

The Embedded I/O Company

TPMC816-S
LynxOS Device

Extended CA
Version 1.0.x

User Manu
Issue 1.0

March 2003

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek / Germany
Phone: +49-(0)4101-4058-0 Fax: +49-(0)4101-4058-19
e-mail: info@tews.com www.tews.com

TEWS
1 E. Lib
Phone:
e-mail:
W-72
 Driver
N

al

TECHNOLOGIES LLC
erty Street, Sixth Floor Reno, Nevada 89504 / USA
 +1 (775) 686 6077 Fax: +1 (775) 686 6024
 usasales@tews.com www.tews.com

mailto:info@tews.com
mailto:usasales@tews.com

TPMC816-SW-72 – LynxOS Device Driver Page 2 of 39

TPMC816-SW-72
Extended CAN

LynxOS Device Driver

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2003 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0 First Issue March 25, 2003

TPMC816-SW-72 – LynxOS Device Driver Page 3 of 39

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Device Driver Installation ...5
2.1.1 Static Installation ..5

2.1.1.1 Build the driver object ...5
2.1.1.2 Create Device Information Declaration ..6
2.1.1.3 Modify the Device and Driver Configuration File..6
2.1.1.4 Rebuild the Kernel ..6

2.1.2 Dynamic Installation ...7
2.1.3 Device Information Definition File ..8
2.1.4 Configuration File: CONFIG.TBL ...9

2.2 Receive Queue Configuration..10
3 TPMC816 DEVICE DRIVER PROGRAMMING .. 11

3.1 open() ...11
3.2 close()...12
3.3 read() ..13
3.4 write() ...16
3.5 ioctl() ..19

3.5.1 TP816_BITTIMING ..20
3.5.2 TP816_SETFILTER ...22
3.5.3 TP816_GETFILTER...24
3.5.4 TP816_BUSON..26
3.5.5 TP816_BUSOFF..27
3.5.6 TP816_FLUSH...28
3.5.7 TP816_DEFRXBUF ...29
3.5.8 TP816_DEFRMTBUF ..31
3.5.9 TP816_UPDATEBUF...33
3.5.10 TP816_RELEASEBUF ..35
3.5.11 TP816_CANSTATUS ..37

4 DEBUGGING AND DIAGNOSTIC.. 38

TPMC816-SW-72 – LynxOS Device Driver Page 4 of 39

1 Introduction
The TPMC816-SW-72 LynxOS device driver allows the operation of a TPMC816 PMC module on
LynxOS systems with DRM based PCI Interface.

The standard file (I/O) functions (open, close, read) provide the basic interface for opening and closing
a file descriptor and for performing device input operations.

The TPMC816 device driver includes the following functions:

! Transmission and receive of Standard and Extended Identifiers
! Up to 15 receive message queues with user defined size
! Variable allocation of receive message objects to receive queues
! Standard bit rates from 5 kbit up to 1.0 Mbit and user defined bit rates
! Message acceptance filtering
! Definition of receive and remote buffer message objects
! Transmission and receive of Standard and Extended Identifiers

To understand all features of this device driver, it is very important to read the Architectural Overview
of the Intel 82527 CAN controller, which is part of the engineering kit TPMC816-EK.

TPMC816-SW-72 – LynxOS Device Driver Page 5 of 39

2 Installation
The software is delivered on a PC formatted 3½" HD diskette.

Following files are located on the diskette:

tpmc816.c Driver source code
tpmc816.h Definitions and data structures for driver and application
tpmc816def.h Definitions and data structures for the driver
tpmc816_info.c Device information definition
tpmc816_info.h Device information definition header
tpmc816.cfg Driver configuration file include
tpmc816.import Linker import file
Makefile Device driver make file
Makefile.ppc.dldd Make file for dynamic driver installation (PowerPC)
Makefile.x86.dldd Make file for dynamic driver installation (Intel x86)
example/example.c Example application source
TPMC816-SW-72.pdf This Manual in PDF format

2.1 Device Driver Installation
The two methods of driver installation are as follows:

! Static Installation
! Dynamic Installation (only native LynxOS systems)

2.1.1 Static Installation
With this method, the driver object code is linked with the kernel routines and is installed during
system start-up.

In order to perform a static installation, copy the following files to their target directories:

1. Create a new directory in the system driver directory path /sys/drivers.xxx, where xxx
represents the BSP that supports the target hardware. For example:
/sys/drivers.pp_drm/tpmc816

2. Copy the following files to this directory: tpmc816.c, tpmc816def.h, Makefile

3. Copy tpmc816.h to /usr/include/

4. Copy tpmc816_info.c to /sys/devices.xxx/ or /sys/devices if /sys/devices.xxx does not exist
(xxx represents the BSP).

5. Copy tpmc816_info.h to /sys/dheaders/

6. Copy tpmc816.cfg to /sys/cfg.ppc/

2.1.1.1 Build the driver object
1. Change to the directory /sys/drivers.xxx/tpmc816, where xxx represents the BSP that

supports the target hardware.

2. To update the library /sys/lib/libdrivers.a enter:

make install

TPMC816-SW-72 – LynxOS Device Driver Page 6 of 39

2.1.1.2 Create Device Information Declaration
1. Change to the directory /sys/devices.xxx or /sys/devices if /sys/devices.xxx does not exist

(xxx represents the BSP).

2. Add the following dependencies to the Makefile

 DEVICE_FILES_all = ... tpmc816_info.x

3. And at the end of the Makefile

 tpmc816_info.o:$(DHEADERS)/tpmc816_info.h

4. To update the library /sys/lib/libdevices.a enter:

make install

2.1.1.3 Modify the Device and Driver Configuration File
In order to insert the driver object code into the kernel image, an appropriate entry in file CONFIG.TBL
must be created.

