
The Embedded I/O Company

TPMC851-S
LynxOS Device

Multifunction I/O (16bit ADC/DAC

Version 2.0.

User Manu

Issue 2.0.0

December 20

TEWS TECHNOLOGIES GmbH TEWS TEC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49 (0) 4101 4058 0
Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com

9190 Doub
Suite 127,
www.tews.
W-72
Driver

, TTL I/O, Counter)

x

al

06

HNOLOGIES LLC
le Diamond Parkway,
Reno, NV 89521, USA
com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

TPMC851-SW-72 - LynxOS Device Driver Page 2 of 59

TPMC851-SW-72

LynxOS Device Driver

Multifunction I/O
(16bit ADC/DAC, TTL I/O, Counter)

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2005-2006 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue February 21, 2005

2.0.0 DAC Sequencer Start structure modified, General Revision December 13, 2006

TPMC851-SW-72 - LynxOS Device Driver Page 3 of 59

Table of Content
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Device Driver Installation...6
2.1.1 Static Installation ...6

2.1.1.1 Build the driver object...6
2.1.1.2 Create Device Information Declaration..6
2.1.1.3 Modify the Device and Driver Configuration File................................6
2.1.1.4 Rebuild the Kernel..7

2.1.2 Dynamic Installation.. ...8
2.1.2.1 Build the driver object...8
2.1.2.2 Create Device Information Declaration..8
2.1.2.3 Uninstall dynamic loaded driver..8

2.1.3 Device Information Definition File...9
2.1.4 Configuration File: CONFIG.TBL..10

3 TPMC851 DEVICE DRIVER PROGRAMMING .. 11
3.1 open().. ..11
3.2 close()..13
3.3 ioctl()................................ ...14

3.3.1 TP851_C_ADC_READ ..16
3.3.2 TP851_C_ADC_SEQCONFIG................................ ...18
3.3.3 TP851_C_ADC_SEQSTART ...20
3.3.4 TP851_C_ADC_SEQSTOP...22
3.3.5 TP851_C_ADC_SEQREAD...23
3.3.6 TP851_C_DAC_WRITE...25
3.3.7 TP851_C_DAC_SEQCONFIG................................ ...27
3.3.8 TP851_C_DAC_SEQSTART ...29
3.3.9 TP851_C_DAC_SEQSTOP...32
3.3.10 TP851_C_DAC_SEQWRITE...33
3.3.11 TP851_C_IO_READ..35
3.3.12 TP851_C_IO_WRITE................................ ..36
3.3.13 TP851_C_IO_EVENTWAIT................................ ...37
3.3.14 TP851_C_IO_CONFIG..39
3.3.15 TP851_C_IO_DEBCONFIG................................ ...41
3.3.16 TP851_C_CNT_READ43
3.3.17 TP851_C_CNT_MATCHWAIT...45
3.3.18 TP851_C_CNT_CTRLWAIT47
3.3.19 TP851_C_CNT_CONFIG ..49
3.3.20 TP851_C_CNT_RESET ..52
3.3.21 TP851_C_CNT_SETPRELD..53
3.3.22 TP851_C_CNT_SETMATCH...55

4 DEBUGGING AND DIAGNOSTIC .. 57

TPMC851-SW-72 - LynxOS Device Driver Page 4 of 59

1 Introduction
The TPMC851-SW-72 LynxOS device driver allows the operation of a TPMC851 Multifunction I/O
PMC on LynxOS platforms with DRM based PCI interface.

The standard file (I/O) functions (open, close, ioctl) provide the basic interface for opening and closing
a file descriptor and for performing device I/O and configuration operations.

The TPMC851-SW-72 device driver supports the following features:

 Reading an ADC input value from a specified channel
 Configuring and using the ADC input sequencer
 Setting a DAC output value to a specified channel
 Configuring and using the DAC output sequencer
 Reading from digital I/O input register
 Writing to digital I/O output register
 Waiting for input I/O input event (high, low or any transition on input line)
 Configuring I/O line direction
 Reading counter value
 Reset counter value
 Setting counter preload and match value
 Configuring counter mode
 Wait for counter match and control event

The TPMC851-SW-72 device driver supports the modules listed below:

TPMC851 Multifunction I/O
(16 bit ADC/DAC, TTL I/O, Counter)

(PMC)

To get more information about the features and use of TPMC851 devices it is recommended to read
the manuals listed below.

TPMC851 User manual
TPMC851 Engineering Manual

TPMC851-SW-72 - LynxOS Device Driver Page 5 of 59

2 Installation
The directory TPMC851-SW-72 on the distribution media contains the following files:

TPMC851-SW-72-2.0.0.pdf This manual in PDF format
TPMC851-SW-72-SRC.tar Device Driver and Example sources
ChangeLog.txt Release history
Release.txt Release information

The TAR archive TPMC851-SW-72-SRC.tar contains the following files and directories:

tpmc851/tpmc851.c Driver source code
tpmc851/tpmc851.h Definitions and data structures for driver and application
tpmc851/tpmc851def.h Definitions and data structures for the driver
tpmc851/tpmc851_info.c Device information definition
tpmc851/tpmc851_info.h Device information definition header
tpmc851/tpmc851.cfg Driver configuration file include
tpmc851/tpmc851.import Linker import file
tpmc851/Makefile Device driver make file
tpmc851/example/tpmc851exa.c Example application source
tpmc851/example/Makefile Example application make file

In order to perform a driver installation first extract the TAR file to a temporary directory then copy the
following files to their target directories:

1. Create a new directory in the system drivers directory path /sys/drivers.xxx, where xxx represents
the BSP that supports the target hardware.

For example: /sys/drivers.pp_drm/tpmc851 or /sys/drivers.cpci_x86/tpmc851

2. Copy the following files to this directory:
- tpmc851.c
- tpmc851def.h
- tpmc851.import
- Makefile

3. Copy tpmc851.h to /usr/include/

4. Copy tpmc851_info.c to /sys/devices.xxx/ or /sys/devices if /sys/devices.xxx does not exist
(xxx represents the BSP).

5. Copy tpmc851_info.h to /sys/dheaders/

6. Copy tpmc851.cfg to /sys/cfg.xxx/, where xxx represents the BSP for the target platform. For
example: /sys/cfg.ppc or /sys/cfg.x86

TPMC851-SW-72 - LynxOS Device Driver Page 6 of 59

2.1 Device Driver Installation
The two methods of driver installation are as follows:

 Static Installation
 Dynamic Installation (only native LynxOS systems)

2.1.1 Static Installation

With this method, the driver object code is linked with the kernel routines and is installed during
system start-up.

2.1.1.1 Build the driver object

1. Change to the directory /sys/drivers.xxx/tpmc851, where xxx represents the BSP that supports the
target hardware.

2. To update the library /sys/lib/libdrivers.a enter:

make install

2.1.1.2 Create Device Information Declaration

1. Change to the directory /sys/devices.xxx/ or /sys/devices if /sys /devices.xxx does not exist (xxx
represents the BSP).

2. Add the following dependencies to the Makefile

DEVICE_FILES_all = ... tpmc851_info.x

And at the end of the Makefile

tpmc851_info.o:$(DHEADERS)/tpmc851_info.h

3. To update the library /sys/lib/libdevices.a enter:

make install

2.1.1.3 Modify the Device and Driver Configuration File

In order to insert the driver object code into the kernel image, an appropriate entry in file CONFIG.TBL
must be created.

