the following layout:

typedef struct
{
 int port;
 unsigned char value;
} TP680_8BIT_PORT_BUF, *PTP680_8BIT_PORT_BUF;

port
This value specifies the port that should be changed. Valid port numbers are 0 up to 7. The port
must be in byte output mode.

value
This is the parameter specifies the new output value.

The lower two bits of port 4 and port 5 are ignored, if the associated pins are used for
handshake.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 18 of 32

EXAMPLE

int fd;
int result;
TP680_8BIT_PORT_BUF byteBuf;

/* Set port 2 to 0x12 */
byteBuf.port = 2;
byteBuf.value = 0x12;

result = devctl(fd,
 DCMD_TP680_GET_8BIT_PORT,
 &byteBuf,
 sizeof(byteBuf),
 NULL);
if (result != EOK)
{
 /* process devctl() error */
}

ERRORS

ECHRNG The port number is out of range.
EACCES The port can not be accessed. It is not configured for 8-bit byte

access.

SEE ALSO

Library Reference - devctl()

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 19 of 32

3.3.4 DCMD_TP680_READ_16BIT_DATA

NAME

DCMD_TP680_READ_16BIT_DATA – Read data from 16-bit input port

DESCRIPTION

This function reads received data from a specified 16-bit input port of the associated device. A pointer
to a callers 16-bit buffer (TP680_16BIT_BUF) and the size of this structure are passed by the
parameters data_ptr and n_bytes to the device.

The data structure has a fixed size. It is configured with the definition of TP680_MAX_16BIT_ELEM.
This definition sets the maximum number of 16-bit words that can be read with one call.

It is possible to fill up a partially filled buffer, by simply recalling DCMD_TP680_READ_16BIT_DATA
with the same buffer, without changing any values. This may be necessary to get packets of a fixed
length.

The function always returns data that are stored in the receive FIFO, it will not wait until data is
available.

The TP680_16BIT_BUF structure has the following layout:

typedef struct
{
 int port;
 int maxElements;
 int usedElements;
 unsigned short value[TP680_MAX_16BIT_ELEM];
} TP680_16BIT_BUF, *PTP680_16BIT_BUF;

port
This value specifies the port the data should be read from. Valid port numbers for this function
are 0 and 2. The port must be in 16-bit handshake input mode.

maxElements
This value specifies the number of 16-bit values that will be filled into the buffer at maximum.
This value can be different to the definition TP680_MAX_16BIT_ELEM, but must not be greater.

used Elements
This value returns the number of received 16-bit data words in the buffer. This value should be
set 0 before calling the function, or it should keep the returned value, if the buffer should be
filled up with the next call.

value[]
This is the buffer where the received data will be copied to.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 20 of 32

EXAMPLE

int fd;
int result;
TP680_16BIT_BUF inputBuf;

/* Read a block of 20 words from port 0, */
/* retry until 20 words are received */
inputBuf.port = 0;
inputBuf.maxElement = 20;
inputBuf.usedElements = 0;

do
{
 result = devctl(fd,
 DCMD_TP680_READ_16BIT_DATA,
 &inputBuf,
 sizeof(inputBuf),
 NULL);
 if (result != EOK)
 {
 /* process devctl() error */
 break;
 }
} while (inputBuf.usedElements < 20);

/* 20 words of data received */

ERRORS

ECHRNG The port number is out of range, the port number is not allowed.
EACCES The port can not be accessed. It is not configured for 16-bit

handshake input access.

SEE ALSO

Library Reference - devctl()

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 21 of 32

3.3.5 DCMD_TP680_WRITE_16BIT_DATA

NAME

DCMD_TP680_WRITE_16BIT_DATA – Write data to 16-bit output port

DESCRIPTION

This function writes data to a specified 16-bit output port of the associated device. A pointer to a
callers 16-bit buffer (TP680_16BIT_BUF) and the size of this structure are passed by the parameters
data_ptr and n_bytes to the device.

The data structure has a fixed size. It is configured with the definition of TP680_MAX_16BIT_ELEM.
This definition sets the maximum number of 16-bit words that can be written with one call.