1. Change to the directory /sys/lynx.os/ respective /sys/bsp.xxx, where xxx represents the BSP
that supports the target hardware.

2. Create an entry at the end of the file CONFIG.TBL

I:tpmc816.cfg

2.1.1.4 Rebuild the Kernel
1. Change to the directory /sys/lynx.os/ (/sys/bsp.xxx)

2. Enter the following command to rebuild the kernel:

make install

3. Reboot the newly created operating system by the following command (not necessary for
KDIs):

reboot –aN

4. The N flag instructs init to run mknod and create all the nodes mentioned in the new nodetab.

5. After reboot you should find the following new devices (depends on the device configuration):
/dev/tp816a1, /dev/tp816a2 …

TPMC816-SW-72 – LynxOS Device Driver Page 7 of 39

2.1.2 Dynamic Installation
This method allows you to install the driver after the operating system is booted. The driver object
code is attached to the end of the kernel image and the operating system dynamically adds this driver
to its internal structures. The driver can also be removed dynamically.

The following steps describe how to do a dynamic installation:

1. Create a new directory in the system driver directory path /sys/drivers.xxx, where xxx
represents the BSP that supports the target hardware. For example:
/sys/drivers.pp_drm/tpmc816

2. Copy the following files to this directory:

tpmc816.c
tpmc816def.h
tpmc816_info.c
tpmc816_info.h
tpmc816.import
Makefile.ppc.dldd
Makefile.x86.dldd

3. Copy tpmc816.h to /usr/include

4. Change to the directory /sys/drivers.xxx/tpmc816

5. To make the dynamic link-able driver enter:

make –f Makefile.ppc.dldd (Makefile.x86.dldd on x86 sytems!)

6. Create a device definition file for one major device:

make –f Makefile.ppc.dldd tpmc816_info

./tpmc816_info > tp816a_info

7. To install the driver enter:

drinstall –c tpmc816.obj

 If successful drinstall returns a unique <driver-ID>

8. To install the major device enter:

devinstall –c –d <driver-ID> tp816a_info

 The <driver-ID> is returned by the drinstall command

9. To create nodes for the devices enter:

mknod /dev/tp816a c <major_no> 0...

If all steps are successful completed the TPMC816 is ready to use.

To uninstall the TPMC816 device enter the following commands:

devinstall –u –c <device-ID>

drinstall –u <driver-ID>

TPMC816-SW-72 – LynxOS Device Driver Page 8 of 39

2.1.3 Device Information Definition File
The device information definition contains information necessary to install the TPMC816 major device.

The implementation of the device information definition is done through a C structure which is defined
in the header file tpmc816_info.h.

This structure contains following parameter:

PCIBusNumber Contains the PCI bus number at which the TPMC816 is
connected. Valid bus numbers are in range from 0 to 255.

PCIDeviceNumber Contains the device number (slot) at which the TPMC816 is
connected. Valid device numbers are in range from 0 to 31.

If both PCIBusNumber and PCIDeviceNumber are –1 then the driver will auto scan for the
TPMC816 device. The first device found in the scan order will be allocated by the driver for this
major device. Already allocated devices can’t be allocated twice. This is important to know if
you have more that one TMPC816 major device.

A device information definition is unique for every TPMC816 major device. The file tpmc816_info.c on
the distribution disk contains two device information declarations, tp816a_info for the first major
device and tp816b_info for the second major device.

If the driver should support more than two major devices it is necessary to copy and paste an existing
declaration and rename it with unique name for example tp816c_info, tp816d_info and so on.

It is also necessary to modify the device and driver configuration files respectively the
configuration include file tpmc816.cfg.

The following device declaration information uses the auto find method to detect the TPMC816
module on the PCI bus.

TP816_INFO tp816a_info = {
 -1, /* auto find the TPMC816 on any PCI bus */
 -1,
};

TPMC816-SW-72 – LynxOS Device Driver Page 9 of 39

2.1.4 Configuration File: CONFIG.TBL
The device and driver configuration file CONFIG.TBL contains entries for device drivers and its major
and minor device declarations. Each time the system is rebuild, the config utility reads the file and
produces a new set of driver and device configuration tables and a corresponding nodetab.

To install the TPMC816 driver and devices into the LynxOS system, the configuration include file
tpmc816.cfg must be included in the CONFIG.TBL (see also 2.1.1.3).

The file tpmc816.cfg on the distribution disk contains the driver entry (C:tpmc816:\....) and one
enabled major device entry (D:TPMC816 1:tp816a_info::) with two minor device entries (N:tp816a1:0
and N:tp816a2:1).

If the driver should support more than one major device (TPMC816) the following entries for major and
minor devices must be enabled by removing the comment character (#). By copy and paste an
existing major and minor entry and renaming the new entries, it is possible to add any number of
additional TPMC816 devices.

The name of the device information declaration (info-block-name) must match to an existing C
structure in the file TPMC816_info.c.

This example shows a driver entry with one major device and 2 minor devices:

Format:
C:driver-name:open:close:read:write:select:control:install:uninstall
D:device-name:info-block-name:raw-partner-name
N:node-name:minor-dev

C:tpmc816:\
 :tp816open:tp816close:tp816read:tp816write:\
 ::tp816ioctl:tp816install:tp816uninstall
D:TPMC816 1:tp816a_info::
N:tp816a1:0
N:tp816a2:1

The configuration above creates the following node in the /dev directory.