1. Change to the directory /sys/lynx.os/ respective /sys/bsp.xxx, where xxx represents the BSP that
supports the target hardware.

2. Create an entry at the end of the file CONFIG.TBL

Insert the following entry at the end of this file.

I:tpmc851.cfg

TPMC851-SW-72 - LynxOS Device Driver Page 7 of 59

2.1.1.4 Rebuild the Kernel

1. Change to the directory /sys/lynx.os/ (/sys/bsp.xxx)

2. Enter the following command to rebuild the kernel:

make install

3. Reboot the newly created operating system by the following command (not necessary for KDIs):

reboot –aN

The N flag instructs init to run mknod and create all the nodes mentioned in the new nodetab.

4. After reboot you should find the following new devices (depends on the device configuration):
/dev/tp851a, /dev/tp851b, /dev/tp851c, …

TPMC851-SW-72 - LynxOS Device Driver Page 8 of 59

2.1.2 Dynamic Installation

This method allows you to install the driver after the operating system is booted. The driver object
code is attached to the end of the kernel image and the operating system dynamically adds this driver
to its internal structures. The driver can also be removed dynamically.

2.1.2.1 Build the driver object

1. Change to the directory /sys/drivers.xxx/tpmc851, where xxx represents the BSP that supports the
target hardware.

2. To make the dynamic link-able driver enter:

make dldd

2.1.2.2 Create Device Information Declaration

1. Change to the directory /sys/drivers.xxx/tpmc851, where xxx represents the BSP that supports the
target hardware.

2. To create a device definition file for the major device (this works only on native system)

make t851info

3. To install the driver enter:

drinstall –c tpmc851.obj

If successful, drinstall returns a unique <driver-ID>

4. To install the major device enter:

devinstall –c –d <driver-ID> t851info

The <driver-ID> is returned by the drinstall command

5. To create nodes for the devices enter:

mknod /dev/tp851a c <major_no> 0

…

The <major_no> is returned by the devinstall command.

If all steps are completed successfully the TPMC851 is ready to use.

2.1.2.3 Uninstall dynamic loaded driver

To uninstall the TPMC851 device enter the following commands:

devinstall –u –c <device-ID>
drinstall –u <driver-ID>

TPMC851-SW-72 - LynxOS Device Driver Page 9 of 59

2.1.3 Device Information Definition File

The device information definition contains information necessary to install the TPMC851 major device.

The implementation of the device information definition is done through a C structure, which is defined
in the header file tpmc851_info.h.

This structure contains the following parameter:

PCIBusNumber Contains the PCI bus number at which the TPMC851 is connected. Valid
bus numbers are in range from 0 to 255.

PCIDeviceNumber Contains the device number (slot) at which the TPMC851 is connected.
Valid device numbers are in range from 0 to 31.

If both PCIBusNumber and PCIDeviceNumber are –1 then the driver will auto scan for the
TPMC851 device. The first device found in the scan order will be allocated by the driver for this
major device.

Already allocated devices can’t be allocated twice. This is important to know if there are more
than one TMPC851 major devices.

A device information definition is unique for every TPMC851 major device. The file tpmc851_info.c on
the distribution disk contains two device information declarations, tp851a_info for the first major
device and tp851b_info for the second major device.

If the driver should support more than two major devices it is necessary to copy and paste an existing
declaration and rename it with a unique name, for example tp851c_info, tp851d_info and so on.

It is also necessary to modify the device and driver configuration file, respectively the
configuration include file tpmc851.cfg.

The following device declaration information uses the auto find method to detect the TPMC851
module on PCI bus.

TP851_INFO tp851a_info = {

-1, /* Auto find the TPMC851 on any PCI bus */
-1,

};

TPMC851-SW-72 - LynxOS Device Driver Page 10 of 59

2.1.4 Configuration File: CONFIG.TBL

The device and driver configuration file CONFIG.TBL contains entries for device drivers and its major
and minor device declarations. Each time the system is rebuild, the config utility read this file and
produces a new set of driver and device configuration tables and a corresponding nodetab.

To install the TPMC851 driver and devices into the LynxOS system, the configuration include file
tpmc851.cfg must be included in the CONFIG.TBL (see also 2.1.1.3).

The file tpmc851.cfg on the distribution disk contains the driver entry (C:tpmc851:\....) and a major
device entry (D:TPMC851 1:t851a_info::) with one minor device entry (“N: tp851a”).

If the driver should support more than one major device, the following entries for major and minor
devices must be enabled by removing the comment character (#). By copy and paste an existing
major and minor entry and renaming the new entries, it is possible to add any number of additional
TPMC851 devices.

This example shows a driver entry with one major device and one minor device:

Format:
C:driver-name:open:close:read:write:select:control:install:uninstall
D:device-name:info-block-name:raw-partner-name
N:node-name:minor-dev

C:tpmc851:\
:tp851open:tp851close:tp851read:tp851write:\
::tp851ioctl:tp851install:tp851uninstall

D:TPMC851 1:tp851a_info::
N:tp851a:0

The configuration above creates the following node in the /dev directory.

/dev/tp851a

TPMC851-SW-72 - LynxOS Device Driver Page 11 of 59

3 TPMC851 Device Driver Programming
LynxOS system calls are all available directly to any C program. They are implemented as ordinary
function calls to "glue" routines in the system library, which trap to the OS code.

Note that many system calls use data structures, which should be obtained in a program from
appropriate header files. Necessary header files are listed with the system call synopsis.

3.1 open()

NAME

open() - open a file

SYNOPSIS

#include <sys/file.h>
#include <sys/types.h>
#include <fcntl.h>

int open (char *path, int oflags[, mode_t mode])

DESCRIPTION

Opens a file (TPMC851 device) named in path for reading and writing. The value of oflags indicates
the intended use of the file. In case of a TPMC851 devices oflags must be set to O_RDWR to open
the file for both reading and writing.

The mode argument is required only when a file is created. Because a TPMC851 device already
exists this argument is ignored.

EXAMPLE

int fd

/* open the device named "/dev/tp851a" for I/O */
fd = open ("/dev/tp851a", O_RDWR);
if (!fd)
{

/* handle error */
}

TPMC851-SW-72 - LynxOS Device Driver Page 12 of 59

RETURNS

open returns a file descriptor number if successful, or –1 on error.

SEE ALSO

LynxOS System Call - open()

TPMC851-SW-72 - LynxOS Device Driver Page 13 of 59

3.2 close()

NAME

close() – close a file

SYNOPSIS

int close(int fd)

DESCRIPTION

This function closes an opened device.

EXAMPLE

int result;

/*
** close the device
*/
result = close(fd);
if (result < 0)
{

/* handle error */
}

RETURNS

close returns 0 (OK) if successful, or –1 on error

SEE ALSO

LynxOS System Call - close()

TPMC851-SW-72 - LynxOS Device Driver Page 14 of 59

3.3 ioctl()

NAME

ioctl() – I/O device control

SYNOPSIS

#include <ioctl.h>
#include <tpmc851.h>

int ioctl (int fd, int request, char *arg)

DESCRIPTION

ioctl provides a way of sending special commands to a device driver. The call sends the value of
request and the pointer arg to the device associated with the descriptor fd.

