
The Embedded I/O Company

TPMC851-S
Windows 2000/XP D

Multifunction I/O (16 bit ADC/DA

Version 1.0.x

User Manu
Issue 1.0.2

August 2008

TEWS TECHNOLOGIES GmbH TEWS TEC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49-(0)4101-4058-0
Fax: +49-(0)4101-4058-19
e-mail: info@tews.com

9190 Doub
Suite 127,
www.tews.
W-65
evice Driver
C, TTL I/O, Counter)

al

HNOLOGIES LLC
le Diamond Parkway,
Reno, NV 89521, USA
com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 2 of 53

TPMC851-SW-65

Windows 2000/XP Device Driver

Multifunction I/O
(16 bit ADC/DAC, TTL I/O, Counter)

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2005-2008 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue January 24, 2005

1.0.1 New Address TEWS LLC, several errors corrected October 12, 2006

1.0.2 Filelist modified (subdirectory) August 5, 2008

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 3 of 53

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Software Installation ...5
2.1.1 Windows 2000 / XP..5
2.1.2 Confirming Windows 2000 / XP Installation ...5

3 DRIVER CONFIGURATION ... 6
3.1 Event Queue Configuration ...6

4 TPMC851 DEVICE DRIVER PROGRAMMING .. 7
4.1 TPMC851 Files and I/O Functions ...7

4.1.1 Opening a TPMC851 Device ...7
4.1.2 Closing a TPMC851 Device...9
4.1.3 TPMC851 Device I/O Control Functions..10

4.1.3.1 IOCTL_TP851_ADC_READ...12
4.1.3.2 IOCTL_TP851_ADC_SEQCONFIG ...14
4.1.3.3 IOCTL_TP851_ADC_SEQSTART ...16
4.1.3.4 IOCTL_TP851_ADC_SEQSTOP ...20
4.1.3.5 IOCTL_TP851_DAC_WRITE ...21
4.1.3.6 IOCTL_TP851_DAC_SEQCONFIG ...23
4.1.3.7 IOCTL_TP851_DAC_SEQSTART ...25
4.1.3.8 IOCTL_TP851_DAC_SEQSTOP ...29
4.1.3.9 IOCTL_TP851_IO_READ ..30
4.1.3.10 IOCTL_TP851_IO_WRITE...32
4.1.3.11 IOCTL_TP851_IO_EVENTWAIT ...34
4.1.3.12 IOCTL_TP851_IO_CONFIG ..36
4.1.3.13 IOCTL_TP851_IO_DEBCONFIG ...38
4.1.3.14 IOCTL_TP851_CNT_READ...40
4.1.3.15 IOCTL_TP851_CNT_MATCHWAIT ...42
4.1.3.16 IOCTL_TP851_CNT_CTRLWAIT ..44
4.1.3.17 IOCTL_TP851_CNT_CONFIG...46
4.1.3.18 IOCTL_TP851_CNT_RESET...49
4.1.3.19 IOCTL_TP851_CNT_SETPRELD..50
4.1.3.20 IOCTL_TP851_CNT_SETMATCH ...52

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 4 of 53

1 Introduction
The TPMC851-SW-65 Windows WDM (Windows Driver Model) device driver is a kernel mode driver
which allows the operation of the TPMC851 on an Intel or Intel-compatible x86 Windows 2000 or
Windows XP operating system.

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceIoControl) provide
the basic interface for opening and closing a resource handle and for performing device I/O control
operations.

The TPMC851 device driver supports the following features:

 Reading an ADC input value from a specified channel
 Configuring and using the ADC input sequencer
 Setting a DAC output value to a specified channel
 Configuring and using the DAC output sequencer
 Reading from digital I/O input register
 Writing to digital I/O output register
 Waiting for digital I/O input event (high, low or any transition on input line)
 Configuring digital I/O line direction
 Reading counter value
 Reset counter value
 Setting counter preload and match value
 Configuring counter mode
 Wait for counter match and control event

The TPMC851-SW-65 device driver supports the modules listed below:

TPMC851 Multifunction I/O
(16 bit ADC/DAC, TTL I/O, Counter)

PMC

To get more information about the features and usage of TPMC851 devices it is recommended to read
the manuals listed below.

TPMC851 User Manual

TPMC851 Engineering Manual

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 5 of 53

2 Installation
Following files are located in directory TPMC851-SW-65 on the distribution media:

tpmc851.sys Windows driver binary
tpmc851.h Header-file with IOCTL code definitions
tpmc851.inf Windows installation script
TPMC851-SW-65-1.0.2.pdf This document
Example\tpmc851exa.c Microsoft Visual C example application
ChangeLog.txt Release history
Release.txt Release information

2.1 Software Installation

2.1.1 Windows 2000 / XP

This section describes how to install the TPMC851 Device Driver on a Windows 2000 / XP operating
system.

After installing the TPMC851 card(s) and boot-up your system, Windows 2000 / XP setup will show a
"New hardware found" dialog box.

1. The "Upgrade Device Driver Wizard" dialog box will appear on your screen.
Click "Next" button to continue.

2. In the following dialog box, choose "Search for a suitable driver for my device".
Click "Next" button to continue.

3. In Drive A, insert the TPMC851 driver disk; select "Disk Drive" in the dialog box.
Click "Next" button to continue.

4. Now the driver wizard should find a suitable device driver on the diskette.
Click "Next" button to continue.

5. Complete the upgrade device driver and click "Finish" to take all the changes effect.

6. Now copy all needed files (e.g. tpmc851.h) to the desired target directories.

After successful installation the TPMC851 device driver will start immediately and creates devices
(TPMC851_1, TPMC851_2 ...) for all recognized TPMC851 modules.

2.1.2 Confirming Windows 2000 / XP Installation

To confirm that the driver has been properly loaded in Windows 2000 / XP, perform the following
steps:

1. From Windows 2000 / XP, open the "Control Panel" from "My Computer".

2. Click the "System" icon and choose the "Hardware" tab, and then click the "Device
Manager" button.

3. Click the "+" in front of "Other Devices".
The driver "TEWS TECHNOLOGIES TPMC851 (16bit ADC/DAC, TTL I/O, Counter)" should
appear.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 6 of 53

3 Driver Configuration

3.1 Event Queue Configuration
After installation of the TPMC851 Device Driver the size of the internal event queues is set to its
default value. By default, 10 events can be simultaneously waited for.

If the default value is not suitable, the configuration can be changed by modifying the Windows
Registry, for instance with regedit.