/dev/tp816a1
/dev/tp816a2

TPMC816-SW-72 – LynxOS Device Driver Page 10 of 39

2.2 Receive Queue Configuration
Received CAN messages will be stored in receive queues. Each receive queue contains a FIFO. The
number of receive queues and the depth of the FIFO can be adapted by changing the following
symbols in tpmc816def.h.

NUM_RX_QUEUES Defines the number of receive queues for each device (default = 3). Valid
numbers are in range between 1 and 15.

RX_FIFO_SIZE Defines the depth of the message FIFO inside each receive queue
(default=100). Valid numbers are in range between 1 and MAXINT.

TPMC816-SW-72 – LynxOS Device Driver Page 11 of 39

3 TPMC816 Device Driver Programming
LynxOS system calls are all available directly to any C program. They are implemented as ordinary
function calls to "glue" routines in the system library, which trap to the OS code.

Note that many system calls use data structures, which should be obtained in a program from
appropriate header files. Necessary header files are listed with the system call synopsis.

3.1 open()

NAME

open() - open a file

SYNOPSIS

#include <sys/file.h>
#include <sys/types.h>
#include <fcntl.h>

int open (char *path, int oflags[, mode_t mode])

DESCRIPTION

Opens a file (TPMC816 device) named in path for reading and writing. The value of oflags indicates
the intended use of the file. In case of a TPMC816 devices oflags must be set to O_RDWR to open
the file for both reading and writing.

The mode argument is required only when a file is created. Because a TPMC816 device already
exists this argument is ignored.

EXAMPLE

int fd

fd = open ("/dev/tp816a1", O_RDWR);

RETURNS

open returns a file descriptor number if successful, or –1 on error.

SEE ALSO

LynxOS System Call - open()

TPMC816-SW-72 – LynxOS Device Driver Page 12 of 39

3.2 close()

NAME

close() – close a file

SYNOPSIS

int close(int fd)

DESCRIPTION

This function closes an opened device.

EXAMPLE

int result;

result = close(fd);

RETURNS

close returns 0 (OK) if successful, or –1 on error

SEE ALSO

LynxOS System Call - close()

TPMC816-SW-72 – LynxOS Device Driver Page 13 of 39

3.3 read()

NAME

read() - read from a file

SYNOPSIS

#include <tpmc816.h>

int read (int fd, char *buff, int count)

DESCRIPTION

The read function reads a CAN message from the specified receive queue. A pointer to the callers
message buffer (TP816_MSG_BUF) and the size of this structure is passed by the parameters buff
and count to the device.

The TP816_MSG_BUF structure has the following layout:

typedef struct {
 unsigned long Identifier;
 long Timeout;
 unsigned char RxQueueNum;
 unsigned char Extended;
 unsigned char Satus;
 unsigned char MsgLen;
 unsigned char Data[8];
} TP816_MSG_BUF, *PTP816_MSG_BUF;

Identifier
Receives the message identifier of the read CAN message.

Timeout
Specifies the amount of time (in ticks) the caller is willing to wait for execution of read.

RxQueueNum
Specifies the receive queue number from which the data will be read. Valid receive queue
numbers are in range between 1 and n. In which n depends on the definition of
NUM_RX_QUEUES (see also Fehler! Verweisquelle konnte nicht gefunden werden.).

Extended
Receives TRUE for extended CAN messages.

TPMC816-SW-72 – LynxOS Device Driver Page 14 of 39

Status
Receives status information about overrun conditions either in the CAN controller or
intermediate software FIFO’s.

TP816_SUCCESS No messages lost

TP816_FIFO_OVERRUN One or more messages was overwritten in the receive queue
FIFO. This problem occurs if the FIFO is too small for the
application read interval.

TP816_MSGOBJ_OVERRUN One or more messages were overwritten in the CAN
controller message object because the interrupt latency is too
large. Use message object 15 (buffered) to receive this time
critical CAN messages, reduce the CAN bit rate or upgrade
the system speed.

MsgLen
Receives the number of message data bytes (0...8).

Data[8]
This buffer receives up to 8 data bytes. Data[0] receives message Data 0, Data[1] receives
message Data 1 and so on.

EXAMPLE

int fd;
int result;
TP816_MSG_BUF MsgBuf;

MsgBuf.RxQueueNum = 1;
MsgBuf.Timeout = 200;

result = read(fd, (char*)&MsgBuf, sizeof(MsgBuf));

if(result == sizeof(TP816_MSG_BUF)) {
 /* process received CAN message */
}
else {
 printf("\nRead failed --> Error = %d.\n", errno);
}

TPMC816-SW-72 – LynxOS Device Driver Page 15 of 39

RETURNS

When read succeeds, the size of the read buffer is returned. If read fails, -1 (SYSERR) is returned.

On error, errno contains a standard read error code (see also LynxOS System Call – read) or one of
the following TPMC816 specific error codes:

ENXIO Illegal device

EINVAL Invalid argument. This error code is returned if either the size of the
message buffer is too small, or the specified receive queue is out of range.

ETIMEDOUT The maximum allowed time to finish the read request is exhausted.

ENETDOWN The controller is in bus off state and no message is available in the specified
receive queue. Note, as long as CAN messages are available in the receive
queue FIFO, bus off conditions were not reported by a read function. This
means you can read all CAN messages out of the receive queue FIFO
during bus off state without an error result.

SEE ALSO

LynxOS System Call - read()

TPMC816-SW-72 – LynxOS Device Driver Page 16 of 39

3.4 write()

NAME

write() – write to a file

SYNOPSIS

int write (int fd, char *buff, int count)

DESCRIPTION

The write function writes a CAN message to the device with descriptor fd. A pointer to the callers
message buffer (TP816_MSG_BUF) and the size of this structure is passed by the parameters buff
and count to the device.