The following ioctl codes are supported by the driver and are defined in tpmc851.h:

Symbol Meaning
TP851_C_ADC_READ Read value from ADC channel

TP851_C_ADC_SEQCONFIG Configure ADC sequencer channel
TP851_C_ADC_SEQSTART Start ADC sequencer

TP851_C_ADC_SEQSTOP Stop ADC sequencer
TP851_C_ADC_SEQREAD Read values from ADC sequencer buffrer

TP851_C_DAC_WRITE Write value to DAC channel
TP851_C_DAC_SEQCONFIG Configure ADC sequencer channel

TP851_C_DAC_SEQSTART Start ADC sequencer
TP851_C_DAC_SEQSTOP Stop ADC sequencer

TP851_C_DAC_SEQWRITE Write values to DAC sequencer buffer
TP851_C_IO_READ Read from digital I/O

TP851_C_IO_WRITE Write to digital I/O
TP851_C_IO_EVENTWAIT Wait for I/O event

TP851_C_IO_CONFIG Configure digital I/O
TP851_C_IO_DEBCONFIG Configure digital I/O (input) debouncer

TP851_C_CNT_READ Read value from counter/timer
TP851_C_CNT_MATCHWAIT Wait for counter match event

TP851_C_CNT_CTRLWAIT Wait for counter control event
TP851_C_CNT_CONFIG Configure counter

TP851_C_CNT_RESET Reset counter
TP851_C_CNT_SETPRELD Set counter preload value

TP851_C_CNT_SETMATCH Set counter match value

TPMC851-SW-72 - LynxOS Device Driver Page 15 of 59

See behind for more detailed information on each control code.

RETURNS

ioctl returns 0 if successful, or –1 on error.

On error, errno will contain a standard error code (see also LynxOS System Call – ioctl) or a special
error code. Function specific error codes will be described below with the function.

SEE ALSO

LynxOS System Call - ioctl().

TPMC851-SW-72 - LynxOS Device Driver Page 16 of 59

3.3.1 TP851_C_ADC_READ

NAME

TP851_C_ADC_READ – Read value from ADC channel

DESCRIPTION

This function starts an ADC conversion with specified parameters, waits for completion and returns the
value.

The ADC sequencer must be stopped for single ADC conversions.

A pointer to the read structure (TP851_ADC_READ_BUF) is passed by the parameter arg to the
driver.

typedef struct
{

int channel;
int gain;
unsigned long flags;
short adcValue;

} TP851_ADC_READ_BUF, *PTP851_ADC_READ_BUF;

channel

Specifies the ADC channel number. Valid values are 1..16 for differential input and 1..32 for
single-ended input.

gain
Specifies the input gain. Valid gain values are 1, 2, 4, and 8.

flags
Is an ored value of the following flags:

flag description

TP851_F_CORR If set the function will return a corrected value of
the input data in adcValue. Factory set and module
dependent correction data is used for correction.
If not set, the raw value read from the module will
be returned in adcValue.

TP851_F_IMMREAD If set the driver will start the conversion without
waiting for settling time. This should only be used if
the previous conversion has used the same
interface parameters (channel, gain,
differential/single-ended).
If not set the driver will use the automatic mode,
which sets interface configuration, waits settling
time and then starts the conversion.

TPMC851-SW-72 - LynxOS Device Driver Page 17 of 59

TP851_F_DIFF If set the input channel will be a differential input.
If not set the input channel will be a single-ended
input.

adcValue
This value will return the read ADC value.

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_ADC_READ_BUF adcReadBuf;

/*
** Read a corrected value from differential channel 2, use a gain of 4
*/
adcReadBuf.channel = 2;
adcReadBuf.gain = 4;
adcReadBuf.flags = TP851_F_CORR | TP851_F_DIFF;

printf("Read from ADC ... ");
result = ioctl(fd,

TP851_C_ADC_READ,
(char*)&adcReadBuf);

if (result == OK)
{

printf("OK\n");
printf(" ADC-value: %d", adcReadBuf.adcValue);

} else {
/* process ioctl error */

}

Error Codes

EBUSY The ADC sequencer is currently running.

ECHRNG Specified channel is invalid.
EINVAL Specified gain level is invalid.
ETIME The ADC conversion timed out.

EINTR Function was interrupted.
All other returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 18 of 59

3.3.2 TP851_C_ADC_SEQCONFIG

NAME

TP851_C_ADC_SEQCONFIG – Configure ADC sequencer channel

DESCRIPTION

This function enables and configures, or disables an ADC channel for sequence use.

The ADC sequencer must be stopped to execute this function.

A pointer to the configuration structure (TP851_ADC_SEQCONFIG_BUF) is passed by the parameter
arg to the driver.

typedef struct
{

int channel;
int enable;
int gain;
unsigned long flags;

} TP851_ADC_SEQCONFIG_BUF, *PTP851_ADC_SEQCONFIG_BUF;

channel
Specifies the ADC channel number to configure. Valid values are 1..16 for differential input and
1..32 for single-ended input.

enable
Specifies if the channel shall be used in sequencer mode or not. (0 disables the channel any
other value will enable the channel)

gain
Specifies the input gain. Valid gain values are 1, 2, 4, and 8.

flags
Is an ored value of the following flags:

flag description

TP851_F_CORR If set the sequencer will return a corrected value for
the specified channel. Factory set and module
dependent correction data is used for correction.
If not set, the raw value read from the module will
be returned.

TP851_F_DIFF If set the input channel will be a differential input.
If not set the input channel will be a single-ended
input.

TPMC851-SW-72 - LynxOS Device Driver Page 19 of 59

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_ADC_SEQCONFIG_BUF adcSeqConfBuf;

/*
** Configure single-ended channel 3, using a gain of 4 and returning
** corrected data when the sequencer is running
*/
adcSeqConfBuf.channel = 3;
adcSeqConfBuf.enable = TRUE;
adcSeqConfBuf.gain = 4;
adcSeqConfBuf.flags = TP851_F_CORR;

printf("Configure channel for Sequencer ... ");
result = ioctl(fd,

TP851_C_ADC_SEQCONFIG,
(char*)&adcSeqConfBuf);

if (result == OK)
{

printf("OK\n");
} else {

/* process ioctl error */
}

Error Codes

EBUSY The ADC sequencer is currently running.

ECHRNG Specified channel is invalid.
EINVAL Specified flags or gain level is invalid.

All other returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 20 of 59

3.3.3 TP851_C_ADC_SEQSTART

NAME

TP851_C_ADC_SEQSTART – Start ADC sequencer

DESCRIPTION

This function configures the ADC sequencer time and starts the ADC sequencer.

A pointer to the start structure (TP851_ADC_SEQSTART_BUF) is passed by the parameter arg to the
driver.

typedef struct
{

unsigned short cycTime;
unsigned long flags;
long bufSize;

} TP851_ADC_SEQSTART_BUF, *PTP851_ADC_SEQSTART_BUF;

cycTime
Specifies the ADC sequencer cycle time. The sequencer time is specified in 100µs steps. With
a value of 0, the “Sequencer Continuous Mode” is selected.

flags
Is an ored value of the following flags:

flag description
TP851_F_EXTTRIGSRC If set the ADC sequencer is trigger with digital I/O

line 0.
If not set, the ADC sequencer uses the ADC cycle
counter.

