
The Embedded I/O Company

TPMC700-S
VxWorks Device

32 (16) Digital Ou

Version 3.0.x

User Manu

Issue 3.0.0

September 20

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-42
Driver

tputs

al

10

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TPMC700-SW-42 – VxWorks Device Driver Page 2 of 38

TPMC700-SW-42

VxWorks Device Driver

32 (16) Digital Outputs

Supported Modules:
TPMC700

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

1999-2010 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.1 Intel X86 support added March 11, 2002

1.2 General Revision November 28, 2003

1.2.1 Filelist changed August 11, 2005

2.0.0 Functions tpmc700Drv(), tpmc700DevCreate modified

Filelist changed

March 8, 2007

2.0.1 Modified parameter description for write() February 6, 2009

3.0.0 VxBus support and API added, general revision September 17, 2010

TPMC700-SW-42 – VxWorks Device Driver Page 3 of 38

Table of Contents

1 INTRODUCTION... 4

1.1 Device Driver ...4

2 INSTALLATION.. 5

2.1 Legacy vs. VxBus Driver ..6

2.2 VxBus Driver Installation ...6

2.2.1 Direct BSP Builds...7
2.3 Legacy Driver Installation ..8

2.3.1 Include device driver in VxWorks projects ...8
2.3.2 Special installation for Intel x86 based...8
2.3.3 BSP dependent adjustments ...9

2.4 System resource requirement ...9

3 API DOCUMENTATION ... 10

3.1 General Functions...10

3.1.1 tpmc700Open() ..10
3.1.2 tpmc700Close()..12

3.2 Device Access Functions...14

3.2.1 tpmc700Write ...14
3.2.2 tpmc700WatchdogEnable ..16
3.2.3 tpmc700WatchdogDisable ...18
3.2.4 tpmc700WatchdogReset..20

4 LEGACY I/O SYSTEM FUNCTIONS.. 22

4.1 tpmc700Drv() ...22

4.2 tpmc700DevCreate() ...24

4.3 tpmc700PciInit() ..26

4.4 tpmc700Init()..27

5 BASIC I/O FUNCTIONS ... 29

5.1 open() ...29

5.2 close()...31

5.3 ioctl() ..33

5.3.1 FIO_TPMC700_WRITE ...35
5.3.2 FIO_TPMC700_WDENABLE...36
5.3.3 FIO_TPMC700_WDDISABLE..37
5.3.4 FIO_TPMC700_WDRESET...38

TPMC700-SW-42 – VxWorks Device Driver Page 4 of 38

1 Introduction

1.1 Device Driver

The TPMC700-SW-42 VxWorks device driver software allows the operation of the supported PMC
conforming to the VxWorks I/O system specification.

The TPMC700-SW-42 release contains independent driver sources for the old legacy (pre-VxBus) and
the new VxBus-enabled driver model. The VxBus-enabled driver is recommended for new
developments with later VxWorks 6.x release and mandatory for VxWorks SMP systems.

Both drivers, legacy and VxBus, share the same application programming interface (API) and device-
independent basic I/O interface with open(), close() and ioctl() functions. The basic I/O interface is only
for backward compatibility with existing applications and should not be used for new developments.

The TPMC700-SW-42 device driver supports the following features:

 set the output lines
 start and stop the output watchdog
 reset the watchdog error flag

The TPMC700-SW-42 supports the modules listed below:

TPMC700-x0 32 digital outputs (PMC)

TPMC700-x1 16 digital outputs (PMC)

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

TPMC700 User Manual

TPMC700 Engineering Manual

TPMC700-SW-42 – VxWorks Device Driver Page 5 of 38

2 Installation
Following files are located on the distribution media:

Directory path ‘TPMC700-SW-42’:

TPMC700-SW-42-3.0.0.pdf PDF copy of this manual
TPMC700-SW-42-VXBUS.zip Zip compressed archive with VxBus driver sources
TPMC700-SW-42-LEGACY.zip Zip compressed archive with legacy driver sources
ChangeLog.txt Release history
Release.txt Release information

The archive TPMC700-SW-42-VXBUS.zip contains the following files and directories:

Directory path ‘./tews/tpmc700’:

tpmc700drv.c TPMC700 device driver source
tpmc700def.h TPMC700 driver include file
tpmc700.h TPMC700 include file for driver and application
tpmc700api.c TPMC700 API file
Makefile Driver Makefile
40tpmc700.cdf Component description file for VxWorks development tools
tpmc700.dc Configuration stub file for direct BSP builds
tpmc700.dr Configuration stub file for direct BSP builds
include/tvxbHal.h Hardware dependent interface functions and definitions
apps/tpmc700exa.c Example application

The archive TPMC700-SW-42-LEGACY.zip contains the following files and directories:

Directory path ‘./tpmc700’:

tpmc700drv.c TPMC700 device driver source
tpmc700def.h TPMC700 driver include file
tpmc700.h TPMC700 include file for driver and application
tpmc700pci.c TPMC700 device driver source for x86 based systems
tpmc700api.c TPMC700 API file
tpmc700exa.c Example application
include/tdhal.h Hardware dependent interface functions and definitions

TPMC700-SW-42 – VxWorks Device Driver Page 6 of 38

2.1 Legacy vs. VxBus Driver

In later VxWorks 6.x releases, the old VxWorks 5.x legacy device driver model was replaced by
VxBus-enabled device drivers. Legacy device drivers are tightly coupled with the BSP and the board
hardware. The VxBus infrastructure hides all BSP and hardware differences under a well defined
interface, which improves the portability and reduces the configuration effort. A further advantage is
the improved performance of API calls by using the method interface and bypassing the VxWorks
basic I/O interface.

VxBus-enabled device drivers are the preferred driver interface for new developments.

The checklist below will help you to make a decision which driver model is suitable and possible for
your application:

Legacy Driver VxBus Driver

 VxWorks 5.x releases

 VxWorks 6.5 and earlier
releases

 VxWorks 6.x releases without
VxBus PCI bus support

 VxWorks 6.6 and later releases
with VxBus PCI bus

 SMP systems (only the VxBus
driver is SMP safe!)

TEWS TECHNOLOGIES recommends not using the VxBus Driver before VxWorks release 6.6.
In previous releases required header files are missing and the support for 3

rd
-party drivers may

not be available.

2.2 VxBus Driver Installation

Because Wind River doesn’t provide a standard installation method for 3
rd

party VxBus device drivers
the installation procedure needs to be done manually.

In order to perform a manual installation extract all files from the archive TPMC700-SW-42-VXBUS.zip
to the typical 3

rd
party directory installDir/vxworks-6.x/target/3rdparty (whereas installDir must be

substituted by the VxWorks installation directory).

After successful installation the TPMC700 device driver is located in the vendor and driver-specific
directory installDir/vxworks-6.x/target/3rdparty/tews/tpmc700.

At this point the TPMC700 driver is not configurable and cannot be included with the kernel
configuration tool in a Wind River Workbench project. To make the driver configurable the driver library
for the desired processor (CPU) and build tool (TOOL) must be built in the following way:

(1) Open a VxWorks development shell (e.g. C:\WindRiver\wrenv.exe -p vxworks-6.7)

(2) Change into the driver installation directory
installDir/vxworks-6.x/target/3rdparty/tews/tpmc700

(3) Invoke the build command for the required processor and build tool
make CPU=cpuName TOOL=tool

TPMC700-SW-42 – VxWorks Device Driver Page 7 of 38

For Windows hosts this may look like this:

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc700

C:> make CPU=PENTIUM4 TOOL=diab

To compile SMP-enabled libraries, the argument VXBUILD=SMP must be added to the command line

C:> make CPU=PENTIUM4 TOOL=diab VXBUILD=SMP

To integrate the TPMC700 driver with the VxWorks development tools (Workbench), the component
configuration file 40tpmc700.cdf must be copied to the directory
installDir/vxworks-6.x/target/config/comps/VxWorks.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc700

C:> copy 40tpmc700.cdf \Windriver\vxworks-6.7\target\config\comps\vxWorks

In VxWorks 6.7 and newer releases the kernel configuration tool scans the CDF file automatically and
updates the CxrCat.txt cache file to provide component parameter information for the kernel
configuration tool as long as the timestamp of the copied CDF file is newer than the one of the
CxrCat.txt. If your copy command preserves the timestamp, force to update the timestamp by a utility,
such as touch.