It is possible to retry sending a partially sent buffer, by recalling DCMD_TP680_WRITE_16BIT_DATA
with the same buffer, without changing any values. This makes it easier to send packets of a fixed
length.

The function copies the supplied data into drivers FIFO. It will not wait until data is sent. The function
return immediately when all data is copied into the FIFO or the FIFO is filled.

The TP680_16BIT_BUF structure has the following layout:

typedef struct
{
 int port;
 int maxElements;
 int usedElements;
 unsigned short value[TP680_MAX_16BIT_ELEM];
} TP680_16BIT_BUF, *PTP680_16BIT_BUF;

port
This value specifies the port the data should be send to. Valid port numbers for this function are
0 and 2. The port must be in 16-bit handshake output mode.

maxElements
This value specifies the number of 16-bit values that are stored into the buffer and shall be sent.
This value can be different to the definition TP680_MAX_16BIT_ELEM, but must not be greater.

used Elements
This value returns the number of received 16-bit data words that have been copied into the
transmit FIFO. This value should be set 0 before calling the function or it should be left to the
previous returned value if unsent data should be sent with a recall of the function.

value[]
This is the data buffer that should be sent.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 22 of 32

EXAMPLE

int fd;
int result;
TP680_16BIT_BUF outputBuf;

/* Send a block of 20 words from port 2, */
/* retry until 20 words are written */
outputBuf.port = 2;
outputBuf.maxElement = 20;
outputBuf.usedElements = 0;
/* Fill up data */
outputBuf.value[0] = 0x1234;
…
outputBuf.value[19] = 0x4321;

do
{
 result = devctl(fd,
 DCMD_TP680_WRITE_16BIT_DATA,
 &outputBuf,
 sizeof(outputBuf),
 NULL);
 if (result != EOK)
 {
 /* process devctl() error */
 break;
 }
} while (outputBuf.usedElements < 20);

/* 20 words of data sent */

ERRORS

ECHRNG The port number is out of range, the port number is not allowed.
EACCES The port can not be accessed. It is not configured for 16-bit

handshake output access.

SEE ALSO

Library Reference - devctl()

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 23 of 32

3.3.6 DCMD_TP680_READ_32BIT_DATA

NAME

DCMD_TP680_READ_32BIT_DATA – Read data from 32-bit input port

DESCRIPTION

This function reads received data from the 32-bit input port of the associated device. A pointer to a
callers 32-bit buffer (TP680_32BIT_BUF) and the size of this structure are passed by the parameters
data_ptr and n_bytes to the device.

The data structure has a fixed size. It is configured with the definition of TP680_MAX_32BIT_ELEM.
This definition sets the maximum number of 32-bit words that can be read with one call.

It is possible to fill up a partially filled buffer, by simply recalling DCMD_TP680_READ_32BIT_DATA
with the same buffer, without changing any values. This may be necessary to get packets of a fixed
length.

The function always returns data that are stored in the receive FIFO, it will not wait until data is
available.

The TP680_32BIT_BUF structure has the following layout:

typedef struct
{
 int maxElements;
 int usedElements;
 unsigned short value[TP680_MAX_32BIT_ELEM];
} TP680_32BIT_BUF, *PTP680_32BIT_BUF;

maxElements
This value specifies the number of 32-bit values that will be filled into the buffer at maximum.
This value can be different to the definition TP680_MAX_32BIT_ELEM, but must not be greater.

used Elements
This value returns the number of received 32-bit data words in the buffer. This value should be
set 0 before calling the function, or it should keep the returned value, if the buffer should be
filled up with the next call.

value[]
This is the buffer where the received data will be copied to.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 24 of 32

EXAMPLE

int fd;
int result;
TP680_32BIT_BUF inputBuf;

/* Read a block of 20 longwords from 32-bit, */
/* retry until 20 longwords are received */
inputBuf.maxElement = 20;
inputBuf.usedElements = 0;

do
{
 result = devctl(fd,
 DCMD_TP680_READ_32BIT_DATA,
 &inputBuf,
 sizeof(inputBuf),
 NULL);
 if (result != EOK)
 {
 /* process devctl() error */
 break;
 }
} while (inputBuf.usedElements < 20);

/* 20 longwords of data received */

ERRORS

EACCES The port can not be accessed. It is not configured for 32-bit
handshake input access.