To change the maximum amount of events to wait for, the following value must be modified:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\TPMC51\MaxQueueEntries

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 7 of 53

4 TPMC851 Device Driver Programming
The TPMC851-SW-65 Windows WDM device driver is a kernel mode device driver.

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceIoControl) provide
the basic interface for opening and closing a resource handle and for performing device I/O control
operations.

All of these standard Win32 functions are described in detail in the Windows Platform SDK
Documentation (Windows base services / Hardware / Device Input and Output).

For details refer to the Win32 Programmers Reference of your used programming tools (C++, Visual
Basic etc.)

4.1 TPMC851 Files and I/O Functions
The following section does not contain a full description of the Win32 functions for interaction with the
TPMC851 device driver. Only the required parameters are described in detail.

4.1.1 Opening a TPMC851 Device

Before you can perform any I/O the TPMC851 device must be opened by invoking the CreateFile
function. CreateFile returns a handle that can be used to access the TPMC851 device.

HANDLE CreateFile(
LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile

);

Parameters

LPCTSTR lpFileName

This parameter points to a null-terminated string, which specifies the name of the TPMC851 to
open. The lpFileName string should be of the form \\.\TPMC851_x to open the device x. The
ending x is a one-based number. The first device found by the driver is \\.\TPMC851_1, the
second \\.\TPMC851_2 and so on.

DWORD dwDesiredAccess

This parameter specifies the type of access to the TPMC851.
For the TPMC851 this parameter must be set to read-write access (GENERIC_READ |
GENERIC_WRITE)

DWORD dwShareMode

Set of bit flags that specify how the object can be shared. Set to 0.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 8 of 53

LPSECURITY_ATTRIBUTES lpSecurityAttributes

This argument is a pointer to a security structure. Set to NULL for TPMC851 devices.

DWORD dwCreationDistribution

Specifies the action to take on existing files, and which action to take when files do not exist.
TPMC851 devices must be always opened OPEN_EXISTING.

DWORD dwFlagsAndAttributes

Specifies the file attributes and flags for the file. This value must be set to
FILE_FLAG_OVERLAPPED for TPMC851 devices.

HANDLE hTemplateFile

This value must be NULL for TPMC851 devices.

Return Value

If the function succeeds, the return value is an open handle to the specified TPMC851 device. If the
function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call
GetLastError.

Example

HANDLE hDevice;

hDevice = CreateFile(
“\\\\.\\TPMC851_1”,
GENERIC_READ | GENERIC_WRITE,
0,
NULL, // no security attrs
OPEN_EXISTING, // TPMC851 device always open existing
FILE_FLAG_OVERLAPPED, // overlapped I/O
NULL

);

if (hDevice == INVALID_HANDLE_VALUE) {
ErrorHandler("Could not open device"); // process error

}

See Also

CloseHandle(), Win32 documentation CreateFile()

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 9 of 53

4.1.2 Closing a TPMC851 Device

The CloseHandle function closes an open TPMC851 handle.

BOOL CloseHandle(
HANDLE hDevice;

);

Parameters

HANDLE hDevice

Identifies an open TPMC851 handle.

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Example

HANDLE hDevice;

if(!CloseHandle(hDevice)) {
ErrorHandler("Could not close device"); // process error

}

See Also

CreateFile (), Win32 documentation CloseHandle ()

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 10 of 53

4.1.3 TPMC851 Device I/O Control Functions

The DeviceIoControl function sends a control code directly to a specified device driver, causing the
corresponding device to perform the specified operation.

BOOL DeviceIoControl(
HANDLE hDevice, // handle to device of interest
DWORD dwIoControlCode, // control code of operation to perform
LPVOID lpInBuffer, // pointer to buffer to supply input data
DWORD nInBufferSize, // size of input buffer
LPVOID lpOutBuffer, // pointer to buffer to receive output data
DWORD nOutBufferSize, // size of output buffer
LPDWORD lpBytesReturned, // pointer to variable to receive output byte count
LPOVERLAPPED lpOverlapped // pointer to overlapped structure for asynchronous

// operation
);

Parameters

hDevice

Handle to the TPMC851 that is to perform the operation.

dwIoControlCode

Specifies the control code for the operation. This value identifies the specific operation to be
performed. The following values are defined in tpmc851.h :

Value Meaning

IOCTL_TP851_ADC_READ Read value from ADC channel

IOCTL_TP851_ADC_SEQCONFIG Configure ADC sequencer channel

IOCTL_TP851_ADC_SEQSTART Start ADC sequencer

IOCTL_TP851_ADC_SEQSTOP Stop ADC sequencer

IOCTL_TP851_DAC_WRITE Write value to DAC channel

IOCTL_TP851_DAC_SEQCONFIG Configure DAC sequencer channel

IOCTL_TP851_DAC_SEQSTART Start DAC sequencer

IOCTL_TP851_DAC_SEQSTOP Stop DAC sequencer

IOCTL_TP851_IO_READ Read from digital I/O

IOCTL_TP851_IO_WRITE Write to digital I/O

IOCTL_TP851_IO_EVENTWAIT Wait for I/O event

IOCTL_TP851_IO_CONFIG Configure digital I/O

IOCTL_TP851_IO_DEBCONFIG Configure digital I/O (input) debouncer

IOCTL_TP851_CNT_READ Read value from counter/timer

IOCTL_TP851_CNT_MATCHWAIT Wait for counter match event

IOCTL_TP851_CNT_CTRLWAIT Wait for counter control event

IOCTL_TP851_CNT_CONFIG Configure counter

IOCTL_TP851_CNT_RESET Reset counter

IOCTL_TP851_CNT_SETPRELD Set counter preload value

IOCTL_TP851_CNT_SETMATCH Set counter match value

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 11 of 53

See below for more detailed information on each control code.

To use these TPMC851 specific control codes the header file tpmc851.h must be included in
the application

lpInBuffer

Pointer to a buffer that contains the data required to perform the operation.

nInBufferSize

Specifies the size of the buffer pointed to by lpInBuffer.

lpOutBuffer

Pointer to a buffer that receives the operation’s output data.

nOutBufferSize

Specifies the size of the buffer in bytes pointed to by lpOutBuffer.

lpBytesReturned

Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed to
by lpOutBuffer. A valid pointer is required.

lpOverlapped

Pointer to an overlapped structure. Refer to the Ioctl specific manual section how this parameter
must be set.

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

See Also

Win32 documentation DeviceIoControl()

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 12 of 53

4.1.3.1 IOCTL_TP851_ADC_READ

This TPMC851 control function starts an ADC conversion with specified parameters, waits for
completion and returns the value. A pointer to the callers buffer (TP851_ADC_READ_BUF) must be
passed to the driver by lpOutBuffer parameter. lpInBuffer is not used and should be set to NULL.