In earlier VxWorks releases the CxrCat.txt file may not be updated automatically. In this case, remove
or rename the original CxrCat.txt file and invoke the make command to force recreation of this file.

C:> cd \Windriver\vxworks-6.7\target\config\comps\vxWorks

C:> del CxrCat.txt

C:> make

After successful completion of all steps above and restart of the Wind River Workbench, the TPMC700
driver can be included in VxWorks projects by selecting the “TEWS TPMC700 Driver“ component in
the “hardware (default) - Device Drivers” folder with the kernel configuration tool.

2.2.1 Direct BSP Builds

In development scenarios with the direct BSP build method without using the Workbench or the vxprj
command-line utility, the TPMC700 configuration stub files must be copied to the directory
installDir/vxworks-6.x/target/config/comps/src/hwif. Afterwards the vxbUsrCmdLine.c file must be
updated by invoking the appropriate make command.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc700

C:> copy tpmc700.dc \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> copy tpmc700.dr \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> cd \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> make vxbUsrCmdLine.c

TPMC700-SW-42 – VxWorks Device Driver Page 8 of 38

2.3 Legacy Driver Installation

2.3.1 Include device driver in VxWorks projects

For including the TPMC700-SW-42 device driver into a VxWorks project (e.g. Tornado IDE or
Workbench) follow the steps below:

(1) Extract all files from the archive TPMC700-SW-42-LEGACY.zip to your project directory.

(2) Add the device drivers C-files to your project.
Make a right click to your project in the ‘Workspace’ window and use the ‘Add Files ...’ topic.
A file select box appears, and the driver files in the tpmc700 directory can be selected.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your VxWorks User’s
Guide (e.g. Tornado, Workbench, etc.)

2.3.2 Special installation for Intel x86 based

The TPMC700 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU_FAMILY. If the content of this macro is equal to I80X86 special Intel x86 conforming code and
function calls will be included.

The second problem for Intel x86 based platforms can’t be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn’t map PCI memory spaces of devices
which are not used by the BSP, the required device memory spaces can’t be accessed.

To solve this problem a MMU mapping entry has to be added for the required TPMC700 PCI memory
spaces prior the MMU initialization (usrMmuInit()) is done.

The C source file tpmc700pci.c contains the function tpmc700PciInit(). This routine finds out all
TPMC700 devices and adds MMU mapping entries for all used PCI memory spaces. Please insert a
call to this function after the PCI initialization is done and prior to MMU initialization (usrMmuInit()).

The right place to call the function tpmc700PciInit() is at the end of the function sysHwInit() in sysLib.c
(it can be opened from the project Files window):

tpmc700PciInit();

Be sure that the function is called prior to MMU initialization otherwise the TPMC700 PCI spaces
remains unmapped and an access fault occurs during driver initialization.

Modifying the sysLib.c file will change the sysLib.c in the BSP path. Remember this for future
projects and recompilations.

TPMC700-SW-42 – VxWorks Device Driver Page 9 of 38

2.3.3 BSP dependent adjustments

The driver includes a file called include/tdhal.h which contains functions and definitions for BSP
adaptation. It may be necessary to modify them for BSP specific settings. Most settings can be made
automatically by conditional compilation set by the BSP header files, but some settings must be
configured manually. There are two way of modification, first you can change the include/tdhal.h and
define the corresponding definition and its value, or you can do it, using the command line option –D.

There are 3 offset definitions (USERDEFINED_MEM_OFFSET, USERDEFINED_IO_OFFSET, and
USERDEFINED_LEV2VEC) that must be configured if a corresponding warning message appears
during compilation. These definitions always need values. Definition values can be assigned by
command line option -D<definition>=<value>.

definition description

USERDEFINED_MEM_OFFSET The value of this definition must be set to the offset
between CPU-Bus and PCI-Bus Address for PCI
memory space access

USERDEFINED_IO_OFFSET The value of this definition must be set to the offset
between CPU-Bus and PCI-Bus Address for PCI I/O
space access

USERDEFINED_LEV2VEC The value of this definition must be set to the
difference of the interrupt vector (used to connect the
ISR) and the interrupt level (stored to the PCI header)

Another definition allows a simple adaptation for BSPs that utilize a pciIntConnect() function to
connect shared (PCI) interrupts. If this function is defined in the used BSP, the definition of
USERDEFINED_SEL_PCIINTCONNECT should be enabled. The definition by command line option is
made by -D<definition>.