TP851_F_EXTTRIGOUT If set the ADC trigger is used as output on digital
I/O line 0.

TP851_F_EXTTRIGSRC and TP851_F_EXTTRIGOUT cannot be used at the same
time.

bufSize

Specifies the internal ADC sequencer buffer size. The sequencer stores the incoming values
inside an internal buffer, from where the user application retrieves the data (refer to ioctl
function TP851_C_ADC_SEQREAD).

TPMC851-SW-72 - LynxOS Device Driver Page 21 of 59

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_ADC_SEQSTART_BUF adcSeqStartBuf;

/*
** Start sequencer with a buffer of 100 word and a cycle time of 100 ms,
** do not use external trigger
*/
adcSeqStartBuf.cycTime = 1000;
adcSeqStartBuf.flags = 0;
adcSeqStartBuf.bufSize = 100;

printf("Start ADC Sequencer ... ");
result = ioctl(fd,

TP851_C_ADC_SEQSTART,
(char*)&adcSeqStartBuf);

if (result == OK)
{

printf("OK\n");
} else {

/* process ioctl error */
}

Error Codes

EBUSY The ADC sequencer is currently running.

EINVAL Specified flags are invalid.
ENOMEM No memory is available to allocate the internal buffer.

All other returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 22 of 59

3.3.4 TP851_C_ADC_SEQSTOP

NAME

TP851_C_ADC_SEQSTOP – Stop ADC sequencer

DESCRIPTION

This function stops the ADC sequencer. All sequencer channel configurations are still valid after
stopping.

No additional parameter is necessary.

EXAMPLE

#include <tpmc851.h>

int fd;
int result;

/*
** Stop the sequencer
*/
printf("Stop ADC Sequencer ... ");
result = ioctl(fd,

TP851_C_ADC_SEQSTOP,
NULL);

if (result == OK)
{

printf("OK\n");
} else {

/* process ioctl error */
}

Error Codes

EACCES The ADC sequencer is not running.
All other returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 23 of 59

3.3.5 TP851_C_ADC_SEQREAD

NAME

TP851_C_ADC_SEQREAD – Read values from ADC sequencer buffer

DESCRIPTION

This function reads values from the internal ADC sequencer buffer.

A pointer to the read structure (TP851_ADC_SEQREAD_BUF) is passed by the parameter arg to the
driver.

typedef struct
{

long seqState;
short buffer[32];

} TP851_ADC_SEQREAD_BUF, *PTP851_ADC_SEQREAD_BUF;

seqState
Displays the sequencer state. This is an ored value of the following status flags.

flag description
TP851_SF_SEQACTIVE If set the ADC sequencer is started.

If not set, the ADC sequencer stopped.
TP851_SF_SEQOVERFLOWERR If set the ADC sequencer has detected an

overflow error. (Hardware detected)
TP851_SF_SEQTIMERERROR If set the ADC sequencer has detected a timer

error. (Hardware detected)
TP851_SF_SEQIRAMERROR If set the ADC sequencer has detected an

instruction RAM error. (Hardware detected)

TP851_SF_SEQFIFOOVERFLOW If set the internal FIFO (buffer) has overrun. Data
got lost.

buffer[]
This array contains data from the activated channels. Only the previously selected channels
contain valid data. Array index 0 contains values from channel 1, array index 1 corresponds to
channel 2 and so on.

TPMC851-SW-72 - LynxOS Device Driver Page 24 of 59

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_ADC_SEQREAD_BUF adcSeqReadBuf;

/*
** Read values from internal sequencer buffer (1000 times)
** assuming that channel 1 and 3 are enabled.
*/
for (cycle=0; cycle<1000; cycle++)
{

result = ioctl(fd,
TP851_C_ADC_SEQREAD,
(char*)&adcSeqReadBuf);

if (result == OK)
{

printf(“ Channel(1)=%d Channel(3)=%d \n”,
adcSeqReadBuf.buffer[0],
adcSeqReadBuf.buffer[2]);

}
if (result == ENODATA)
{

/* wait a short time for new data to arrive */
}

}

Error Codes

EACCES The ADC sequencer is not running.
ENODATA No data is available inside the internal buffer.

All other returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 25 of 59

3.3.6 TP851_C_DAC_WRITE

NAME

TP851_C_DAC_WRITE – Write value to DAC channel

DESCRIPTION

This function writes a value to the DAC register.

The DAC sequencer must be stopped for single DAC writes.

A pointer to the write structure (TP851_DAC_WRITE_BUF) is passed by the parameter arg to the
driver.

typedef struct
{

int channel;
unsigned long flags;
short dacValue;

} TP851_DAC_WRITE_BUF, *PTP851_DAC_WRITE_BUF;

channel
Specifies the DAC channel number. Valid values are 1..8.

flags
Is an ored value of the following flags:

flag description
TP851_F_CORR If set the function will correct the dacValue before

writing to DAC channel. Factory set and module
dependent correction data is used for correction.
If not set, dacValue is written to the DAC channel.

TP851_F_NOUPDATE If set the DACs will not update after changing the
DAC value. The output voltage will change with the
next write with unset TP851_F_NOUPDATE flag.
If not set the DAC will immediately convert and
output the new voltage.

dacValue
This value is written to the DAC channel.

TPMC851-SW-72 - LynxOS Device Driver Page 26 of 59

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_DAC_WRITE_BUF dacWriteBuf;

/*
** Write uncorrected 0x4000 to DAC channel 5, immediate convert
*/
dacWriteBuf.channel = 5;
dacWriteBuf.flags = 0;
dacWriteBuf.dacValue = 0x4000;

printf("Write to DAC ... ");
result = ioctl(fd,

TP851_C_DAC_WRITE,
(char*)&dacWriteBuf);

if (result == OK)
{

printf("OK\n");
} else {

/* process ioctl error */
}

Error Codes

EBUSY The DAC sequencer is currently running.

ECHRNG Specified channel is invalid.
EINVAL Specified gain level is invalid.

All other returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 27 of 59

3.3.7 TP851_C_DAC_SEQCONFIG

NAME

TP851_C_DAC_SEQCONFIG – Configure DAC sequencer channel

DESCRIPTION

This function enables and configures, or disables a DAC channel for sequence use.

The DAC sequencer must be stopped to execute this function.

A pointer to the configuration structure (TP851_DAC_SEQCONFIG_BUF) is passed by the parameter
arg to the driver.

typedef struct
{

int channel;
int enable;
unsigned long flags;

} TP851_DAC_SEQCONFIG_BUF, *PTP851_DAC_SEQCONFIG_BUF;

channel
Specifies the DAC channel number to configure. Valid values are 1..8.

enable
Specifies if the channel shall be used in sequencer mode or not. (0 disables the channel, any
other value will enable the channel)

flags
Is an ored value of the following flags:

flag description

TP851_F_CORR If set the function will correct the dacValue before
writing to DAC channel. Factory set and module
dependent correction data is used for correction.
If not set, dacValue is written to the DAC channel.