The ADC sequencer must be stopped to execute this function.

typedef struct
{

int channel;
int gain;
unsigned long flags;
short adcValue;

} TP851_ADC_READ_BUF, *PTP851_ADC_READ_BUF;

channel

Specifies the ADC channel number. Valid values are 1..16 for differential input and 1..32 for
single-ended input.

gain

Specifies the input gain. Valid gain values are 1, 2, 4, and 8.

flags

Is an ored value of the following flags:
flag description

TP851_F_CORR If set the function will return a corrected value of
the input data in adcValue. Factory set and module
dependent correction data is used for correction.
If not set, the raw value read from the module will
be returned in adcValue.

TP851_F_IMMREAD If set the driver will start the conversion without
waiting for settling time. This should only be used if
the previous conversion has used the same
interface parameters (channel, gain,
differential/single-ended).
If not set the driver will use the automatic mode,
which sets interface configuration, waits settling
time and then starts the conversion.

TP851_F_DIFF If set the input channel will be a differential input.
If not set the input channel will be a single-ended
input.

adcValue

This value will return the read ADC value.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 13 of 53

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP851_ADC_READ_BUF adcReadBuf;

/*
** Read a corrected value from differential channel 2, use a gain of 4
*/
adcReadBuf.channel = 2;
adcReadBuf.gain = 4;
adcReadBuf.flags = TP851_F_CORR | TP851_F_DIFF;

printf("Read from ADC ... ");
success = DeviceIoControl (

hDevice, // TPMC851 handle
IOCTL_TP851_ADC_READ, // control code
NULL,
0,
&adcReadBuf, // pointer to buffer
sizeof(TP851_ADC_READ_BUF), // size of buffer
&NumBytes,
NULL // no overlapped I/O

);
if (success)
{

printf("OK\n ADC-value: %d\n", adcReadBuf.adcValue);
} else {

/* handle error */
}

Error Codes

ERROR_BUSY The ADC sequencer is currently running.

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small

ERROR_INVALID_PARAMETER Specified gain level is invalid.

ERROR_ACCESS_DENIED Invalid channel number specified.

ERROR_TIMEOUT The ADC conversion timed out.
All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 14 of 53

4.1.3.2 IOCTL_TP851_ADC_SEQCONFIG

This TPMC851 control function configures and enables or simply disables an ADC channel for
sequencer usage. A pointer to the callers buffer (TP851_ADC_SEQCONFIG_BUF) must be passed to
the driver by the lpInBuffer parameter. lpOutBuffer is not used and should be set to NULL.

The ADC sequencer must be stopped to execute this function.

typedef struct
{

int channel;
int enable;
int gain;
unsigned long flags;

} TP851_ADC_SEQCONFIG_BUF, *PTP851_ADC_SEQCONFIG_BUF;

channel

Specifies the ADC channel number to configure. Valid values are 1..16 for differential input and
1..32 for single-ended input.

enable

Specifies if the channel shall be used in sequencer mode or not. (0 disables the channel any
other value will enable the channel)

gain

Specifies the input gain. Valid gain values are 1, 2, 4, and 8.

flags

Is an ORed value of the following flags:
flag description

TP851_F_CORR If set the sequencer will return a corrected value for
the specified channel. Factory set and module
dependent correction data is used for correction.
If not set, the raw value read from the module will
be returned.

TP851_F_DIFF If set the input channel will be a differential input.
If not set the input channel will be a single-ended
input.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 15 of 53

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP851_ADC_SEQCONFIG_BUF adcSeqConfBuf;

/*
** Configure single-ended channel 3, using a gain of 4 and returning
*/
adcSeqConfBuf.channel = 3;
adcSeqConfBuf.enable = TRUE;
adcSeqConfBuf.gain = 4;
adcSeqConfBuf.flags = TP851_F_CORR;

printf("Configure channel for Sequencer ... ");
success = DeviceIoControl (

hDevice, // TPMC851 handle
IOCTL_TP851_ADC_SEQCONFIG, // control code
&adcSeqConfBuf, // pointer to buffer
sizeof(TP851_ADC_SEQCONFIG_BUF),// size of buffer
NULL,
0,
&NumBytes,
NULL // no overlapped I/O

);
if (success)
{

printf("OK\n");
} else {

/* handle error */
}

Error Codes

ERROR_BUSY The ADC sequencer is currently running.

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small

ERROR_ACCESS_DENIED Invalid channel number specified.

ERROR_INVALID_PARAMETER Specified gain level or flags invalid.

All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 16 of 53

4.1.3.3 IOCTL_TP851_ADC_SEQSTART

This TPMC851 control function configures the ADC sequencer’s cycle time and starts the ADC
sequencer. A pointer to the callers buffer (TP851_ADC_SEQSTART_BUF) must be passed to the
driver by lpOutBuffer parameter. lpInBuffer is not used and should be set to NULL. This function
requires overlapped I/O.

typedef struct
{

unsigned short cycTime;
unsigned long flags;
long putIdx;
long getIdx;
long bufSize;
long seqState;
short buffer[1];

} TP851_ADC_SEQSTART_BUF, *PTP851_ADC_SEQSTART_BUF;

cycTime

Specifies the ADC sequencer cycle time. The sequencer time is specified in 100µs steps. With
a value of 0, the “Sequencer Continuous Mode” is selected.

flags

Is an ORed value of the following flags:
flag description

TP851_F_EXTTRIGSRC If set the ADC sequencer is trigger with digital I/O
line 0.
If not set, the ADC sequencer uses the ADC cycle
counter.

TP851_F_EXTTRIGOUT If set the ADC trigger is used as output on digital
I/O line 0.

TP851_F_EXTTRIGSRC and TP851_F_EXTTRIGOUT cannot be used at the same time.

putIdx

Specifies the index into buffer where the next data will be stored to. This index is handled by the
driver and should only be read by the application to check if data is available. The driver
initializes this index to 0 when sequencer starts.

getIdx

Specifies the index into buffer where the next input data can be read from. This index must be
handled by the application and is only be read by the driver to check a FIFO overflow. The
driver initializes this index to 0 when sequencer starts.

bufSize

Specifies the array size of buffer. This value must be the same as used for s in
TP851_CALC_SIZE_ADC_SEQDATA_BUF(s) when calculating the size for the allocated
buffer.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 17 of 53

seqState

Displays the sequencer state. This is an ORed value of the following status flags.
flag description

TP851_SF_SEQACTIVE If set the ADC sequencer is started.
If not set, the ADC sequencer stopped.