The write function dynamically allocates a free message object for the transmit operation. The search
begins at message object 1 and ends at message object 14. The first found free message object is
used. If no message object is available the write operation returns with error.

If your application performs write operations you should left at least one message object free for
transmit, preferably the first message object.

The TP816_MSG_BUF structure has the following layout:

typedef struct {
 unsigned long Identifier;
 long Timeout;
 unsigned char RxQueueNum;
 unsigned char Extended;
 unsigned char Satus;
 unsigned char MsgLen;
 unsigned char Data[8];
} TP816_MSG_BUF, *PTP816_MSG_BUF;

Identifier
Contains the message identifier of the CAN message to write.

Timeout
Specifies the amount of time (in ticks) the caller is willing to wait for execution of write.

RxQueueNum
Unused for this control function. Can be 0.

Extended
Contains TRUE (1) for extended CAN messages.

TPMC816-SW-72 – LynxOS Device Driver Page 17 of 39

Status
Unused for this control function. Can be 0.

MsgLen
Contains the number of message data bytes (0...8).

Data[8]
This buffer contains up to 8 data bytes. Data[0] contains message Data 0, Data[1] contains
message Data 1 and so on.

EXAMPLE

int fd;
int result;
TP816_MSG_BUF MsgBuf;

/*
** Write two data bytes with identifier 1234 to the
** CANbus and wait max. 200 ticks on execution
*/
MsgBuf.Identifier = 1234;
MsgBuf.Timeout = 200;
MsgBuf.Extended = TRUE;
MsgBuf.MsgLen = 2;
MsgBuf.Data[0] = 0xaa;
MsgBuf.Data[1] = 0x55;

result = write(fd, &MsgBuf, sizeof(MsgBuf));

if(result != sizeof(TP816_MSG_BUF)) {
 printf("\nWrite failed --> Error = %d.\n", errno);
}

TPMC816-SW-72 – LynxOS Device Driver Page 18 of 39

RETURNS

When write succeeds, the size of the write buffer is returned. If write fails, -1 (SYSERR) is returned.

On error, errno will contain a standard write error code (see also LynxOS System Call – write) or the
following TPMC816 specific error code:

ENXIO Illegal device

EINVAL Invalid argument. This error code is returned if the size of the message
buffer is too small.

ENOSPC No free message object available for transmit.

ENETDOWN The controller is in bus off state and unable to transmit messages.

ETIMEDOUT The allowed time to finish the write request is elapsed. This occurs if the
CAN bus is overloaded and the priority of the message identifier is too low,
no other node is online or the controller enters the BusOff state.

SEE ALSO

LynxOS System Call - write()

TPMC816-SW-72 – LynxOS Device Driver Page 19 of 39

3.5 ioctl()

NAME

ioctl() - I/O device control

SYNOPSIS

#include <ioctl.h>

#include <tpmc816.h>

int ioctl (int fd, int request, char *arg)

DESCRIPTION

ioctl provides a way of sending special commands to a device driver. The call sends the value of
request and the pointer arg to the device associated with the descriptor fd.

The following ioctl codes are defined in tpmc816.h :

Value Meaning
TP816_BITTIMING Setup new bit timing
TP816_SETFILTER Setup acceptance filter masks
TP816_GETFILTER Get the current acceptance filter masks
TP816_BUSON Enter the bus on state
TP816_BUSOFF Enter the bus off state
TP816_FLUSH Flush one or all receive queues
TP816_CANSTATUS Returns the contents of the CAN controller status register
TP816_DEFRXBUF Define a receive buffer message object
TP816_DEFRMTBUF Define a remote transmit buffer message object
TP816_UPDATEBUF Update a remote or receive buffer message object
TP816_RELEASEBUF Release an allocated message buffer object

See behind for more detailed information on each control code.

RETURNS

ioctl returns 0 if successful, or –1 on error.

The TPMC816 ioctl function returns always standard error codes. See LynxOS system call ioctl of a
detailed description of possible error codes.

SEE ALSO

LynxOS System Call - ioctl().

TPMC816-SW-72 – LynxOS Device Driver Page 20 of 39

3.5.1 TP816_BITTIMING

NAME

TP816_BITTIMING - Setup new bit timing

DESCRIPTION

This ioctl function modifies the bit timing register of the CAN controller to setup a new CAN bus
transfer speed. A pointer to the callers parameter buffer (TP816_TIMING) is passed by the argument
pointer arg to the driver.

Keep in mind to setup a valid bit timing value before changing into the Bus On state.

The TP816_TIMING structure has the following layout:

typedef struct {
 unsigned short TimingValue;
 unsigned short TreeSamples;
} TP816_TIMING, *PTP816_TIMING;

Timing Value
This parameter holds the new values for the bit timing register 0 (bit 0...7) and for the bit timing
register 1 (bit 8...15). Possible transfer rates are between 5 KBit per second and 1.6 MBit per
second. The include file 'tpmc816.h' contains predefined transfer rate symbols (TP816_5KBIT ..
TP816_1_6MBIT).

For other transfer rates please follow the instructions of the Intel 82527 Architectural Overview,
which is also part of the engineering kit TPMC816-EK.

ThreeSamples
If this parameter is TRUE (1) the CAN bus is sampled three times per bit time instead of one.

Use one sample point for faster bit rates and three sample points for slower bit rate to make
the CAN bus more immune against noise spikes.