TPMC851-SW-72 - LynxOS Device Driver Page 28 of 59

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_DAC_SEQCONFIG_BUF dacSeqConfBuf;

/*
** Configure DAC channel 1, using corrected data
** when the sequencer is running
*/
dacSeqConfBuf.channel = 1;
dacSeqConfBuf.enable = TRUE;
dacSeqConfBuf.flags = TP851_F_CORR;

printf("Configure channel for Sequencer ... ");
result = ioctl(fd,

TP851_C_DAC_SEQCONFIG,
(char*)&dacSeqConfBuf);

if (result == OK)
{

printf("OK\n");
} else {

/* process ioctl error */
}

Error Codes

EBUSY The DAC sequencer is currently running.

ECHRNG Specified channel is invalid.
EINVAL Specified flags are invalid.

All other returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 29 of 59

3.3.8 TP851_C_DAC_SEQSTART

NAME

TP851_C_DAC_SEQSTART – Start DAC sequencer

DESCRIPTION

This function configures the DAC sequencer time and starts the DAC sequencer.

A pointer to the start structure (TP851_DAC_SEQSTART_BUF) is passed by the parameter arg to the
driver.

typedef struct
{

unsigned short cycTime;
unsigned long flags;
long bufSize;
short buffer[1];

} TP851_DAC_SEQSTART_BUF, *PTP851_DAC_SEQSTART_BUF;

cycTime
Specifies the DAC sequencer cycle time. The sequencer time is specified in 100µs steps. With
a value of 0, the “Sequencer Continuous Mode” is selected.

flags
Is an ored value of the following flags:

flag description

TP851_F_EXTTRIGSRC If set the DAC sequencer is trigger with digital I/O
line 1.
If not set, the DAC sequencer uses the DAC cycle
counter.

TP851_F_EXTTRIGOUT If set the DAC trigger is used as output on digital
I/O line 1.

TP851_F_DACSEQREPEAT If set the DAC will repeat data when the end of the
buffer is reached, the
TP851_SF_SEQFIFOUNDERFLOW error will be
suppressed.

TP851_F_EXTTRIGSRC and TP851_F_EXTTRIGOUT can not be used at the same
time.

bufSize
Specifies the array size of buffer. This value must be the same as used for s in
TP851_CALC_SIZE_DAC_SEQDATA_BUF(s) when calculating the allocation size for
adcSeqBuf.

TPMC851-SW-72 - LynxOS Device Driver Page 30 of 59

buffer
Array used for DAC sequencer data FIFO.
The DAC data is stored by the application into this FIFO. The assignment from data to channel
is done as follows. The first data will be used for the lowest enabled channel, the second from
the next enabled channel and so on. There will be no data used for disabled channels. If the
end of buffer is reached the next data will be read again from the beginning of the buffer.

Example:
Enabled channels: 1, 2, 5
Buffer Size: 10
The table shows the index the data is used to for channel and cycle.

sequencer
cycle channel 1 channel 2 channel 3

1st 0 1 2

2nd 3 4 5
3rd 6 7 8

4th 9 0 1
5th 2 3 4

… … … …

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_DAC_SEQSTART_BUF dacSeqStartBuf;

/*
** Start sequencer with a buffer of 100 word and a cycle time of 100 ms,
** do not use external trigger
*/
dacSeqStartBuf.cycTime = 1000;
dacSeqStartBuf.flags = TP851_F_DACSEQREPEAT;
dacSeqStartBuf.bufSize = 100;

/* Fill buffer */
dacSeqStartBuf.buffer[0] = …;
dacSeqStartBuf.buffer[1] = …;
dacSeqStartBuf.buffer[2] = …;

…

TPMC851-SW-72 - LynxOS Device Driver Page 31 of 59

…

printf("Start DAC Sequencer ... ");
result = ioctl(fd,

TP851_C_DAC_SEQSTART,
(char*)&dacSeqStartBuf);

if (result == OK)
{

printf("OK\n");
} else {

/* process ioctl error */
}

Error Codes

EBUSY The DAC sequencer is already running.
EINVAL Specified flags are invalid.
ENOMEM No memory is available to allocate the internal buffer.

All other returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 32 of 59

3.3.9 TP851_C_DAC_SEQSTOP

NAME

TP851_C_DAC_SEQSTOP – Stop DAC sequencer

DESCRIPTION

This function stops the DAC sequencer. All sequencer channel configurations are still valid after
stopping.

No additional parameter is necessary.

EXAMPLE

#include <tpmc851.h>

int fd;
int result;

/*
** Stop the sequencer
*/
printf("Stop DAC Sequencer ... ");
result = ioctl(fd,

TP851_C_DAC_SEQSTOP,
NULL);

if (result == OK)
{

printf("OK\n");
} else {

/* process ioctl error */
}

Error Codes

EACCES The DAC sequencer is not running.
All other returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 33 of 59

3.3.10 TP851_C_DAC_SEQWRITE

NAME

TP851_C_DAC_SEQWRITE – Write values to DAC sequencer buffer

DESCRIPTION

This function writes values to the internal DAC sequencer buffer.

A pointer to the write structure (TP851_DAC_SEQWRITE_BUF) is passed by the parameter arg to the
driver.

typedef struct
{

short buffer[8];
} TP851_DAC_SEQWRITE_BUF, *PTP851_DAC_SEQWRITE_BUF;

buffer[]
This array contains data for the activated channels. Only the previously selected channels must
be supplied with valid data. Array index 0 contains values for channel 1, array index 1
corresponds to channel 2 and so on.

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_DAC_SEQWRITE_BUF dacSeqWriteBuf;

/*
** Write values to internal sequencer buffer (1000 times)
** assuming that channel 1 and 3 are enabled.
*/
/* fill first cycle */
dacSeqWriteBuf.buffer[0] = …;
dacSeqWriteBuf.buffer[2] = …;
for (cycle=0; cycle<1000; cycle++)
{

result = ioctl(fd,
TP851_C_DAC_SEQWRITE,
(char*)&dacSeqWriteBuf);

TPMC851-SW-72 - LynxOS Device Driver Page 34 of 59

if (result == OK)
{

/* OK, fill next cycle */
dacSeqWriteBuf.buffer[0] = …;
dacSeqWriteBuf.buffer[2] = …;

}
if (result == ENOSPC)
{

/* wait a short time for new space available */
}

}

Error Codes

EACCES The DAC sequencer is not running.
ENOSPC No space is available for new data inside the internal buffer.

All other returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 35 of 59

3.3.11 TP851_C_IO_READ

NAME

TP851_C_IO_READ – Read from digital I/O

DESCRIPTION

This function reads the current value of the digital I/O input. Only bits previously configured to input
are valid.

A pointer to the read structure (TP851_IO_BUF) is passed by the parameter arg to the driver.

typedef struct
{

unsigned short value;
} TP851_IO_BUF, *PTP851_IO_BUF;

value

Returns the current digital I/O input value.

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_IO_BUF ioBuf;

/* Read I/O input value */
printf("Read I/O input value ... ");
result = ioctl(fd,

TP851_C_IO_READ,
(char*)&ioBuf);

if (result == OK)
{

printf(" I/O input: %04X", ioBuf.value);
} else {

/* process ioctl error */
}

Error Codes

All returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 36 of 59

3.3.12 TP851_C_IO_WRITE

NAME

TP851_C_IO_WRITE – Write to digital I/O

DESCRIPTION

This function writes a value to the digital I/O output. Only bits previously configured to output are valid.