TP851_SF_SEQOVERFLOWERR If set the ADC sequencer has detected an
overflow error. (Hardware detected)

TP851_SF_SEQTIMERERROR If set the ADC sequencer has detected a timer
error. (Hardware detected)

TP851_SF_SEQIRAMERROR If set the ADC sequencer has detected an
instruction RAM error. (Hardware detected)

TP851_SF_SEQFIFOOVERFLOW If set the application supplied FIFO (buffer) has
overrun. Data got lost.

buffer

Array used for ADC sequencer data FIFO.
The ADC data is stored by the sequencer into this FIFO. The assignment from data to channel
is done as follows. The first data will be from the lowest enabled channel, the second from the
next enabled channel and so on. There will be no data stored for disabled channels. If the end
of buffer is reached the next data will be stored again at the beginning of the buffer.

Example:
Enabled channels: 1, 2, 5
Buffer Size: 10
The table shows the index the data is stored to for channel and cycle.

sequencer
cycle channel 1 channel 2 channel 5

1st 0 1 2

2nd 3 4 5

3rd 6 7 8

4th 9 0 1

5th 2 3 4

… … … …

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 18 of 53

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
OVERLAPPED AdcSeqOverlapped;
TP851_ADC_SEQSTART_BUF* pAdcSeqStartBuf;
long realBufSize;

AdcSeqOverlapped.Offset = 0;
AdcSeqOverlapped.hEvent = 0;

/*
** allocate Buffer (100 word FIFO)
*/
realBufSize = TP851_CALC_SIZE_ADC_SEQDATA_BUF(100);
pAdcSeqStartBuf = (TP851_ADC_SEQSTART_BUF*)malloc(realBufSize);
pAdcSeqStartBuf ->bufSize = 100;

/*
** Start sequencer with a buffer of 100 words and a cycle time of 100 ms,
** do not use external trigger
*/
pAdcSeqStartBuf->cycTime = 1000;
pAdcSeqStartBuf->flags = 0;

printf("Start ADC Sequencer ... ");
success = DeviceIoControl (

hDevice, // TPMC851 handle
IOCTL_TP851_ADC_SEQSTART, // control code
NULL,
0,
pAdcSeqStartBuf, // pointer to buffer
realBufSize, // size of buffer
&NumBytes,
&AdcSeqOverlapped // overlapped I/O necessary

);

if(!success) {
if (GetLastError() != ERROR_IO_PENDING)

{
/* handle error */

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 19 of 53

} else {
printf("OK\n");

}
}

Error Codes

ERROR_BUSY The ADC sequencer is already running.

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small

ERROR_INVALID_PARAMETER Specified flags are invalid.
All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 20 of 53

4.1.3.4 IOCTL_TP851_ADC_SEQSTOP

This TPMC851 control function stops the ADC sequencer. All sequencer channel configurations
remain valid after stopping. The parameters lpInBuffer and lpOutBuffer are not used and should be set
to NULL.

Example

#include “TPMC851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;

/*
** stop the ADC sequencer
*/
printf("Stop ADC sequencer ... ");
success = DeviceIoControl (

hDevice, // TPMC851 handle
IOCTL_TP851_ADC_SEQSTOP, // control code
NULL,
0,
NULL,
0,
&NumBytes,
NULL // no overlapped I/O

);

if (success)
{

printf("OK\n");
} else {

/* handle error */
}

Error Codes

ERROR_ACCESS_DENIED The sequencer is not running
All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 21 of 53

4.1.3.5 IOCTL_TP851_DAC_WRITE

This TPMC851 control function writes the specified value to the specified DAC channel. A pointer to
the callers buffer (TP851_DAC_WRITE_BUF) must be passed to the driver by lpInBuffer parameter.
lpOutBuffer is not used and should be set to NULL.

The DAC sequencer must be stopped to execute this function.

typedef struct
{

int channel;
unsigned long flags;
short dacValue;

} TP851_DAC_WRITE_BUF, *PTP851_DAC_WRITE_BUF;

channel

Specifies the DAC channel number. Valid values are 1..8.

flags

Is an ORed value of the following flags:
flag description

TP851_F_CORR If set the function will correct the dacValue before
writing to DAC channel. Factory set and module
dependent correction data is used for correction.
If not set, dacValue is written to the DAC channel.

TP851_F_NOUPDATE If set the DACs will not update after changing the
DAC value. The output voltage will change with the
next write with unset TP851_F_NOUPDATE flag.
If not set the DAC will immediately convert and
output the new voltage.

dacValue

This value is written to the DAC channel.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 22 of 53

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP851_DAC_WRITE_BUF dacWriteBuf;

/*
** Write uncorrected 0x4000 to DAC channel 5
*/
dacWriteBuf.channel = 5;
dacWriteBuf.flags = 0;
dacWriteBuf.dacValue = 0x4000;

printf("Write to DAC ... ");
success = DeviceIoControl (

hDevice, // TPMC851 handle
IOCTL_TP851_DAC_WRITE, // control code
&dacWriteBuf, // pointer to buffer
sizeof(TP851_DAC_WRITE_BUF), // size of buffer
NULL,
0,
&NumBytes,
NULL // no overlapped I/O

);
if (success)
{

printf("OK\n");
} else {

/* handle error */
}

Error Codes

ERROR_BUSY The DAC sequencer is currently running.

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small.

ERROR_INVALID_PARAMETER Specified flags are invalid.

ERROR_ACCESS_DENIED Invalid channel number specified.
All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 23 of 53

4.1.3.6 IOCTL_TP851_DAC_SEQCONFIG

This TPMC851 control function configures and enables or simply disables a DAC channel for
sequencer usage. A pointer to the callers buffer (TP851_DAC_SEQCONFIG_BUF) must be passed to
the driver by the lpInBuffer parameter. lpOutBuffer is not used and should be set to NULL.