SEE ALSO

Library Reference - devctl()

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 25 of 32

3.3.7 DCMD_TP680_WRITE_32BIT_DATA

NAME

DCMD_TP680_WRITE_32BIT_DATA – Write data to 32-bit output port

DESCRIPTION

This function writes data to the 32-bit output port of the associated device. A pointer to a callers 32-bit
buffer (TP680_32BIT_BUF) and the size of this structure are passed by the parameters data_ptr and
n_bytes to the device.

The data structure has a fixed size. It is configured with the definition of TP680_MAX_32BIT_ELEM.
This definition sets the maximum number of 32-bit words that can be written with one call.

It is possible to retry sending a partially sent buffer, by recalling DCMD_TP680_WRITE_32BIT_DATA
with the same buffer, without changing any values. This makes it easier to send packets of a fixed
length.

The function copies the supplied data into drivers FIFO. It will not wait until data is sent. The function
return immediately when all data is copied into the FIFO or the FIFO is filled.

The TP680_32BIT_BUF structure has the following layout:

typedef struct
{
 int maxElements;
 int usedElements;
 unsigned short value[TP680_MAX_32BIT_ELEM];
} TP680_32BIT_BUF, *PTP680_32BIT_BUF;

maxElements
This value specifies the number of 32-bit values that are stored into the buffer and shall be sent.
This value can be different to the definition TP680_MAX_32BIT_ELEM, but must not be greater.

used Elements
This value returns the number of received 32-bit data words that have been copied into the
transmit FIFO. This value should be set 0 before calling the function or it should be left to the
previous returned value if unsent data should be sent with a recall of the function.

value[]
This is the data buffer that should be sent.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 26 of 32

EXAMPLE

int fd;
int result;
TP680_32BIT_BUF outputBuf;

/* Send a block of 20 longwords, */
/* retry until 20 longwords are written */
outputBuf.maxElement = 20;
outputBuf.usedElements = 0;
/* Fill up data */
outputBuf.value[0] = 0x12345678;
…
outputBuf.value[19] = 0x87654321;

do
{
 result = devctl(fd,
 DCMD_TP680_WRITE_32BIT_DATA,
 &outputBuf,
 sizeof(outputBuf),
 NULL);
 if (result != EOK)
 {
 /* process devctl() error */
 break;
 }
} while (outputBuf.usedElements < 20);

/* 20 longwords of data sent */

ERRORS

EACCES The port can not be accessed. It is not configured for 32-bit
handshake output access.

SEE ALSO

Library Reference - devctl()

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 27 of 32

3.3.8 DCMD_TP680_GET_64BIT_PORT

NAME

DCMD_TP680_GET_64BIT_PORT – Get values of all 64 I/O lines

DESCRIPTION

This function reads the actual value of all 64 I/O lines of the associated device. A pointer to a callers
buffer (TP680_64BIT_PORT_BUF) and the size of this structure are passed by the parameters
data_ptr and n_bytes to the device.

The TP680_64BIT_PORT_BUF structure has the following layout:

typedef struct
{
 unsigned long value_31_0;
 unsigned long value_63_32;
} TP680_64BIT_PORT_BUF, *PTP680_64BIT_PORT_BUF;

value_31_0
This argument returns the actual state of I/O line 0 up to 31.

value_63_32
This argument returns the actual state of I/O line 32 up to 63.

EXAMPLE

int fd;
int result;
TP680_64BIT_PORT_BUF inBuf;

/* Read actual state the I/O lines */
result = devctl(fd,
 DCMD_TP680_GET_64BIT_PORT,
 &inBuf,
 sizeof(inBuf),
 NULL);
if (result != EOK)
{
 /* process devctl() error */
}
printf(“INPUT: %08lX %08lX h\n”,
 byteBuf. value_64_32,
 byteBuf. value_31_0);

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 28 of 32

ERRORS

EACCES The port can not be accessed. It is not configured for 64-bit byte
mode.