Please refer to the BSP documentation and header files to get information about the interrupt
connection function and the required offset values.

2.4 System resource requirement

The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement

Memory < 1 KB < 1 KB

Stack < 1 KB ---

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

TPMC700-SW-42 – VxWorks Device Driver Page 10 of 38

3 API Documentation

3.1 General Functions

3.1.1 tpmc700Open()

Name

tpmc700Open() – opens a device.

Synopsis

TPMC700_DEV tpmc700Open
(

char *DeviceName
)

Description

Before I/O can be performed to a device, a file descriptor must be opened by a call to this function.

Parameters

DeviceName

This parameter points to a null-terminated string that specifies the name of the device. The first
TPMC700 device is named “/tpmc700/0”, the second device is named “/tpmc700/1” and so on.

Example

#include “tpmc700.h”

TPMC700_DEV pDev;

/*

** open file descriptor to device

*/

pDev = tpmc700Open(“/tpmc700/0”);

if (pDev == NULL)

{

/* handle open error */

}

TPMC700-SW-42 – VxWorks Device Driver Page 11 of 38

RETURNS

A device descriptor pointer, or NULL if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TPMC700-SW-42 – VxWorks Device Driver Page 12 of 38

3.1.2 tpmc700Close()

Name

tpmc700Close() – closes a device.

Synopsis

int tpmc700Close
(

TPMC700_DEV pDev
)

Description

This function closes previously opened devices.

Parameters

pDev

This value specifies the file descriptor pointer to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tpmc700.h”

Tpmc700_DEV pDev;

int result;

/*

** close file descriptor to device

*/

result = tpmc700Close(pDev);

if (result < 0)

{

/* handle close error */

}

RETURNS

Zero, or -1 if the function fails. An error code will be stored in errno.

TPMC700-SW-42 – VxWorks Device Driver Page 13 of 38

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TPMC700-SW-42 – VxWorks Device Driver Page 14 of 38

3.2 Device Access Functions

3.2.1 tpmc700Write

Name

tpmc700Write – write output value

Synopsis

STATUS tpmc700Write
(

TPMC700_DEV pDev,
UINT32 OutputValue

)

Description

This function writes a long word to the output register of the specified module.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

OutputValue

This argument specifies the new output value. Bit 0 of the output word corresponds to output
line 1, bit 1 corresponds to output line 2, and so on.

Bit 16 up to 32 will be ignored for TPMC700-x1 (16 output lines).

TPMC700-SW-42 – VxWorks Device Driver Page 15 of 38

Example

#include “tpmc700.h”

TPMC700_DEV pDev;

STATUS result;

/*------------------------------

Set output lines to 0x12345678

------------------------------*/

result = tpmc700Write(pDev, 0x12345678);

if (result == ERROR)

{

/* handle error */

}

else

{

/* successful */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EBADF The device handle is invalid

S_tpmc700Dev_WDTIMEOUT A watchdog error occurred (, if watchdog is active)

TPMC700-SW-42 – VxWorks Device Driver Page 16 of 38

3.2.2 tpmc700WatchdogEnable

Name

tpmc700WatchdogEnable – enable output watchdog

Synopsis

STATUS tpmc700WatchdogEnable
(

TPMC700_DEV pDev
)

Description

This function enables the watchdog timer for the output lines. The watchdog function is activated after
the next write operation to the device. Please remember that if the watchdog is enabled and no write
access occurs within 120 ms, all outputs go into the OFF state. To unlock the output register and
leave the OFF state the function tpmc700WatchdogReset must be executed.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

TPMC700-SW-42 – VxWorks Device Driver Page 17 of 38

Example

#include “tpmc700.h”

TPMC700_DEV pDev;

STATUS result;

/*-----------------

Enable Watchdog

-----------------*/

result = tpmc700WatchdogEnable(pDev);

if (result == ERROR)

{

/* handle error */

}

else

{

/* function succeeded */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EBADF The device handle is invalid