The DAC sequencer must be stopped to execute this function.

typedef struct
{

int channel;
int enable;
unsigned long flags;

} TP851_DAC_SEQCONFIG_BUF, *PTP851_DAC_SEQCONFIG_BUF;

channel

Specifies the DAC channel number to configure. Valid values are 1..8.

enable

Specifies if the channel shall be used in sequencer mode or not. (0 disables the channel; any
other value will enable the channel)

flags

Is an ORed value of the following flags:
flag description

TP851_F_CORR If set the function will correct the dacValue before
writing to DAC channel. Factory set and module
dependent correction data is used for correction.
If not set, dacValue is written to the DAC channel.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 24 of 53

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP851_DAC_SEQCONFIG_BUF dacSeqConfBuf;

/*
** Configure DAC channel 1, using corrected data
*/
adcSeqConfBuf.channel = 1;
adcSeqConfBuf.enable = TRUE;
adcSeqConfBuf.flags = TP851_F_CORR;

printf("Configure channel for Sequencer ... ");
success = DeviceIoControl (

hDevice, // TPMC851 handle
IOCTL_TP851_DAC_SEQCONFIG, // control code
&dacSeqConfBuf, // pointer to buffer
sizeof(TP851_DAC_SEQCONFIG_BUF),// size of buffer
NULL,
0,
&NumBytes,
NULL // no overlapped I/O

);
if (success)
{

printf("OK\n");
} else {

/* handle error */
}

Error Codes

ERROR_BUSY The DAC sequencer is currently running.

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small

ERROR_ACCESS_DENIED Invalid channel number specified.

ERROR_INVALID_PARAMETER Specified flags invalid.
All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 25 of 53

4.1.3.7 IOCTL_TP851_DAC_SEQSTART

This TPMC851 control function configures the DAC sequencer’s cycle time and starts the DAC
sequencer. A pointer to the callers buffer (TP851_DAC_SEQSTART_BUF) must be passed to the
driver by lpOutBuffer parameter. lpInBuffer is not used and should be set to NULL. This function
requires overlapped I/O.

typedef struct
{

unsigned short cycTime;
unsigned long flags;
long putIdx;
long getIdx;
long bufSize;
long seqState;
short buffer[1];

} TP851_DAC_SEQSTART_BUF, *PTP851_DAC_SEQSTART_BUF;

cycTime

Specifies the DAC sequencer cycle time. The sequencer time is specified in 100µs steps. With
a value of 0, the “Sequencer Continuous Mode” is selected.

flags

Is an ORed value of the following flags:
flag description

TP851_F_EXTTRIGSRC If set the DAC sequencer is trigger with digital I/O
line 1.
If not set, the DAC sequencer uses the DAC cycle
counter.

TP851_F_EXTTRIGOUT If set the DAC trigger is used as output on digital
I/O line 1.

TP851_F_DACSEQREPEAT If set the DAC will repeat data when the end of the
buffer is reached, the
TP851_SF_SEQFIFOUNDERFLOW error will be
suppressed.

TP851_F_EXTTRIGSRC and TP851_F_EXTTRIGOUT cannot be used at the same time.

putIdx

Specifies the index into buffer where the next data shall be stored to. This index must be
handled by the application and is only be read by the driver to check a FIFO underrun.

getIdx

Specifies the index into buffer where the next data will be read from. This index is handled by
the driver and should only be read by the application to check if there is space for new data.

bufSize

Specifies the array size of buffer. This value must be the same as used for s in
TP851_CALC_SIZE_DAC_SEQDATA_BUF(s) when calculating the size for the allocated
buffer.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 26 of 53

seqState

Displays the sequencer state. This is an ORed value of the following status flags.
flag description

TP851_SF_SEQACTIVE If set the DAC sequencer is started.
If not set, the DAC sequencer stopped.

TP851_SF_SEQUNDERFLOWERR If set the DAC sequencer has detected an
underrun error. (Hardware detected)

TP851_SF_SEQFIFOUNDERFLOW If set the application supplied FIFO (buffer) is
empty and the sequencer could not write new
data.

buffer

Array used for DAC sequencer data FIFO.
The DAC data is stored by the application into this FIFO. The assignment from data to channel
is done as follows. The first data will be used for the lowest enabled channel, the second from
the next enabled channel and so on. There will be no data used for disabled channels. If the
end of buffer is reached the next data will be read again from the beginning of the buffer.

Example:
Enabled channels: 1, 2, 5
Buffer Size: 10
The table shows the index the data is used to for channel and cycle.

sequencer
cycle channel 1 channel 2 channel 5

1st 0 1 2

2nd 3 4 5

3rd 6 7 8

4th 9 0 1

5th 2 3 4

… … … …

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 27 of 53

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
OVERLAPPED DacSeqOverlapped;
TP851_DAC_SEQSTART_BUF* pDacSeqStartBuf;
long realBufSize;

DacSeqOverlapped.Offset = 0;
DacSeqOverlapped.hEvent = 0;

/*
** allocate Buffer (100 word FIFO)
*/
realBufSize = TP851_CALC_SIZE_DAC_SEQDATA_BUF(100);
pDacSeqStartBuf = (TP851_DAC_SEQSTART_BUF*)malloc(realBufSize);

pDacSeqStartBuf ->bufSize = 100;

/* Fill buffer */
seqBuf->buffer[0] = …;
seqBuf->buffer[1] = …;
seqBuf->buffer[2] = …;
…

/*
** Start sequencer with a buffer of 100 words and a cycle time of 100 ms,
** do not use external trigger
*/
pDacSeqStartBuf->cycTime = 1000;
pDacSeqStartBuf->flags = TP851_F_DACSEQREPEAT;

printf("Start DAC Sequencer ... ");
success = DeviceIoControl (

hDevice, // TPMC851 handle
IOCTL_TP851_DAC_SEQSTART, // control code
NULL,
0,
pDacSeqStartBuf, // pointer to buffer
realBufSize, // size of buffer
&NumBytes,

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 28 of 53

&DacSeqOverlapped // overlapped I/O necessary
);
if(!success) {

if (GetLastError() != ERROR_IO_PENDING)
{

/* handle error */
} else {
printf("OK\n");

}
}

Error Codes

ERROR_BUSY The DAC sequencer is already running.

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small

ERROR_INVALID_PARAMETER Specified flags are invalid.

All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 29 of 53

4.1.3.8 IOCTL_TP851_DAC_SEQSTOP

This TPMC851 control function stops the DAC sequencer. All sequencer channel configurations
remain valid after stopping. The parameters lpInBuffer and lpOutBuffer are not used and should be set
to NULL.

Example

#include “TPMC851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;

/*
** stop the DAC sequencer
*/
printf("Stop DAC sequencer ... ");
success = DeviceIoControl (

hDevice, // TPMC851 handle
IOCTL_TP851_DAC_SEQSTOP, // control code
NULL,
0,
NULL,
0,
&NumBytes,
NULL // no overlapped I/O

);

if (success)
{

printf("OK\n");
} else {

/* handle error */
}

Error Codes

ERROR_ACCESS_DENIED The sequencer is not running
All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 30 of 53

4.1.3.9 IOCTL_TP851_IO_READ

This TPMC851 control function reads the current value of the digital I/O input lines. A pointer to the
callers buffer (TP851_IO_BUF) must be passed to the driver by lpOutBuffer parameter. lpInBuffer is
not used and should be set to NULL.

typedef struct
{

unsigned short value;
} TP851_IO_BUF, *PTP851_IO_BUF;

value

Returns the current digital I/O input value.