TPMC816-SW-72 – LynxOS Device Driver Page 21 of 39

EXAMPLE

int fd;
int result;
TP816_TIMING BitTimingParam;

BitTimingParam.TimingValue = TP816_100KBIT;
BitTimingParam.ThreeSamples = FALSE;

result = ioctl(fd, TP816_TIMING, (char*)&BitTimingParam);

if (result < 0) {
 /* handle ioctl error */
}

SEE ALSO

tpmc816.h for predefined bus timing constants

Intel 82527 Architectural Overview - 4.13 Bit Timing Overview

TPMC816-SW-72 – LynxOS Device Driver Page 22 of 39

3.5.2 TP816_SETFILTER

NAME

TP816_SETFILTER - Setup acceptance filter masks

DESCRIPTION

This ioctl function modifies the acceptance filter masks of the specified CAN controller device.

The acceptance masks allow message objects to receive messages with a larger range of message
identifiers instead of just a single message identifier. A "0" value means "don't care" or accept a "0" or
"1" for that bit position. A "1" value means that the incoming bit value "must-match" identically to the
corresponding bit in the message identifier.

A pointer to the callers parameter buffer (TP816_ACCEPT_MASKS) is passed by the parameter
pointer arg to the driver.

The TP816_ACCEPT_MASKS structure has the following layout:

typedef struct {
 unsigned long Message15Mask;
 unsigned long GlobalMaskExtended;
 unsigned short GlobalMaskStandard;
} TP816_ACCEPT_MASKS, *PTP816_ACCEPT_MASKS;

Message15Mask
This parameter specifies the value for the Message 15 Mask Register. The Message 15 Mask
Register is a local mask for message object 15. This 29 bit identifier mask appears in bit 3...31
of this parameter.

The Message 15 Mask is "ANDed" with the Global Mask. This means that any bit defined as
"don't care" in the Global Mask will automatically be a "don't care" bit for message 15.(See also
Intel 82527 Architectural Overview).

GlobalMaskExtended
This parameter specifies the value for the Global Mask-Extended Register. The Global Mask-
Extended Register applies only to messages using the extended CAN identifier. This 29 bit
identifier mask appears in bit 3...31 of this parameter.

GlobalMaskStandard
This parameter specifies the value for the Global Mask-Standard Register. The Global Mask-
Standard Register applies only to messages using the standard CAN identifier. The 11 bit
identifier mask appears in bit 5...15 of this parameter.

The TPMC816 device driver copies the parameter directly into the corresponding registers of
the CAN controller, without shifting any bit positions. For more information see the Intel 82527
Architectural Overview - 4.7…4.10

TPMC816-SW-72 – LynxOS Device Driver Page 23 of 39

EXAMPLE

int fd;
int result;
TP816_ACCEPT_MASKS AcceptMasksParam;

/* Standard identifier bits 0..3 don't care */
AcceptMasksParam.GlobalMaskStandard = 0xfe00;

/* Extended identifier bits 0..3 don't care */
AcceptMasksParam.GlobalMaskExtended = 0xffffff80;

/* Message object 15 identifier bits 0..7 don't care */
AcceptMasksParam.Message15Mask = 0xfffff800;

result = ioctl(fd, TP816_SETFILTER, (char*)&AcceptMasksParam);

if (result < 0) {
 /* handle ioctl error */
}

SEE ALSO

Intel 82527 Architectural Overview - 4.9 Acceptance Filtering

TPMC816-SW-72 – LynxOS Device Driver Page 24 of 39

3.5.3 TP816_GETFILTER

NAME

TP816_GETFILTER - Get the current acceptance filter masks

DESCRIPTION

This ioctl function returns the current acceptance filter masks of the specified CAN Controller.

A pointer to the callers parameter buffer (TP816_ACCEPT_MASKS) is passed by the parameter
pointer arg to the driver.

The TP816_ACCEPT_MASKS structure has the following layout:

typedef struct {
 unsigned long Message15Mask;
 unsigned long GlobalMaskExtended;
 unsigned short GlobalMaskStandard;
} TP816_ACCEPT_MASKS, *PTP816_ACCEPT_MASKS;

Message15Mask
This parameter receives the value for the Message 15 Mask Register. The Message 15 Mask
Register is a local mask for message object 15. This 29 bit identifier mask appears in bit 3..31 of
this parameter.

GlobalMaskExtended
This parameter receives the value for the Global Mask-Extended Register. The Global Mask-
Extended Register applies only to messages using the extended CAN identifier. This 29 bit
identifier mask appears in bit 3...31 of this parameter.

GlobalMaskStandard
This parameter receives the value for the Global Mask-Standard Register. The Global Mask-
Standard Register applies only to messages using the standard CAN identifier. The 11 bit
identifier mask appears in bit 5...15 of this parameter.

The TPMC816 device driver copies the masks directly from the corresponding registers of the
CAN controller into the parameter buffer, without shifting any bit positions. For more
information see the Intel 82527 Architectural Overview - 4.7…4.10

TPMC816-SW-72 – LynxOS Device Driver Page 25 of 39

EXAMPLE

int fd;
int result;
TP816_ACCEPT_MASKS AcceptMasksParam;

result = ioctl(fd, TP816_GETFILTER, (char*)&AcceptMasksParam);

if (result < 0) {
 /* handle ioctl error */
}

SEE ALSO

Intel 82527 Architectural Overview - 4.9 Acceptance Filtering

TPMC816-SW-72 – LynxOS Device Driver Page 26 of 39

3.5.4 TP816_BUSON

NAME

TP816_BUSON - Enter the bus on state

DESCRIPTION

This ioctl function sets the specified CAN controller into the BusON state.