A pointer to the write structure (TP851_IO_BUF) is passed by the parameter arg to the driver.

typedef struct
{

unsigned short value;
} TP851_IO_BUF, *PTP851_IO_BUF;

value
Specifies the new digital I/O output value.

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_IO_BUF ioBuf;

/* Write 0x1234 to I/O output */
ioBuf.value = 0x1234;
printf("Write I/O output value ... ");
result = ioctl(fd,

TP851_C_IO_WRITE,
(char*)&ioBuf);

if (result == OK)
{

printf("OK\n);
} else {

/* process ioctl error */
}

Error Codes

All returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 37 of 59

3.3.13 TP851_C_IO_EVENTWAIT

NAME

TP851_C_IO_EVENTWAIT – Wait for I/O event

DESCRIPTION

This function waits for an I/O input event.

A pointer to the event structure (TP851_IO_EVENTWAIT_BUF) is passed by the parameter arg to the
driver.

typedef struct
{

int ioLine;
unsigned long flags;
long timeout;

} TP851_IO_EVENTWAIT_BUF, *PTP851_IO_EVENTWAIT_BUF;

ioLine
Specifies the digital I/O line where the event shall occur. Valid values are 0..15.

flags
Specifies the event to wait for. This is an ored value of the following flags:

flag description

TP851_F_HI2LOTRANS If set, the function will return after a high to low
transition occurs.

TP851_F_LO2HITRANS If set, the function will return after a low to high
transition occurs.

At least one flag must be specified.

timeout

Specifies the maximum time the function will wait for the specified event. The time is specified in
ticks. Specify -1 to wait indefinitely for the given event.

TPMC851-SW-72 - LynxOS Device Driver Page 38 of 59

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_IO_EVENTWAIT_BUF waitBuf;

/*
** Wait for a transition on I/O line 12 (max wait 10000 ticks)
*/
waitBuf.ioLine = 12;
waitBuf.flags = TP851_F_HI2LOTRANS | TP851_F_LO2HITRANS;
waitBuf.timeout = 10000;

printf("Wait for an I/O event ... ");
result = ioctl(fd,

TP851_C_IO_EVENTWAIT,
(char*)&waitBuf);

if (result == OK)
{

printf("OK\n);
} else {

/* process ioctl error */
}

Error Codes

ENOSPC No space is available for new wait requests.
EINVAL Invalid I/O line specified.

ETIMEDOUT The timer expired.
All other returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 39 of 59

3.3.14 TP851_C_IO_CONFIG

NAME

TP851_C_IO_CONFIG – Configure digital I/O

DESCRIPTION

This function configures digital I/O lines to input or output (direction).

A pointer to the configuration structure (TP851_IO_CONF_BUF) is passed by the parameter arg to the
driver.

typedef struct
{

unsigned short direction;
} TP851_IO_CONF_BUF, *PTP851_IO_CONF_BUF;

direction

Specifies the new direction setting for digital I/O. A bit set to 1 enables output, a 0 means that
the I/O line is input.

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_IO_conf_BUF ioConfBuf;

/* Enable line 0,2,8,9 for output, all other lines are input */
ioConfBuf.direction = (1 << 0) | (1 << 2) | (1 << 8) | (1 << 9);
printf("Set new I/O configuration ... ");
result = ioctl(fd,

TP851_C_IO_CONFIG,
(char*)&ioConfBuf);

if (result == OK)
{

printf("OK\n);
} else {

/* process ioctl error */
}

TPMC851-SW-72 - LynxOS Device Driver Page 40 of 59

Error Codes

All returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 41 of 59

3.3.15 TP851_C_IO_DEBCONFIG

NAME

TP851_C_IO_DEBCONFIG – Configure digital I/O (input) debouncer

DESCRIPTION

This function configures the digital I/O debouncing circuit.

A pointer to the configure structure (TP851_IO_DEBCONF_BUF) is passed by the parameter arg to
the driver.

typedef struct
{

unsigned short enableMask;
unsigned short debTime;

} TP851_IO_DEBCONF_BUF, *PTP851_IO_DEBCONF_BUF;

enableMask
Specifies digital I/O lines which shall be used with debouncer. A bit set to 1 enables the
debouncer, and a 0 disables the debouncer for the adequate I/O line.

debTime
Specifies the debounce time. The time is specified in 100ns steps.

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_IO_DEBCONF_BUF ioDebConfBuf;

/*
** Enable Debouncer for line 0 and 2 (debounce time 1ms)
*/
ioDebConfBuf.enableMask = (1 << 0) | (1 << 2);
ioDebConfBuf.debTime = 10000;

printf("Set debouncer configuration ... ");
result = ioctl(fd,

TP851_C_IO_DEBCONFIG,
(char*)&ioDebConfBuf);

TPMC851-SW-72 - LynxOS Device Driver Page 42 of 59

if (result == OK)
{

printf("OK\n);
} else {

/* process ioctl error */
}

Error Codes

All returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 43 of 59

3.3.16 TP851_C_CNT_READ

NAME

TP851_C_CNT_READ – Read value from counter/timer

DESCRIPTION

This function reads the current value of the counter/timer.

A pointer to the read structure (TP851_CNT_READ_ BUF) is passed by the parameter arg to the
driver.

typedef struct
{

unsigned long count; /* Counter value */
unsigned long state; /* Counter state information (cleared after read) */

} TP851_CNT_READ_BUF, *PTP851_CNT_READ_BUF;

count
Returns the current counter value.

state
Returns the counter state. If possible the flags are cleared after read. This is an ored value of
the following flags.

flag description
TP851_SF_CNTBORROW Counter borrow bit set (actual state)
TP851_SF_CNTCARRY Counter carry bit set (actual state)

TP851_SF_CNTMATCH Counter match event has occurred since last
read.

TP851_SF_CNTSIGN Counter sign bit (actual state)
TP851_SF_CNTDIRECTION If set, counter direction is upward.

If not set, counter direction is downward.
TP851_SF_CNTLATCH Counter value has been latched.

TP851_SF_CNTLATCHOVERFLOW Counter latch overflow has occurred.
TP851_SF_CNTSNGLCYC Counter Single Cycle is active

TPMC851-SW-72 - LynxOS Device Driver Page 44 of 59

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_CNT_READ_BUF cntBuf;

/* Read counter value */
printf("Read counter ... ");
result = ioctl(fd,

TP851_C_CNT_READ,
(char*)&cntBuf);

if (result == OK)
{

printf(" Counter: %ld", cntBuf.counter);
printf(" State: %lXh", cntBuf.state);

} else {
/* process ioctl error */

}

Error Codes

All returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 45 of 59

3.3.17 TP851_C_CNT_MATCHWAIT

NAME

TP851_C_CNT_MATCHWAIT – Wait for counter match event

DESCRIPTION

This function waits for a counter match event. This event occurs if the current timer/counter value
matches the previously setup counter-match-register.

A pointer to the wait structure (TP851_CNT_WAIT_BUF) is passed by the parameter arg to the driver.

typedef struct
{

long timeout;
} TP851_CNT_WAIT_BUF, *PTP851_CNT_WAIT_BUF;

timeout

Specifies the maximum time the function will wait for the match event. The time is specified in
ticks. Specify -1 to wait indefinitely for the given event.