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP851_IO_BUF ioBuf;

/*
** Read the digital I/O input value
*/
printf("Read I/O input value ... ");
success = DeviceIoControl (

hDevice, // TPMC851 handle
IOCTL_TP851_IO_READ, // control code
NULL,
0,
&ioBuf, // pointer to buffer
sizeof(TP851_IO_BUF), // size of buffer
&NumBytes,
NULL // no overlapped I/O

);
if (success)
{

printf("OK\n IO-value: 0x%04X\n", ioBuf.value);
} else {

/* handle error */
}

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 31 of 53

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small
All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 32 of 53

4.1.3.10 IOCTL_TP851_IO_WRITE

This TPMC851 control function writes a value to the digital I/O output lines. A pointer to the callers
buffer (TP851_IO_BUF) must be passed to the driver by lpInBuffer parameter. lpOutBuffer is not used
and should be set to NULL.

typedef struct
{

unsigned short value;
} TP851_IO_BUF, *PTP851_IO_BUF;

value

Specifies the new digital I/O output value.

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP851_IO_BUF ioBuf;

/*
** write 0x1234 to digital I/O output lines
*/
ioBuf.value = 0x1234;

printf("Write I/O output value ... ");
success = DeviceIoControl (

hDevice, // TPMC851 handle
IOCTL_TP851_IO_WRITE, // control code
&ioBuf, // pointer to buffer
sizeof(TP851_IO_BUF), // size of buffer
NULL,
0,
&NumBytes,
NULL // no overlapped I/O

);
if (success)
{

printf("OK\n);
} else {

/* handle error */
}

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 33 of 53

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small
All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 34 of 53

4.1.3.11 IOCTL_TP851_IO_EVENTWAIT

This TPMC851 control function waits for an event on a digital I/O input line. A pointer to the callers
buffer (TP851_IO_EVENTWAIT_BUF) must be passed to the driver by lpInBuffer parameter.
lpOutBuffer is not used and should be set to NULL.

typedef struct
{

int ioLine;
unsigned long flags;
long timeout;

} TP851_IO_EVENTWAIT_BUF, *PTP851_IO_EVENTWAIT_BUF;

ioLine

Specifies the digital I/O line where the event shall occur. Valid values are 0..15.

flags

Specifies the event that shall occur. This is an ORed value of the following flags:
flag description

TP851_F_HI2LOTRANS If set, the function will return after a high to low
transition occurs.

TP851_F_LO2HITRANS If set, the function will return after a low to high
transition occurs.

At least on flag must be specified.

timeout

Specifies the maximum time the function will wait for the specified event. The time is specified in
seconds.

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP851_IO_EVENTWAIT_BUF waitBuf;

/*
** Wait for a transition on I/O line 12 (max wait 10 seconds)
*/
waitBuf.ioLine = 12;
waitBuf.flags = TP851_F_HI2LOTRANS | TP851_F_LO2HITRANS;
waitBuf.timeout = 10;

printf("Wait for I/O event ... ");

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 35 of 53

success = DeviceIoControl (
hDevice, // TPMC851 handle
IOCTL_TP851_IO_EVENTWAIT, // control code
&waitBuf, // pointer to buffer
sizeof(TP851_IO_BUF), // size of buffer
NULL,
0,
&NumBytes,
NULL // no overlapped I/O

);
if (success)
{

printf("OK\n);
} else {

/* handle error */
}

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small

ERROR_INVALID_PARAMETER Specified flags are invalid.

ERROR_ACCESS_DENIED Invalid channel number specified.

ERROR_NOT_ENOUGH_MEMORY Too many wait events are queued.
All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 36 of 53

4.1.3.12 IOCTL_TP851_IO_CONFIG

This TPMC851 control function configures the digital I/O direction for each line. A pointer to the callers
buffer (TP851_IO_CONF_BUF) must be passed to the driver by lpInBuffer parameter. lpOutBuffer is
not used and should be set to NULL.

typedef struct
{

unsigned short direction;
} TP851_IO_CONF_BUF, *PTP851_IO_CONF_BUF;

direction

Specifies the new direction setting for the digital I/O lines. A bit set to 1 enables output, a 0
means that the I/O line is input.

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP851_IO_CONF_BUF ioConfBuf;

/*
** Enable lines 0,2,8,9 for output, all other lines are input
*/
ioConfBuf.direction = (1 << 0) | (1 << 2) | (1 << 8) | (1 << 9);

printf("Set new I/O configuration ... ");
success = DeviceIoControl (

hDevice, // TPMC851 handle
IOCTL_TP851_IO_CONFIG, // control code
&ioConfBuf, // pointer to buffer
sizeof(TP851_IO_CONF_BUF), // size of buffer
NULL,
0,
&NumBytes,
NULL // no overlapped I/O

);
if (success)
{

printf("OK\n);
} else {

/* handle error */
}

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 37 of 53

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small
All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 38 of 53

4.1.3.13 IOCTL_TP851_IO_DEBCONFIG

This TPMC851 control function configures the digital I/O input debouncer circuit. A pointer to the
callers buffer (TP851_IO_DEBCONF_BUF) must be passed to the driver by lpInBuffer parameter.
lpOutBuffer is not used and should be set to NULL.

typedef struct
{

unsigned short enableMask;
unsigned short debTime;

} TP851_IO_DEBCONF_BUF, *PTP851_IO_DEBCONF_BUF;

enableMask

Specifies digital I/O lines which shall be used with debouncer. A bit set to 1 enables the
debouncer, and a 0 disables the debouncer for the specific I/O line.

debTime

Specifies the debounce time. The time is specified in 100ns steps.