After an abnormal rate of occurrences of errors on the CAN bus or after driver startup, the CAN
controller enters the Bus Off state. This control function resets the init bit in the control register. The
CAN controller begins the BusOff recovery sequence and resets the transmit and receive error
counters. If the CAN controller counts 128 packets of 11 consecutive recessive bits on the CAN bus,
the Bus Off state is exited.

The optional argument pointer can be NULL.

Before the driver is able to communicate over the CAN bus after driver startup, this control
function must be executed.

EXAMPLE

int fd;
int result;

result = ioctl(fd, TP816_BUSON, NULL);

if (result < 0) {
 /* handle ioctl error */
}

ERRORS

This ioctl function returns no function specific error codes.

SEE ALSO

Intel 82527 Architectural Overview - 3.2 Software Initialization

TPMC816-SW-72 – LynxOS Device Driver Page 27 of 39

3.5.5 TP816_BUSOFF

NAME

TP816_BUSOFF - Enter the bus off state

DESCRIPTION

This ioctl function sets the specified CAN controller into the BusOff state.

After execution of this control function the CAN controller is completely removed from the CAN bus
and cannot communicate until the control function TP816_BUSON is executed.

The optional argument pointer can be NULL.

Execute this control function before the last close to the CAN controller channel.

EXAMPLE

int fd;
int result;

result = ioctl(fd, TP816_BUSOFF, NULL);

if (result < 0) {
 /* handle ioctl error */
}

ERRORS

This ioctl function returns no function specific error codes.

SEE ALSO

Intel 82527 Architectural Overview - 3.2 Software Initialization

TPMC816-SW-72 – LynxOS Device Driver Page 28 of 39

3.5.6 TP816_FLUSH

NAME

TP816_FLUSH - Flush one or all receive queues

DESCRIPTION

This ioctl function flushes the message FIFO of the specified receive queue.

The optional argument pointer arg passes the receive queue number to the device driver on which the
FIFO’s to be flushed.

EXAMPLE

int fd;
int result;
char RxQueueNum;

/* flush receive queues 1 */
RxQueueNum = 1;

result = ioctl(fd, TP816_IOCFLUSH, &RxQueueNum);

if (result < 0) {
 /* handle ioctl error */
}

ERRORS

EINVAL Invalid argument.
This error code is returned if the specified receive queue is out of range.

TPMC816-SW-72 – LynxOS Device Driver Page 29 of 39

3.5.7 TP816_DEFRXBUF

NAME

TP816_DEFRXBUF - Define a receive buffer message object

DESCRIPTION

This ioctl function defines a CAN message object to receive a single message identifier or a range of
message identifiers (see also Acceptance Mask). All CAN messages received by this message object
are directed to the associated receive queue and can be read with the standard read function (see
also 3.3).

Before the driver can receive CAN messages it’s necessary to define at least one receive message
object. If only one receive message object is defined at all, preferably message object 15 should be
used because this message object is double-buffered.

A pointer to the caller’s message description (TP816_BUF_DESC) is passed by the argument pointer
arg to the driver.

The TP816_BUF_DESC structure has the following layout:

typedef struct {
 unsigned long Identifier;
 unsigned char MsgObjNum;
 unsigned char RxQueueNum;
 unsigned char Extended;
 unsigned char MsgLen;
 unsigned char Data[8];
} TP816_BUF_DESC, *PTP816_BUF_DESC;

Identifier
Specifies the message identifier for the message object to be defined.

MsgObjNum
Specifies the number of the message object to be defined. Valid object numbers are in range
between 1 and 15.

RxQueueNum
Specifies the associated receive queue for this message object. All CAN messages received by
this object are directed to this receive queue. The receive queue number is one based; valid
numbers are in range between 1 and n. In which n depends on the definition of
NUM_RX_QUEUES (see also Fehler! Verweisquelle konnte nicht gefunden werden.).

It’s possible to assign more than one receive message object to one receive queue.

TPMC816-SW-72 – LynxOS Device Driver Page 30 of 39

Extended
Set to TRUE for extended CAN messages.

MsgLen
Unused for this control function. Set to 0.

Data[8]
Unused for this control function.

EXAMPLE

int fd;
int result;
TP816_BUF_DESC BufDesc;

/*
** Define message object 15 to receive the extended message identifier
** 1234 and store received messages in receive queue 1
*/
BufDesc.MsgObjNum = 15;
BufDesc.RxQueueNum = 1;
BufDesc.Identifier = 1234;
BufDesc.Extended = TRUE;

result = ioctl(fd, TP816_DEFRXBUF, (char*)&BufDesc);

if (result < 0) {
 /* handle ioctl error */
}

ERRORS

EINVAL Invalid argument. This error code is returned if either the message object
number, or the specified receive queue is out of range.

EADDRINUSE The requested message object is already occupied.

SEE ALSO

Intel 82527 Architectural Overview - 4.18 82527 Message Objects

TPMC816-SW-72 – LynxOS Device Driver Page 31 of 39

3.5.8 TP816_DEFRMTBUF

NAME

TP816_DEFRMTBUF - Define a remote transmit buffer message object

DESCRIPTION

This ioctl function defines a remote transmission CAN message buffer object. A remote transmission
object is similar to normal transmission object with exception that the CAN message is transmitted
only after receiving of a remote frame with the same identifier.

This type of message object can be used to make process data available for other nodes which can
be polled around the CAN bus without any action of the provider node.

The message data remain available for other CAN nodes until this message object is updated with the
control function TP816_UPDATEBUF or cancelled with TP816_RELEASEBUF.