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_CNT_WAIT_BUF cntWaitBuf;

/*
** Wait for counter match event (max wait 10000 ticks)
*/
waitBuf.timeout = 10000;
printf("Wait for counter match event ... ");
result = ioctl(fd,

TP851_C_CNT_MATCHWAIT,
(char*)&cntWaitBuf);

if (result == OK)
{

printf("OK\n);
} else {

/* process ioctl error */
}

TPMC851-SW-72 - LynxOS Device Driver Page 46 of 59

Error Codes

ENOSPC No space is available for new wait requests.

ETIMEDOUT The timer expired.
All other returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 47 of 59

3.3.18 TP851_C_CNT_CTRLWAIT

NAME

TP851_C_CNT_CTRLWAIT – Wait for counter control event

DESCRIPTION

This function waits for a counter control event. The event to wait for is chosen with ioctl() function
TP851_C_CNT_CONFIG specifying the parameter controlMode.

A pointer to the wait structure (TP851_CNT_WAIT_BUF) is passed by the parameter arg to the driver.

typedef struct
{

long timeout;
} TP851_CNT_WAIT_BUF, *PTP851_CNT_WAIT_BUF;

timeout

Specifies the maximum time the function will wait for the match event. The time is specified in
ticks. Specify -1 to wait indefinitely for the given event.

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_CNT_WAIT_BUF cntWaitBuf;

/*
** Wait for counter control event (max wait 10000 ticks)
*/
waitBuf.timeout = 10000;
printf("Wait for counter control event ... ");
result = ioctl(fd,

TP851_C_CNT_CTRLWAIT,
(char*)&cntWaitBuf);

if (result == OK)
{

printf("OK\n);
} else {

/* process ioctl error */
}

TPMC851-SW-72 - LynxOS Device Driver Page 48 of 59

Error Codes

ENOSPC No space is available for new wait requests.

ETIMEDOUT The timer expired.
All other returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 49 of 59

3.3.19 TP851_C_CNT_CONFIG

NAME

TP851_C_CNT_CONFIG – Configure counter

DESCRIPTION

This function configures the counter.

A pointer to the configuration structure (TP851_CNT_CONFIG_BUF) is passed by the parameter arg
to the driver.

typedef struct
{

unsigned long inputMode;
int clockDivider;
unsigned long countMode;
unsigned long controlMode;
unsigned long invFlags;

} TP851_CNT_CONFIG_BUF, *PTP851_CNT_CONFIG_BUF;

inputMode
Specifies the counter input mode. The following modes are defined and valid:

flag description

TP851_M_CNTIN_DISABLE Counter disabled
TP851_M_CNTIN_TIMERUP Timer Mode Up

TP851_M_CNTIN_TIMERDOWN Timer Mode Down
TP851_M_CNTIN_DIRCOUNT Direction Count

TP851_M_CNTIN_UPDOWNCOUNT Up/Down Count
TP851_M_CNTIN_QUAD1X Quadrature Count 1x

TP851_M_CNTIN_QUAD2X Quadrature Count 2x

TP851_M_CNTIN_QUAD3X Quadrature Count 4x

clockDivider
Specifies clock divider. Allowed clock divider values are 1 (40MHz), 2 (20MHz), 4 (10MHz) and
8 (5MHz).

countMode
Specifies the count mode. The following modes are defined and valid:

flag description

TP851_M_CNT_CYCLE Cycling Counter
TP851_M_CNT_DIVN Divide-by-N

TP851_M_CNT_SINGLE Single Cycle

TPMC851-SW-72 - LynxOS Device Driver Page 50 of 59

controlMode
Specifies the counter control mode. These events can generate counter control events. The
following modes are defined and valid:

flag description

TP851_M_CNTCTRL_NONE No Control Mode
TP851_M_CNTCTRL_LOAD Load Mode

TP851_M_CNTCTRL_LATCH Latch Mode
TP851_M_CNTCTRL_GATE Gate Mode

TP851_M_CNTCTRL_RESET Reset Mode

invFlags
Specifies if counter input lines shall be inverted or not. This is an ored value of the following
flags:

flag description
TP851_F_CNTINVINP2 If set, input line 2 is low active

If not set, input line 2 is high active
TP851_F_CNTINVINP3 If set, input line 3 is low active

If not set, input line 3 is high active
TP851_F_CNTINVINP4 If set, input line 4 is low active

If not set, input line 4 is high active

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_CNT_CONFIG_BUF cntConfBuf;

/*
** Setup counter for direction count, clock divider 1, cycling count,
** no control mode and all line high active
*/
cntConfBuf.inputMode = TP851_M_CNTIN_DIRCOUNT;
cntConfBuf.clockDivider = 1;
cntConfBuf.countMode = TP851_M_CNT_CYCLE;
cntConfBuf.controlMode = TP851_M_CNTCTRL_NONE;
cntConfBuf.invFlags = 0;

printf("Set counter configuration ... ");
result = ioctl(fd,

TP851_C_CNT_CONFIG,
(char*)&cntConfBuf);

TPMC851-SW-72 - LynxOS Device Driver Page 51 of 59

if (result == OK)
{

printf("OK\n");
} else {

/* process ioctl error */
}

Error Codes

EINVAL Specified flag or mode is invalid.
All other returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 52 of 59

3.3.20 TP851_C_CNT_RESET

NAME

TP851_C_CNT_RESET – Reset counter

DESCRIPTION

This function resets the counter value to 0x00000000.

No additional parameter is necessary for this function.

EXAMPLE

#include <tpmc851.h>

int fd;
int result;

/* Reset counter */
printf("Reset counter ... ");
result = ioctl(fd,

TP851_C_CNT_RESET,
NULL);

if (result == OK)
{

printf("OK\n");
} else {

/* process ioctl error */
}

Error Codes

All returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 53 of 59

3.3.21 TP851_C_CNT_SETPRELD

NAME

TP851_C_CNT_SETPRELD – Set counter preload value

DESCRIPTION

This function sets the counter preload register.

A pointer to the preload structure (TP851_CNT_SETPRELD_BUF) is passed by the parameter arg to
the driver.

The TP851_CNT_SETPRELD _BUF structure has the following layout:

typedef struct
{

unsigned long value;
unsigned long flags;

} TP851_CNT_SETPRELD_BUF, *PTP851_CNT_SETPRELD_BUF;

value
Specifies the new counter preload value.

flags
Is an ored value of the following flags:

flag description

TP851_F_IMMPRELOAD If set, the function will immediate load the preload
value into the counter
If not set, preload value will be used for the next
preload condition.

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_CNT_SETPRELD_BUF cntPrldBuf;

/*
** Immediately load 0x11223344 into the counter and preload register
*/
cntPrldBuf. value = 0x11223344;
cntPrldBuf.flags = TP851_F_IMMPRELOAD;

…

TPMC851-SW-72 - LynxOS Device Driver Page 54 of 59

…

printf("Set preload value ... ");
result = ioctl(fd,

TP851_C_CNT_SETPRELD,
(char*)&cntPrldBuf);

if (result == OK)
{

printf("OK\n");
} else {

/* process ioctl error */
}

Error Codes

All returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 55 of 59

3.3.22 TP851_C_CNT_SETMATCH

NAME

TP851_C_CNT_SETMATCH – Set counter match value

DESCRIPTION

This function sets the counter match register. If counter and match value are the same, a match event
occurs. The driver can wait for this event (refer to ioctl function TP851_C_CNT_MATCHWAIT).