TPMC700-SW-42 – VxWorks Device Driver Page 18 of 38

3.2.3 tpmc700WatchdogDisable

Name

tpmc700WatchdogDisable – disable output watchdog

Synopsis

STATUS tpmc700WatchdogDisable
(

TPMC700_DEV pDev
)

Description

This function disables the watchdog timer for the output lines.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tpmc700.h”

TPMC700_DEV pDev;

STATUS result;

/*-----------------

Disable Watchdog

-----------------*/

result = tpmc700WatchdogDisable(pDev);

if (result == ERROR)

{

/* handle error */

}

else

{

/* function succeeded */

}

TPMC700-SW-42 – VxWorks Device Driver Page 19 of 38

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EBADF The device handle is invalid

TPMC700-SW-42 – VxWorks Device Driver Page 20 of 38

3.2.4 tpmc700WatchdogReset

Name

tpmc700WatchdogReset – reset output watchdog error

Synopsis

STATUS tpmc700WatchdogReset
(

TPMC700_DEV pDev
)

Description

This function resets the watchdog status and clears an occurred error.

Parameters

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

Example

#include “tpmc700.h”

TPMC700_DEV pDev;

STATUS result;

/*-----------------

Reset Watchdog

-----------------*/

result = tpmc700WatchdogReset(pDev);

if (result == ERROR)

{

/* handle error */

}

else

{

/* function succeeded */

}

TPMC700-SW-42 – VxWorks Device Driver Page 21 of 38

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EBADF The device handle is invalid

TPMC700-SW-42 – VxWorks Device Driver Page 22 of 38

4 Legacy I/O system functions
This chapter describes the legacy driver-level interface to the I/O system. The purpose of these
functions is to install the driver in the I/O system, add and initialize devices.

The legacy I/O system functions are only relevant for the legacy TPMC700 driver. For the
VxBus-enabled TPMC700 driver, the driver will be installed automatically in the I/O system and
devices will be created as needed for detected modules.

4.1 tpmc700Drv()

NAME

tpmc700Drv() - installs the TPMC700 driver in the I/O system

SYNOPSIS

#include “tpmc700.h”

STATUS tpmc700Drv(void)

DESCRIPTION

This function searches for devices on the PCI bus, installs the TPMC700 driver in the I/O system.

A call to this function is the first thing the user has to do before adding any device to the
system or performing any I/O request.

EXAMPLE

#include "tpmc700.h”

STATUS result;

/*-------------------

Initialize Driver

-------------------*/

result = tpmc700Drv();

if (result == ERROR)

{

/* Error handling */

}

TPMC700-SW-42 – VxWorks Device Driver Page 23 of 38

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

ENXIO No TPMC700 found

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TPMC700-SW-42 – VxWorks Device Driver Page 24 of 38

4.2 tpmc700DevCreate()

NAME

tpmc700DevCreate() – Add a TPMC700 device to the VxWorks system

SYNOPSIS

#include “tpmc700.h”

STATUS tpmc700DevCreate
(

char *name,
int devIdx,
int funcType

)

DESCRIPTION

This routine adds the selected device to the VxWorks system. The device hardware will be setup and
prepared for use.

This function must be called before performing any I/O request to this device.

PARAMETER

name

This string specifies the name of the device that will be used to identify the device, for example
for open() calls.

devIdx

This index number specifies the device to add to the system.

If more than one module are installed the channel numbers will be assigned in the order the
VxWorks pciFindDevice() function will find the devices.

funcType

This parameter is unused and should be set to 0.

TPMC700-SW-42 – VxWorks Device Driver Page 25 of 38

EXAMPLE

#include "tpmc700.h”

STATUS result;

/*---

Create the device "/tpmc700/0" for the first TPMC700 device

---*/

result = tpmc700DevCreate("/tpmc700/0",

0,

0);

if (result == OK)

{

/* Device successfully created */

}

else

{

/* Error occurred when creating the device */

}

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

S_ioLib_NO_DRIVER driver not installed, tpmc700 has not been called

ENXIO specified device not found

EBUSY device has already been created

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TPMC700-SW-42 – VxWorks Device Driver Page 26 of 38

4.3 tpmc700PciInit()

NAME

tpmc700PciInit() – Generic PCI device initialization

SYNOPSIS

void tpmc700PciInit()

DESCRIPTION

This function is required only for Intel x86 VxWorks platforms. The purpose is to setup the MMU
mapping for all required TPMC700 PCI spaces (base address register) and to enable the TPMC700
device for access.