A pointer to the caller’s message description (TP816_BUF_DESC) is passed by the argument pointer
arg to the driver.

The TP816_BUF_DESC structure has the following layout:

typedef struct {
 unsigned long Identifier;
 unsigned char MsgObjNum;
 unsigned char RxQueueNum;
 unsigned char Extended;
 unsigned char MsgLen;
 unsigned char Data[8];
} TP816_BUF_DESC, *PTP816_BUF_DESC;

Identifier
Specifies the message identifier for the message object to be defined.

MsgObjNum
Specifies the number of the message object to be defined. Valid object numbers are in range
between 1 and 14.

Message object 15 is only available for receive message objects.

RxQueueNum
Unused for remote transmission message objects. Set to 0.

Extended
Set to TRUE for extended CAN messages.

TPMC816-SW-72 – LynxOS Device Driver Page 32 of 39

MsgLen
Contains the number of message data bytes (0...8).

Data[8]
This buffer contains up to 8 data bytes. Data[0] contains message Data 0, Data[1] contains
message Data 1 and so on.

EXAMPLE

int fd;
int result;
TP816_BUF_DESC BufDesc;

/*
** Define message object 10 to transmit the extended message identifier
** 777 after receiving of a remote frame with der same identifier
*/
BufDesc.MsgObjNum = 10;
BufDesc.Identifier = 777;
BufDesc.Extended = TRUE;
BufDesc.MsgLen = 1;
BufDesc.Data[0] = 123;

result = ioctl(fd, TP816_DEFRMTBUF, (char*)&BufDesc);

if (result < 0) {
 /* handle ioctl error */
}

ERRORS

EINVAL Invalid argument. This error code is returned if the message object number
or the message length (MsgLen) is out of range.

EADDRINUSE The requested message object is already occupied.

SEE ALSO

Intel 82527 Architectural Overview - 4.18 82527 Message Objects

TPMC816-SW-72 – LynxOS Device Driver Page 33 of 39

3.5.9 TP816_UPDATEBUF

NAME

TP816_UPDATEBUF - Update a remote or receive buffer message object

DESCRIPTION

This ioctl function updates a previous defined receive or remote transmission message buffer object.

To update a receive message object a remote frame is transmitted over the CAN bus to request new
data from a corresponding remote transmission message object on other nodes.

To update a remote transmission object only the message data and message length of the specified
message object is changed. No transmission is initiated by this control function.

A pointer to the caller’s message description (TP816_BUF_DESC) is passed by the argument pointer
arg to the driver.

The TP816_BUF_DESC structure has the following layout:

typedef struct {
 unsigned long Identifier;
 unsigned char MsgObjNum;
 unsigned char RxQueueNum;
 unsigned char Extended;
 unsigned char MsgLen;
 unsigned char Data[8];
} TP816_BUF_DESC, *PTP816_BUF_DESC;

Identifier
Unused for this control function. Set to 0.

MsgObjNum
Specifies the number of the message object to be updated. Valid object numbers are in range
between 1 and 15.

Message object 15 is available only for receive message objects.

RxQueueNum
Unused for this control function. Set to 0.

Extended
Set to TRUE for extended CAN messages.

MsgLen
Contains the number of message data bytes (0...8). This parameter is used only for remote
transmission object updates.

TPMC816-SW-72 – LynxOS Device Driver Page 34 of 39

Data[8]
This buffer contains up to 8 data bytes. Data[0] contains message data byte 0, Data[1] contains
message data byte 1 and so on.

This parameter is used only for remote transmission object updates.

EXAMPLE

int fd;
int result;
TP816_BUF_DESC BufDesc;

/* Update a receive message object */
BufDesc.MsgObjNum = 14;

result = ioctl(fd, TP816_UPDATEBUF, (char*)&BufDesc);

if (result < 0) {
 /* handle ioctl error */
}

/* Update a remote message object */
BufDesc.MsgObjNum = 10;
BufDesc.MsgLen = 1;
BufDesc.Data[0] = 124;

result = ioctl(fd, TP816_UPDATEBUF, (char*)&BufDesc);

if (result < 0) {
 /* handle ioctl error */
}

ERRORS

EINVAL Invalid argument. This error code is returned if either the message object
number is out of range or the requested message object is not defined.

EMSGSIZE Invalid message size. MsgLen must be in range between 0 and 8.

SEE ALSO

Intel 82527 Architectural Overview - 4.18 82527 Message Objects

TPMC816-SW-72 – LynxOS Device Driver Page 35 of 39

3.5.10 TP816_RELEASEBUF

NAME

TP816_RELEASEBUF - Release an allocated message buffer object

DESCRIPTION

This TPMC816 control function releases a previous defined CAN message object. Any CAN bus
transactions of the specified message object become disabled. After releasing the message object
can be defined again with TP816_DEFRXBUF and TP816_DEFRMTBUF control functions.

A pointer to the caller’s message description (TP816_BUF_DESC) is passed by the argument pointer
arg to the driver.

The TP816_BUF_DESC structure has the following layout:

typedef struct {
 unsigned long Identifier;
 unsigned char MsgObjNum;
 unsigned char RxQueueNum;
 unsigned char Extended;
 unsigned char MsgLen;
 unsigned char Data[8];
} TP816_BUF_DESC, *PTP816_BUF_DESC;

MsgObjNum
Specifies the number of the message object to be released. Valid object numbers are in range
between 1 and 15.

All other parameters are not used and could be left blank.