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP851_IO_DEBCONF_BUF ioDebConfBuf;

/*
** Enable Debouncer for line 0 and 2 (debounce time 1ms)
*/
ioDebConfBuf.enableMask = (1 << 0) | (1 << 2);
ioDebConfBuf.debTime = 10000;

printf("Set debouncer configuration ... ");

success = DeviceIoControl (
hDevice, // TPMC851 handle
IOCTL_TP851_IO_DEBCONFIG, // control code
&ioDebConfBuf, // pointer to buffer
sizeof(TP851_IO_DEBCONF_BUF), // size of buffer
NULL,
0,
&NumBytes,
NULL // no overlapped I/O

);
if (success)

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 39 of 53

{
printf("OK\n);

} else {
/* handle error */

}

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small
All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 40 of 53

4.1.3.14 IOCTL_TP851_CNT_READ

This TPMC851 control function reads the current value of the counter/timer. A pointer to the callers
buffer (TP851_CNT_READ_BUF) must be passed to the driver by lpOutBuffer parameter. lpInBuffer is
not used and should be set to NULL.

typedef struct
{

unsigned long count;
unsigned long state;

} TP851_CNT_READ_BUF, *PTP851_CNT_READ_BUF;

count

Returns the actual counter value.

state

Returns the counter state. If possible the flags are cleared after read. This is an ORed value of
the following flags.

flag description

TP851_SF_CNTBORROW Counter borrow bit set (actual state)

TP851_SF_CNTCARRY Counter carry bit set (actual state)

TP851_SF_CNTMATCH Counter match event has occurred since last
read.

TP851_SF_CNTSIGN Counter sign bit (actual state)

TP851_SF_CNTDIRECTION If set, counter direction is upward.
If not set, counter direction is downward.

TP851_SF_CNTLATCH Counter value has been latched.

TP851_SF_CNTLATCHOVERFLOW Counter latch overflow has occurred.

TP851_SF_CNTSNGLCYC Counter Single Cycle is active

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 41 of 53

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP851_CNT_READ_BUF cntBuf;

/*
** Read the counter/timer value
*/
printf("Read counter ... ");

success = DeviceIoControl (
hDevice, // TPMC851 handle
IOCTL_TP851_CNT_READ, // control code
NULL,
0,
&cntBuf, // pointer to buffer
sizeof(TP851_CNT_READ_BUF), // size of buffer
&NumBytes,
NULL // no overlapped I/O

);
if (success)
{

printf("OK\n);
printf(" Counter: %ld", cntBuf.counter);
printf(" State: %lXh", cntBuf.state);

} else {
/* handle error */

}

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small
All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 42 of 53

4.1.3.15 IOCTL_TP851_CNT_MATCHWAIT

This TPMC851 control function waits for the counter match event to occur. A pointer to the callers
buffer (TP851_CNT_WAIT_BUF) must be passed to the driver by lpInBuffer parameter. lpOutBuffer is
not used and should be set to NULL.

typedef struct
{

long timeout;
} TP851_CNT_WAIT_BUF, *PTP851_CNT_WAIT_BUF;

timeout

Specifies the maximum time the function will wait for the specified event. The time is specified in
seconds.

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP851_CNT_WAIT_BUF waitBuf;

/*
** Wait for counter match event (max wait 10 seconds)
*/
waitBuf.timeout = 10;

printf("Wait for counter match event ... ");
success = DeviceIoControl (

hDevice, // TPMC851 handle
IOCTL_TP851_CNT_MATCHWAIT, // control code
&waitBuf, // pointer to buffer
sizeof(TP851_CNT_WAIT_BUF), // size of buffer
NULL,
0,
&NumBytes,
NULL // no overlapped I/O

);
if (success)
{

printf("OK\n);
} else {

/* handle error */
}

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 43 of 53

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small

ERROR_NOT_ENOUGH_MEMORY Too many wait events are queued.
All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 44 of 53

4.1.3.16 IOCTL_TP851_CNT_CTRLWAIT

This TPMC851 control function waits for a counter control event to occur. The specific event is chosen
by a call to Ioctl function IOCTL_TP851_CNT_CONFIG. A pointer to the callers buffer
(TP851_CNT_WAIT_BUF) must be passed to the driver by lpInBuffer parameter. lpOutBuffer is not
used and should be set to NULL.

typedef struct
{

long timeout;
} TP851_CNT_WAIT_BUF, *PTP851_CNT_WAIT_BUF;

timeout

Specifies the maximum time the function will wait for the specified event. The time is specified in
seconds.

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP851_CNT_WAIT_BUF waitBuf;

/*
** Wait for counter control event (max wait 10 seconds)
*/
waitBuf.timeout = 10;
printf("Wait for counter match event ... ");
success = DeviceIoControl (

hDevice, // TPMC851 handle
IOCTL_TP851_CNT_CTRLWAIT, // control code
&waitBuf, // pointer to buffer
sizeof(TP851_CNT_WAIT_BUF), // size of buffer
NULL,
0,
&NumBytes,
NULL // no overlapped I/O

);
if (success)
{

printf("OK\n);
} else {

/* handle error */
}

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 45 of 53

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small

ERROR_NOT_ENOUGH_MEMORY Too many wait events are queued.
All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 46 of 53

4.1.3.17 IOCTL_TP851_CNT_CONFIG

This TPMC851 control function configures the counter. A pointer to the callers buffer
(TP851__CNT_CONFIG_BUF) must be passed to the driver by lpInBuffer parameter. lpOutBuffer is
not used and should be set to NULL.

typedef struct
{

unsigned long inputMode;
int clockDivider;
unsigned long countMode;
unsigned long controlMode;
unsigned long invFlags;

} TP851_CNT_CONFIG_BUF, *PTP851_CNT_CONFIG_BUF;

inputMode

Specifies the counter input mode. The following modes are defined and valid:
flag description

TP851_M_CNTIN_DISABLE Counter disabled

TP851_M_CNTIN_TIMERUP Timer Mode Up

TP851_M_CNTIN_TIMERDOWN Timer Mode Down

TP851_M_CNTIN_DIRCOUNT Direction Count

TP851_M_CNTIN_UPDOWNCOUNT Up/Down Count

TP851_M_CNTIN_QUAD1X Quadrature Count 1x

TP851_M_CNTIN_QUAD2X Quadrature Count 2x

TP851_M_CNTIN_QUAD3X Quadrature Count 4x

clockDivider

Specifies clock divider. Allowed clock divider values are 1 (40MHz), 2 (20MHz), 4 (10MHz) and
8 (5MHz).

countMode

Specifies the count mode. The following modes are defined and valid:
flag description

TP851_M_CNT_CYCLE Cycling Counter

TP851_M_CNT_DIVN Divide-by-N

TP851_M_CNT_SINGLE Single Cycle

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 47 of 53

controlMode

Specifies the counter control mode. These events can generate counter control events. The
following modes are defined and valid:

flag description

TP851_M_CNTCTRL_NONE No Control Mode

TP851_M_CNTCTRL_LOAD Load Mode

TP851_M_CNTCTRL_LATCH Latch Mode

TP851_M_CNTCTRL_GATE Gate Mode

TP851_M_CNTCTRL_RESET Reset Mode

invFlags

Specifies if counter input lines shall be inverted or not. This is an ORed value of the following
flags:

flag description

TP851_F_CNTINVINP2 If set, input line 2 is low active
If not set, input line 2 is high active