A pointer to the match structure (TP851_CNT_SETMATCH_BUF) is passed by the parameter arg to
the driver.

typedef struct
{

unsigned long value;
} TP851_CNT_SETMATCH_BUF, *PTP851_CNT_SETMATCH_BUF;

value
Specifies the new counter match value.

EXAMPLE

#include <tpmc851.h>

int fd;
int result;
TP851_CNT_SETMATCH_BUF cntMatchBuf;

/* Set match value to 0x10000 */
cntMatchBuf.value = 0x10000;
printf("Set counter match value ... ");
result = ioctl(fd,

TP851_C_CNT_SETMATCH,
(char*)&cntMatchBuf);

if (result == OK)
{

printf("OK\n");
} else {

/* process ioctl error */
}

TPMC851-SW-72 - LynxOS Device Driver Page 56 of 59

Error Codes

All returned error codes are system error conditions.

TPMC851-SW-72 - LynxOS Device Driver Page 57 of 59

4 Debugging and Diagnostic
If the driver does not work properly, please enable debug outputs by defining the symbols DEBUG,
DEBUG_TPMC, DEBUG_PCI and DEBUG_INT.

The debug output should appear on the console. If not, please check the symbol KKPF_PORT in
uparam.h. This symbol should be configured to a valid COM port (e.g. SKDB_COM1).

The debug output displays the device information data for the current major device, and a memory
dump of the PCI base address registers like this.

Bus = 0 Dev = 17 Func = 0
[00] = 03531498
[04] = 02800003
[08] = 11800000
[0C] = 00000008
[10] = CFFFEF80
[14] = 0000D801
[18] = CFFFEC00
[1C] = CFFFEF40
[20] = CFFFEF00
[24] = 00000000
[28] = 00000000
[2C] = 000A1498
[30] = 00000000
[34] = 00000040
[38] = 00000000
[3C] = 0000010B

PCI Base Address 0 (PCI_RESID_BAR0)

CBFFEF80 : 00 FE FF 0F C0 FF FF 0F C0 FF FF 0F 00 00 00 00
CBFFEF90 : 00 00 00 00 01 00 00 00 01 02 00 00 01 03 00 00
CBFFEFA0 : 00 00 00 00 00 00 00 00 22 00 80 01 22 00 40 01
CBFFEFB0 : 22 00 40 01 00 00 00 00 00 00 00 00 01 01 00 00
CBFFEFC0 : 21 02 00 00 21 03 00 00 00 00 00 00 61 00 30 00
CBFFEFD0 : 00 00 78 18 D2 B6 6D 02 00 00 00 00 00 00 00 00
CBFFEFE0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
CBFFEFF0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

PCI Base Address 1 (PCI_RESID_BAR1)

0000D800 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000D810 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000D820 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000D830 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000D840 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

TPMC851-SW-72 - LynxOS Device Driver Page 58 of 59

0000D850 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000D860 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000D870 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

PCI Base Address 2 (PCI_RESID_BAR2)

CBFFEC00 : 00 00 00 20 00 00 13 7A 00 00 00 00 00 00 00 00
CBFFEC10 : 00 00 00 00 00 00 00 00 00 00 03 E8 00 00 00 00
CBFFEC20 : 00 00 00 02 00 00 00 02 00 00 00 00 00 00 00 00
CBFFEC30 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
CBFFEC40 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
CBFFEC50 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
CBFFEC60 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
CBFFEC70 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

PCI Base Address 3 (PCI_RESID_BAR3)

CBFFEF40 : 13 72 03 DB 00 00 00 00 00 00 00 00 00 00 00 00
CBFFEF50 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
CBFFEF60 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
CBFFEF70 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
CBFFEF80 : 00 FE FF 0F C0 FF FF 0F C0 FF FF 0F 00 00 00 00
CBFFEF90 : 00 00 00 00 01 00 00 00 01 02 00 00 01 03 00 00
CBFFEFA0 : 00 00 00 00 00 00 00 00 22 00 80 01 22 00 40 01
CBFFEFB0 : 22 00 40 01 00 00 00 00 00 00 00 00 01 01 00 00

PCI Base Address 4 (PCI_RESID_BAR4)

CBFFEF00 : 00 84 FF FD 00 89 00 04 00 96 FF EF 00 AE FF CA
CBFFEF10 : FF 2B FF EB FF 4F 00 2C FF 60 FF E9 FF 4D FF B1
CBFFEF20 : FF 3D 00 05 FF 3A 00 30 FF 31 FF C8 FF 3D 00 20
CBFFEF30 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
CBFFEF40 : 13 72 03 DB 00 00 00 00 00 00 00 00 00 00 00 00
CBFFEF50 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
CBFFEF60 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
CBFFEF70 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Found a TPMC851, BusNo=0, DevNo=17
Calibration Data:

ADC [gain 1]: Offset: 132 / Gain: -3
ADC [gain 2]: Offset: 137 / Gain: 4
ADC [gain 3]: Offset: 150 / Gain: -17
ADC [gain 4]: Offset: 174 / Gain: -54
ADC [chan 1]: Offset: -213 / Gain: -21
ADC [chan 2]: Offset: -177 / Gain: 44

TPMC851-SW-72 - LynxOS Device Driver Page 59 of 59

ADC [chan 3]: Offset: -160 / Gain: -23
ADC [chan 4]: Offset: -179 / Gain: -79
ADC [chan 5]: Offset: -195 / Gain: 5
ADC [chan 6]: Offset: -198 / Gain: 48
ADC [chan 7]: Offset: -207 / Gain: -56
ADC [chan 8]: Offset: -195 / Gain: 32

The debug output above is only an example. Debug output on other systems may be different
for addresses and data in some locations.

	Introduction
	Installation
	Device Driver Installation
	Static Installation
	Build the driver object
	Create Device Information Declaration
	Modify the Device and Driver Configuration File
	Rebuild the Kernel

	Dynamic Installation
	Build the driver object
	Create Device Information Declaration
	Uninstall dynamic loaded driver

	Device Information Definition File
	Configuration File: CONFIG.TBL

	TPMC851 Device Driver Programming
	open()
	close()
	ioctl()
	TP851_C_ADC_READ
	TP851_C_ADC_SEQCONFIG
	TP851_C_ADC_SEQSTART
	TP851_C_ADC_SEQSTOP
	TP851_C_ADC_SEQREAD
	TP851_C_DAC_WRITE
	TP851_C_DAC_SEQCONFIG
	TP851_C_DAC_SEQSTART
	TP851_C_DAC_SEQSTOP
	TP851_C_DAC_SEQWRITE
	TP851_C_IO_READ
	TP851_C_IO_WRITE
	TP851_C_IO_EVENTWAIT
	TP851_C_IO_CONFIG
	TP851_C_IO_DEBCONFIG
	TP851_C_CNT_READ
	TP851_C_CNT_MATCHWAIT
	TP851_C_CNT_CTRLWAIT
	TP851_C_CNT_CONFIG
	TP851_C_CNT_RESET
	TP851_C_CNT_SETPRELD
	TP851_C_CNT_SETMATCH

	Debugging and Diagnostic