The global variable tpmc700Status obtains the result of the device initialization and can be polled later
by the application before the driver will be installed.

Value Meaning

> 0 Initialization successful completed. The value of tpmc700Status is equal to the
number of mapped PCI spaces

0 No TPMC700 device found

< 0 Initialization failed. The value of (tpmc700Status & 0xFF) is equal to the number
of mapped spaces until the error occurs.

Possible cause: Too few entries for dynamic mappings in sysPhysMemDesc[].

Remedy: Add dummy entries as necessary (syslib.c).

EXAMPLE

extern void tpmc700PciInit();

tpmc700PciInit();

TPMC700-SW-42 – VxWorks Device Driver Page 27 of 38

4.4 tpmc700Init()

NAME

tpmc700Init() – initialize TPMC700 driver and devices

SYNOPSIS

#include “tpmc700.h”

STATUS tpmc700Init(void)

DESCRIPTION

This function is used by the TPMC700 example application to install the driver and to add all available
devices to the VxWorks system.

See also 3.1.1 tpmc700Open() for the device naming convention for legacy devices.

After calling this function it is not necessary to call tpmc700Drv() and tpmc700DevCreate()
explicitly.

EXAMPLE

#include "tpmc700.h”

STATUS result;

result = tpmc700Init();

if (result == ERROR)

{

/* Error handling */

}

TPMC700-SW-42 – VxWorks Device Driver Page 28 of 38

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

Error codes are only set by system functions. The error codes are stored in errno and can be read with
the function errnoGet().

See 4.1 and 4.2 for a description of possible error codes.

TPMC700-SW-42 – VxWorks Device Driver Page 29 of 38

5 Basic I/O Functions
The VxWorks basic I/O interface functions are useable with the TPMC700 legacy and VxBus-enabled
driver in a uniform manner.

5.1 open()

NAME

open() - open a device or file.

SYNOPSIS

int open
(

const char *name,
int flags,
int mode

)

DESCRIPTION

Before I/O can be performed to the TPMC700 device, a file descriptor must be opened by invoking the
basic I/O function open().

PARAMETER

name

Specifies the device which shall be opened, the name specified in tpmc700DevCreate() must be
used.

flags

Not used

mode

Not used

TPMC700-SW-42 – VxWorks Device Driver Page 30 of 38

EXAMPLE

int fd;

/*--

Open the device named "/tpmc700/0" for I/O

--*/

fd = open("/tpmc700/0", 0, 0);

if (fd == ERROR)

{

/* Handle error */

}

RETURNS

A device descriptor number or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - open()

TPMC700-SW-42 – VxWorks Device Driver Page 31 of 38

5.2 close()

NAME

close() – close a device or file

SYNOPSIS

STATUS close
(

int fd
)

DESCRIPTION

This function closes opened devices.

PARAMETER

fd

This file descriptor specifies the device to be closed. The file descriptor has been returned by
the open() function.

EXAMPLE

int fd;

STATUS retval;

/*----------------

close the device

----------------*/

retval = close(fd);

if (retval == ERROR)

{

/* Handle error */

}

RETURNS

OK or ERROR. If the function fails, an error code will be stored in errno.

TPMC700-SW-42 – VxWorks Device Driver Page 32 of 38

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - close()

TPMC700-SW-42 – VxWorks Device Driver Page 33 of 38

5.3 ioctl()

NAME

ioctl() - performs an I/O control function.

SYNOPSIS

#include “tpmc700.h”

int ioctl
(

int fd,
int request,
int arg

)

DESCRIPTION

Special I/O operation that do not fit to the standard basic I/O calls (read, write) will be performed by
calling the ioctl() function.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

request

This argument specifies the function that shall be executed. Following functions are defined:

Function Description

FIO_TPMC700_WRITE Write output value

FIO_TPMC700_WDENABLE Enable watchdog

FIO_TPMC700_WDDISABLE Disable watchdog

FIO_TPMC700_WDRESET Reset watchdog error

arg

This parameter depends on the selected function (request). How to use this parameter is
described below with the function.