SEE ALSO

Library Reference - devctl()

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 29 of 32

3.3.9 DCMD_TP680_SET_64BIT_PORT

NAME

DCMD_TP680_SET_64BIT_PORT – Set values of all 64 output lines

DESCRIPTION

This function sets all 64 output lines of the associated device. A pointer to a callers buffer
(TP680_64BIT_PORT_BUF) and the size of this structure are passed by the parameters data_ptr and
n_bytes to the device.

The TP680_64BIT_PORT_BUF structure has the following layout:

typedef struct
{
 unsigned long value_31_0;
 unsigned long value_63_32;
} TP680_64BIT_PORT_BUF, *PTP680_64BIT_PORT_BUF;

value_31_0
This argument specifies the new output value of output line 0 up to 31.

value_63_32
This argument specifies the new output value of output line 32 up to 63.

EXAMPLE

int fd;
int result;
TP680_64BIT_PORT_BUF outBuf;

/* Set all output lines to 0 */
outBuf.value_31_0 = 0;
outBuf.value_63_32 = 0;
result = devctl(fd,
 DCMD_TP680_SET_64BIT_PORT,
 &outBuf,
 sizeof(outBuf),
 NULL);
if (result != EOK)
{
 /* process devctl() error */
}

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 30 of 32

ERRORS

EACCES The port can not be accessed. It is not configured for 64-bit output
mode.

SEE ALSO

Library Reference - devctl()

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 31 of 32

3.3.10 DCMD_TP680_EVENT_WAIT

NAME

DCMD_TP680_EVENT_WAIT – Wait for a specified input transition

DESCRIPTION

This function waits for a input transition on a specified I/O line of the associated device. A pointer to a
callers buffer (TP680_EVENT_BUF) and the size of this structure are passed by the parameters
data_ptr and n_bytes to the device.

The TP680_EVENT_BUF structure has the following layout:

typedef struct
{
 int eventLine;
 int eventType;
 int eventTimeout;
} TP680_EVENT_BUF, *PTP680_EVENT_BUF;

eventLine
This argument specifies the I/O the event should occur on. Valid values are 0 up to 63.

eventType
This argument specifies the transition type to wait for. The following types are defined in
tpmc680.h:

define description
TP680_EV_LO2HI_TRANS Event occurs, if a low to high transition is detected.
TP680_EV_HI2LO_TRANS Event occurs, if a high to low transition is detected
TP680_EV_ANY_TRANS Event occurs, on every transition

eventTimeout
This parameter specifies the maximum time to wait for the specified event. If the specified time
has occurred, the call will return with an error. The time is specified in seconds. A value of -1
means, that no timeout is used.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 32 of 32

EXAMPLE

int fd;
int result;
TP680_EVENT_BUF eventBuf;

/* Wait for a high to low transition on I/O line 17, */
/* timeout after 20 seconds */
eventBuf.eventLine = 17;
eventBuf.eventType = TP680_EV_LO2HI_TRANS;
eventBuf.eventTimeout = 20;
result = devctl(fd,
 DCMD_TP680_EVENT_WAIT,
 &eventBuf,
 sizeof(eventBuf),
 NULL);
if (result != EOK)
{
 /* process devctl() error */
}

ERRORS

EACCES The I/O line is configured for handshake mode and can not be
used.

ECHRNG The specified I/O line number is out of range, only 0 up to 63 is
valid.

EINVAL The transition type is invalid.
EBUSY There is already a wait active on the specified I/O line.
ETIMEDOUT The call has timed out.

SEE ALSO

Library Reference - devctl()

	Introduction
	Installation
	Build the device driver
	Start the driver process
	Receive and Transmit FIFO Configuration
	Application interface configuration

	Device Input/Output functions
	open()
	close()
	devctl()
	DCMD_TP680_SET_MODE
	DCMD_TP680_GET_8BIT_PORT
	DCMD_TP680_SET_8BIT_PORT
	DCMD_TP680_READ_16BIT_DATA
	DCMD_TP680_WRITE_16BIT_DATA
	DCMD_TP680_READ_32BIT_DATA
	DCMD_TP680_WRITE_32BIT_DATA
	DCMD_TP680_GET_64BIT_PORT
	DCMD_TP680_SET_64BIT_PORT
	DCMD_TP680_EVENT_WAIT