EXAMPLE

int fd;
int result;
TP816_BUF_DESC BufDesc;

BufDesc.MsgObjNum = 14;

result = ioctl(fd, TP816_RELEASEBUF, (char*)&BufDesc);

if (result < 0) {
 /* handle ioctl error */
}

TPMC816-SW-72 – LynxOS Device Driver Page 36 of 39

ERRORS

EINVAL Invalid argument. This error code is returned if the message object number
is out of range or the requested message object is not defined.

EBUSY The message object is currently busy transmitting data or another task is
waiting for a received message.

SEE ALSO

ioctl man pages

TPMC816-SW-72 – LynxOS Device Driver Page 37 of 39

3.5.11 TP816_CANSTATUS

NAME

TP816_CANSTATUS - Returns the contents of the CAN status register

DESCRIPTION

This ioctl function returns the actual contents of the CAN controller status register for diagnostic
purposes.

The content of the controller status register is received in an unsigned char variable. A pointer to this
variable is passed by the argument pointer arg to the driver.

EXAMPLE

int fd;
int result;
unsigned char CanStatus;

result = ioctl(fd, TP816_CANSTATUS, (char*)&CanStatus);

if (result < 0) {
 /* handle ioctl error */
}

SEE ALSO

Intel 82527 Architectural Overview - 4.3 Status Register

TPMC816-SW-72 – LynxOS Device Driver Page 38 of 39

4 Debugging and Diagnostic
This driver was successfully tested on Motorola PowerPC and Intel x86 compactPCI systems with
LynxOS V4.0.0, V3.1.0 or V3.0.1 installed.

If the driver will not work properly, usually a PCI bus or interrupt problem, you can enable debug
outputs by removing the comments around the symbols DEBUG, DEBUG_PCI and DEBUG_TPMC.

The debug output should appear on the console. If not please check the symbol KKPF_PORT in
uparam.h. This symbol should be configured to a valid COM port (e.g. SKDB_COM1).

The debug output displays the PCI Header, the address of each base address register and a memory
dump of all mapped memory and I/O spaces of the TPMC816 like this (see also TPMC816 User
Manual – PCI Configuration).

TPMC816 Device Driver Install
Bus = 0 Dev = 16 Func = 0
[00] = 905010B5
[04] = 02800000
[08] = 02800001
[0C] = 00000008
[10] = 02042000
[14] = 0000C001
[18] = 02043000
[1C] = 00000000
[20] = 00000000
[24] = 00000000
[28] = 00000000
[2C] = 03301498
[30] = 00000000
[34] = 00000000
[38] = 00000000
[3C] = 00000109
PCI Base Address 0 (PCI_RESID_BAR0)

B8142000 : 00 FE FF 0F 00 00 00 00 00 00 00 00 00 00 00 00
B8142010 : 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00
B8142020 : 00 00 00 00 00 00 00 00 02 78 30 80 00 00 00 00
B8142030 : 00 00 00 00 00 00 00 00 00 00 00 00 81 00 00 00
B8142040 : 81 01 00 00 00 00 00 00 00 00 00 00 49 00 00 00
B8142050 : 00 00 78 18 00 00 00 00 00 00 00 00 00 00 00 00
B8142060 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
B8142070 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
PCI Base Address 1 (PCI_RESID_BAR1)

B0108000 : 00 FE FF 0F 00 00 00 00 00 00 00 00 00 00 00 00
B0108010 : 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00
B0108020 : 00 00 00 00 00 00 00 00 02 78 30 80 00 00 00 00
B0108030 : 00 00 00 00 00 00 00 00 00 00 00 00 81 00 00 00
B0108040 : 81 01 00 00 00 00 00 00 00 00 00 00 49 00 00 00
B0108050 : 00 00 78 18 00 00 00 00 00 00 00 00 00 00 00 00

TPMC816-SW-72 – LynxOS Device Driver Page 39 of 39

B0108060 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
B0108070 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
PCI Base Address 2 (PCI_RESID_BAR2)

B8143000 : 01 00 61 61 00 00 FF FF FF FF FF F8 00 00 00 00
B8143010 : 55 55 00 E0 00 08 00 10 00 00 00 00 02 00 00 01
B8143020 : 55 55 00 08 98 08 00 00 00 20 00 00 20 00 00 00
B8143030 : 55 55 0B 00 02 00 00 00 00 34 02 00 00 01 00 00
B8143040 : 55 59 00 80 00 00 00 00 00 00 00 00 01 10 20 00
B8143050 : 55 55 00 00 08 00 00 00 00 80 00 00 00 00 00 00
B8143060 : 55 55 23 81 00 F0 00 00 00 00 01 00 00 00 02 FF
B8143070 : 95 59 00 02 80 00 00 40 00 00 00 00 00 00 00 FF

Moduletype TPMC816-10 with 2 CAN Channel
LynxOS POWERPC Version 4.0.0

The debug output above is only an example. Debug output on other systems may be different
for addresses and data in some locations.

	Introduction
	Installation
	Device Driver Installation
	Static Installation
	Build the driver object
	Create Device Information Declaration
	Modify the Device and Driver Configuration File
	Rebuild the Kernel

	Dynamic Installation
	Device Information Definition File
	Configuration File: CONFIG.TBL

	Receive Queue Configuration

	TPMC816 Device Driver Programming
	open()
	close()
	read()
	write()
	ioctl()
	TP816_BITTIMING
	TP816_SETFILTER
	TP816_GETFILTER
	TP816_BUSON
	TP816_BUSOFF
	TP816_FLUSH
	TP816_DEFRXBUF
	TP816_DEFRMTBUF
	TP816_UPDATEBUF
	TP816_RELEASEBUF
	TP816_CANSTATUS

	Debugging and Diagnostic