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

TPMC700-SW-42 – VxWorks Device Driver Page 34 of 38

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).
Function specific error codes will be described with the function.

Error code Description

S_tpmc700Dev_ICMD Illegal function code specified

SEE ALSO

ioLib, basic I/O routine - ioctl()

TPMC700-SW-42 – VxWorks Device Driver Page 35 of 38

5.3.1 FIO_TPMC700_WRITE

This I/O control function writes a new output value to the specified TPMC700 device. The function
specific control parameter arg passes a UINT32 value to the driver.

Bit 16 up to 32 will be ignored for TPMC700-x1 (16 output lines).

EXAMPLE

#include “tpmc700.h”

int fd;

int retval;

/*------------------------------

Set output lines to 0x12345678

------------------------------*/

retval = ioctl(fd, FIO_TPMC700_WRITE, 0x12345678);

if (retval != ERROR)

{

/* function succeeded */

}

else

{

/* handle the error */

}

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below.

Error code Description

S_tpmc700Dev_WDTIMEOUT A watchdog error occurred (if watchdog is active)

TPMC700-SW-42 – VxWorks Device Driver Page 36 of 38

5.3.2 FIO_TPMC700_WDENABLE

This I/O control function enables the output watchdog timer function of the TPMC700. The function
specific control parameter arg is not used for this function.

EXAMPLE

#include “tpmc700.h”

int fd;

int retval;

/*---------------------

Enable watchdog timer

---------------------*/

retval = ioctl(fd, FIO_TPMC700_WDENABLE, 0);

if (retval != ERROR)

{

/* function succeeded */

}

else

{

/* handle the error */

}

TPMC700-SW-42 – VxWorks Device Driver Page 37 of 38

5.3.3 FIO_TPMC700_WDDISABLE

This I/O control function disables the output watchdog timer function of the TPMC700. The function
specific control parameter arg is not used for this function.

EXAMPLE

#include “tpmc700.h”

int fd;

int retval;

/*---------------------

Disable watchdog timer

---------------------*/

retval = ioctl(fd, FIO_TPMC700_WDDISABLE, 0);

if (retval != ERROR)

{

/* function succeeded */

}

else

{

/* handle the error */

}

TPMC700-SW-42 – VxWorks Device Driver Page 38 of 38

5.3.4 FIO_TPMC700_WDRESET

This I/O control function resets a pending watchdog error state. This must be done every time a
watchdog error has occurred. The function specific control parameter arg is not used for this function.

EXAMPLE

#include “tpmc700.h”

int fd;

int retval;

/*---------------------

Disable watchdog timer

---------------------*/

retval = ioctl(fd, FIO_TPMC700_WDRESET, 0);

if (retval != ERROR)

{

/* function succeeded */

}

else

{

/* handle the error */

}

	1	Introduction
	1.1	Device Driver

	2	Installation
	2.1	Legacy vs. VxBus Driver
	2.2	VxBus Driver Installation
	2.2.1	Direct BSP Builds

	2.3	Legacy Driver Installation
	2.3.1	Include device driver in VxWorks projects
	2.3.2	Special installation for Intel x86 based
	2.3.3	BSP dependent adjustments

	2.4	System resource requirement

	3	API Documentation
	3.1	General Functions
	3.1.1	tpmc700Open()
	3.1.2	tpmc700Close()

	3.2	Device Access Functions
	3.2.1	tpmc700Write
	3.2.2	tpmc700WatchdogEnable
	3.2.3	tpmc700WatchdogDisable
	3.2.4	tpmc700WatchdogReset

	4	Legacy I/O system functions
	4.1	tpmc700Drv()
	4.2	tpmc700DevCreate()
	4.3	tpmc700PciInit()
	4.4	tpmc700Init()

	5	Basic I/O Functions
	5.1	open()
	5.2	close()
	5.3	ioctl()
	5.3.1	FIO_TPMC700_WRITE
	5.3.2	FIO_TPMC700_WDENABLE
	5.3.3	FIO_TPMC700_WDDISABLE
	5.3.4	FIO_TPMC700_WDRESET