TP851_F_CNTINVINP3 If set, input line 3 is low active
If not set, input line 3 is high active

TP851_F_CNTINVINP4 If set, input line 4 is low active
If not set, input line 4 is high active

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP851_CNT_CONFIG_BUF cntConfBuf;

/*
** Setup counter for direction count, clock divider 1, cycling count,
** no control mode and all line high active
*/
cntConfBuf. inputMode = TP851_M_CNTIN_DIRCOUNT;
cntConfBuf. clockDivider = 1;
cntConfBuf. countMode = TP851_M_CNT_CYCLE;
cntConfBuf. controlMode = TP851_M_CNTCTRL_NONE;
cntConfBuf. invFlags = 0;

printf("Set counter configuration ... ");

success = DeviceIoControl (
hDevice, // TPMC851 handle

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 48 of 53

IOCTL_TP851_CNT_CONFIG, // control code
&cntConfigBuf, // pointer to buffer
sizeof(TP851_CNT_CONFIG_BUF), // size of buffer
NULL,
0,
&NumBytes,
NULL // no overlapped I/O

);
if (success)
{

printf("OK\n);
} else {

/* handle error */
}

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small

ERROR_INVALID_PARAMETER Specified parameters are invalid.
All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 49 of 53

4.1.3.18 IOCTL_TP851_CNT_RESET

This TPMC851 control function resets the counter value. The parameters lpInBuffer and lpOutBuffer
are not used and should be set to NULL.

Example

#include “TPMC851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;

/*
** reset the counter value
*/
printf("Reset counter value ... ");
success = DeviceIoControl (

hDevice, // TPMC851 handle
IOCTL_TP851_CNT_RESET, // control code
NULL,
0,
NULL,
0,
&NumBytes,
NULL // no overlapped I/O

);

if (success)
{

printf("OK\n");
} else {

/* handle error */
}

Error Codes

All returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 50 of 53

4.1.3.19 IOCTL_TP851_CNT_SETPRELD

This TPMC851 control function sets the counter’s preload value. A pointer to the callers buffer
(TP851_CNT_SETPRELD_BUF) must be passed to the driver by lpInBuffer parameter. lpOutBuffer is
not used and should be set to NULL.

typedef struct
{

unsigned long value;
unsigned long flags;

} TP851_CNT_SETPRELD_BUF, *PTP851_CNT_SETPRELD_BUF;

value

Specifies the new counter preload value.

flags

Is an ORed value of the following flags:
flag description

TP851_F_IMMPRELOAD If set, the function will immediate load the preload
value into the counter
If not set, preload value will be used for the next
preload condition.

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP851_CNT_SETPRELD_BUF cntPrldBuf;

/*
** Immediately load 0x11223344 into the counter and preload register
*/
cntPrldBuf. value = 0x11223344;
cntPrldBuf.flags = TP851_F_IMMPRELOAD;

printf("Set preload value ... ");
success = DeviceIoControl (

hDevice, // TPMC851 handle
IOCTL_TP851_CNT_SETPRELD, // control code
&cntPrldBuf, // pointer to buffer
sizeof(TP851_CNT_SETPRELD_BUF), // size of buffer
NULL,
0,
&NumBytes,

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 51 of 53

NULL // no overlapped I/O
);
if (success)
{

printf("OK\n);
} else {

/* handle error */
}

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small

ERROR_INVALID_PARAMETER Specified flags are invalid.
All other returned error codes are system error conditions.

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 52 of 53

4.1.3.20 IOCTL_TP851_CNT_SETMATCH

This TPMC851 control function sets the counter’s match value. If the counter value is the same as the
match value, an event will occur. The driver can be used to wait for this event with Ioctl function
IOCTL_TP851_CNT_MATCHWAIT. A pointer to the callers buffer (TP851_CNT_SETMATCH_BUF)
must be passed to the driver by lpInBuffer parameter. lpOutBuffer is not used and should be set to
NULL.

typedef struct
{

unsigned long value;
} TP851_CNT_SETMATCH_BUF, *PTP851_CNT_SETMATCH_BUF;

value

Specifies the new counter match value.

Example

#include “tpmc851.h”

HANDLE hDevice;
BOOLEAN success;
ULONG NumBytes;
TP851_CNT_SETMATCH_BUF cntMatchBuf;

/*
** Set match value to 0x10000
*/
cntMatchBuf.value = 0x10000;
printf("Set match value ... ");
success = DeviceIoControl (

hDevice, // TPMC851 handle
IOCTL_ TP851_CNT_SETMATCH, // control code
&cntMatchBuf, // pointer to buffer
sizeof(TP851_CNT_SETMATCH_BUF), // size of buffer
NULL,
0,
&NumBytes,
NULL // no overlapped I/O

);
if (success)
{

printf("OK\n);
} else {

/* handle error */
}

TPMC851-SW-65 – Windows 2000/XP Device Driver Page 53 of 53

Error Codes

ERROR_INSUFFICIENT_BUFFER The size of the provided buffer is too small
All other returned error codes are system error conditions.

	Introduction
	Installation
	Software Installation
	Windows 2000 / XP
	Confirming Windows 2000 / XP Installation

	Driver Configuration
	Event Queue Configuration

	TPMC851 Device Driver Programming
	TPMC851 Files and I/O Functions
	Opening a TPMC851 Device
	Closing a TPMC851 Device
	TPMC851 Device I/O Control Functions
	IOCTL_TP851_ADC_READ
	IOCTL_TP851_ADC_SEQCONFIG
	IOCTL_TP851_ADC_SEQSTART
	IOCTL_TP851_ADC_SEQSTOP
	IOCTL_TP851_DAC_WRITE
	IOCTL_TP851_DAC_SEQCONFIG
	IOCTL_TP851_DAC_SEQSTART
	IOCTL_TP851_DAC_SEQSTOP
	IOCTL_TP851_IO_READ
	IOCTL_TP851_IO_WRITE
	IOCTL_TP851_IO_EVENTWAIT
	IOCTL_TP851_IO_CONFIG
	IOCTL_TP851_IO_DEBCONFIG
	IOCTL_TP851_CNT_READ
	IOCTL_TP851_CNT_MATCHWAIT
	IOCTL_TP851_CNT_CTRLWAIT
	IOCTL_TP851_CNT_CONFIG
	IOCTL_TP851_CNT_RESET
	IOCTL_TP851_CNT_SETPRELD
	IOCTL_TP851_CNT_SETMATCH

